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Abstract

We propose an elliptic curve scheme over the ring Zn2 , which is effi-
cient and semantically secure in the standard model, and it has expansion
factor 2 (previous schemes with similar features present expansion factors
greater or equal than 4). Demytko’s RSA type scheme has been used as
an underlying primitive to obtain efficiency and probabilistic encryption.
Semantic security of the scheme is based on a new decisional assump-
tion, namely, the Decisional Small Root Assumption. Confidence on this
assumption is also discussed.

Keywords: public-key cryptography, semantic security, expansion factor, el-
liptic curves, Demytko’s scheme.

1 Introduction

In 1984, Goldwasser and Micali [9] defined a new security notion that any
encryption scheme should satisfy, namely indistinguishability of encryptions or
semantic security, and they proposed a scheme with this property. This notion
informally says that a ciphertext does not leak any useful information about the
plaintext, except its lenght, to a polynomial-time attacker. This security notion
becomes a standard requirement for the design of new cryptosystems. Stronger
security notions introduced later (e.g. non-malleability, plaintext awareness)
can not be considered as general requirements since they preclude homomorphic
encryption.

A relevant parameter for encryption schemes is the expansion factor, that
is, the ratio between the lengths of the ciphertext and the plaintext. The
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use of large expansion factors leads to decreasing the effective bandwith in
secure communications. Some of the known semantically secure cryptosystems
achieve expansion factor 2, that is optimal when the encryption uses as much
randomness as the message length. Nevertheless, all semantically secure elliptic
curve cryptosystems in the literature have expansion factor greater or equal
than 4.

In this paper we propose an efficient and semantically secure elliptic curve
cryptosystem with expansion factor 2. To our knowledge there is no previous
elliptic curve cryptosystem based on factoring enjoying these properties. The
design of our scheme is based on [8] but using as underlying primitive the
Demytko’s scheme [6], instead of [10]. This enables to use elliptic curves with
arbitrary parameters to design the scheme, in contrast with [8], where only
supersingular curves were possible.

The new proposed cryptosystem uses elliptic curves over the ring Zn2 , where
n is an RSA modulus. Its semantic security is based on a new decisional as-
sumption, namely the Decisional Small Root Assumption. In some sense, this
assumption is analogous to the one on which Catalano et al. scheme [3] is based.

In terms of efficiency, our proposal is efficient, specially in ciphering. Al-
though it is slower than Catalano et al. cryptosystem [3], ours is much faster
than the existing elliptic curve semantically secure schemes, such as [7, 13].

The rest of the paper is organised as follows. Section 2 briefly recalls De-
mytko’s scheme. In section 3, we describe the new scheme and prove it is
semantically secure under a new assumption. Then, we argue why one should
be confident on this new assumption. The computational cost of the new scheme
is discussed in section 4. Finally, section 5 contains the conclusions.

For a brief description of the results about elliptic curves over the ring Zn2

used in this paper see [8].

2 Demytko’s scheme revisited

Demytko proposed in [6] an elliptic curve RSA based scheme. He uses a fixed
randomly chosen elliptic curve En(a, b) over the ring Zn, where n = pq is an
RSA modulus. Let tp = p+1−|Ep(a, b)|, tq = q+1−|Eq(a, b)| and e an (small)
integer such that

gcd(e, p + 1± tp) = gcd(e, q + 1± tq) = 1 . (1)

Let
Λa,b = {x ∈ Z∗n | x3 + ax + b ∈ Z∗n}.

Demytko considered a set E of four elliptic curves related to En(a, b), including
itself. These curves are usually referred as the quadratic twists of En(a, b), and
their number of points have the form (p + 1± tp)(q + 1± tq). The main feature
is that for all m ∈ Λa,b there exists a unique curve in E with exactly four points
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with x-coordinate m, i.e of the form (m, y), with y ∈ Z∗n. Moreover, the x-
coordinate of the multiple e#(m, y), computed on the corresponding curve, is
the same for the four values of y and can be computed without knowing any of
them. We will hereafter denote by e ? m the x-coordinate of multiple e#(m, y)
for any of the four possible values of y.
It can be proved that the map

De : Λa,b −→ Λa,b

m 7−→ e ? m

is well defined and bijective, since an e satisfying (1) is coprime with the number
of points of any of the four curves in E .

In Demytko’s scheme, the ciphertext c for a message m ∈ Λa,b is c = e ? m.
The ciphertext c can be efficiently computed, for almost all m ∈ Λa,b, as c =
Φe(m) mod n, where the rational function Φe is recursively defined as:

Φ1 = x

Φ2k =
(Φ2

k − a)2 − 8bΦk

4(Φ3
k + aΦk + b)

Φ2k+1 =
2(a− ΦkΦk+1)(Φk + Φk+1) + 4b

(Φk+1 − Φk)2
− x

The above formulae can only fail for x corresponding to points (x, y) with order
less or equal than e, that are a negligible subset of Λa,b, when e is small. Besides,
such points can be totally supressed by taking En(a, b) such that p + 1± tp and
q + 1 ± tq have no divisor between 3 and e (e.g. tp = tq = 0, p = 2p′ − 1,
q = 2q′ − 1 and p′, q′ primes).

In [6] it is conjectured that Φe is a one-way trapdoor permutation with
trapdoor p, q and the four inverses of e modulo lcm(p + 1± tp, q + 1± tq).

To decrypt the ciphertext c ∈ Λa,b, it suffices to compute m = d ? c, where
d is one of the four inverses of e. The Jacobi symbols (c3 + ac + b/p) and
(c3 + ac + b/q) easily determine which inverse must be used.

If we restrict the above scheme to supersingular curves (i.e. tp = tq = 0),
there is only one value of d involved and no Jacobi symbol computation is
needed in the decryption process, and therefore the values of p and q are not
explicitly used in decryption (except for improving speed by using the Chinese
Remainder Theorem).

3 The new scheme

Applying the ideas in [8], one can add semantic security to Demytko’s scheme
without loosing efficiency and achieving the same expansion factor as in Paillier
or OAEP-RSA schemes [12, 1] .
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Let
Ωa,b = {x ∈ Z∗n2 | x3 + ax + b ∈ Z∗n2}

Notice that Ωa,b = {z + mn | z ∈ Λa,b, m ∈ Zn} . Let us consider the function

Θe : Λa,b × Zn −→ Ωa,b

(r,m) −→ Φe(r) + mn mod n2

Lemma 1 For all e such that gcd(e, n(p + 1± tp)(q + 1± tq)) = 1, Θe is well
defined and bijective.

Proof : Θe is well defined since Θe(r,m) ≡ De(r) mod n, and Im(De) = Λa,b.
Also, due to the bijectivity of De, Θe(r1,m1) = Θe(r2, m2) implies that r1 ≡
r2 mod n, that is r1 = r2. Therefore m1 = m2.

In the sequel we describe the proposed new scheme:

Key generation. Given a security parameter `, choose at random two different
primes p and q with ` bits, a random elliptic curve En2(a, b), where n = pq, and
an integer e such that gcd(e, pq) = gcd(e, p + 1 ± tp) = gcd(e, q + 1 ± tq) = 1,
where tp = p + 1− |Ep(a, b)| and tq = q + 1− |Eq(a, b)|.
Then the public key is PK = (n, e, a, b), and the secret key is

SK = (p, q, d1, d2, d3, d4),

where di = e−1 mod lcm(p + 1± tp, q + 1± tq).

Encryption. To encrypt a message m ∈ Zn we compute c = Θe(r,m), where
r is uniformly chosen in Λa,b.

Decryption. To recover the message m from c = Φe(r) + mn, notice that
c ≡ De(r) mod n, and r is obtained from c mod n as in Demytko’s scheme. Now,
m is easily obtained from mn = c− Φe(r) mod n2.

As a particular case, the size of private key as well as decryption complexity
can be reduced if supersingular curves are used. Then, tp = tq = 0 and only
one value of d is needed to recover r from c mod n.

3.1 Semantic security

Probabilistic notation.
If A is a non-empty set, then x ∈R A denotes that x has been uniformly chosen
in A. If D1 and D2 are two probability distributions, then the notation D1 ≈ D2

means that D1 and D2 are polinomally indistinguishable. Notice that if g is a
bijection such that g and g−1 can be computed in probabilistic polynomial time,
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then D1 ≈ D2 is equivalent to g(D1) ≈ g(D2).

Our scheme is semantically secure under the following assumption:

Decisional Small Root Assumption (DSRA).
Let p, q be randomly chosen `-bit long different primes, n = pq, En2(a, b) a
randomly chosen elliptic curve and e an integer such that gcd(e, n) = gcd(e, p+
1±tp) = gcd(e, q+1±tq) = 1, where tp = p+1−|Ep(a, b)|, tq = q+1−|Eq(a, b)|.

The following probability distributions are polinomially indistinguishable

Dsmall−x = (n, a, b, Φe(x) mod n2) where x ∈R Λa,b

Drandom = (n, a, b, x′) where x′ ∈R Ωa,b.

Proposition 2 The proposed scheme is semantically secure if and only if DSRA
holds.

Proof : Semantic security is equivalent to indistinguishability of encryptions, so
we have to prove that for all m0 ∈ Zn, the distributions

D0 = (n, a, b, Φe(x) + m0n mod n2) where x ∈R Λa,b , and

D = (n, a, b, Φe(x) + mn mod n2) where x ∈R Λa,b, m ∈R Zn,

are polynomially indistinguishable, which is equivalent to

(n, a, b, Φe(x) mod n2) ≈ (n, a, b, Φe(x)+m′n mod n2), with x ∈R Λa,b, m′ ∈R Zn .

Note that the distribution on the left side is Dsmall−x.
Besides, since Φe(x) + m′n mod n2 = Θe(x, m′), and Θe is a bijection, then D
and Drandom are identically distributed.

3.2 Hardness of the Small Root Problems

In this subsection we argue why one should be confident on the hardness of the
new decisional problem presented in this paper. From [15] (Section 3, ex. 3.7)
one proves that

Φe(x) =
νe(x)

ηe(x)

where νe(x) and ηe(x) are relatively prime polynomials such that,

νe(x) = xe2

+ lower order terms ,

ηe(x) = e2xe2−1 + lower order terms .
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Thus, given t = Φe(x0) mod n2, x0 is a root of the polynomial νe(x)−tηe(x) ∈
Zn2 [x], whose degree is e2. Then, DSRA is equivalent to the assumption that it
is infeasible deciding if the polynomial νe(x) − tηe(x) ∈ Zn2 [x], with t ∈R Zn2 ,
has a root smaller than n, for random n, a and b.

Similarly, the semantic security of Catalano et al. scheme is related to the
difficulty of deciding if the polynomial xe − t ∈ Zn2 [x], with t ∈R Zn2 , has a
root smaller than n. After Coppersmith’s result [4], it makes sense to use the
degree of the polynomial as a security parameter to compare both schemes.
Therefore, our scheme with parameter e could achieve the same security level
than Catalano et al. scheme with exponent e2.

4 Efficiency analysis

In this section, we compare the computational encryption cost of our scheme
and the efficient Catalano et al. scheme, at the same security level (i.e. the
same degree of the polynomials involved in the security assumptions).

Since operations modulo a large number are involved, we neglect the cost of
performing additions, multiplications and divisions by small integers. We will
express the cost in terms of multiplications mod n2, because modular inverses
can be computed within a constant number of modular multiplications. Then,
we compare the computational costs of evaluating Φe(r) mod n2 and re2

mod n2.
It is not possible to use the same addition chains in both computations. We

will suppose that the binary algorithm is used to evaluate re2
mod n2. Then,

2blog2 ec modular squares and 2 modular multiplications modulo n2 are needed
in the best case (i.e. e = 2s + 1).

In the same case, e = 2s + 1, the computation of Φe(r) mod n2 requires
blog2 ec evaluations of the formula for Φ2k+1 and blog2 ec − 1 evaluations of the
formula for Φ2k. Both rules involve the computation of one inverse modulo
n2. We point out that a−1 mod n2 can be obtained by computing a−1 mod n
and then performing two multiplications modulo n2. Let c be the number
of multiplications modulo n needed to compute a−1 mod n. Since the cost of
multiplying two numbers mod n2 is roughly the cost of 4 multiplications modulo
n, we deduce that a−1 mod n2 can be computed in 2+c/4 multiplications modulo
n2.

Then, our encrypting function requires about (12 + c/2)blog2 ec multiplica-
tions modulo n2 compared to 2blog2 ec required by Catalano et al. encrypting
function in the best case. Practical implementations suggest that the value
c = 8 can be taken (see [2]), so our scheme is about 8 times slower compared
with the best case for Catalano et al. scheme at the same security level. This
is a low computational cost if we compare it with previous semantically secure
elliptic curve cryptosystems based on factoring [13, 7].
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5 Conclusions and further research

In this paper we have presented a new elliptic curve based scheme over the
ring Zn2 , with n an RSA modulus. We prove that the scheme is semantically
secure under a new decisional assumption. The new scheme has been designed
applying to Demytko’s scheme techniques that are similar to those applied by
Catalano et al. [3] to RSA scheme. One of the advantages is that the scheme
can be performed on arbitrary elliptic curves. As far as we know, this is the
first proven semantically secure elliptic curve cryptosystem based on factoring
that is efficient, both in key generation (if supersingular curves are used) as
well as in encryption/decryption procedures, with expansion factor 2. A lower
encryption cost can be achieved if the scheme is designed over a Montgomery
form elliptic curve (see [11]), and we estimate that the computational cost is
reduced in a 50% approximately.

Security against adaptive chosen ciphertext attack, IND-CCA for short, can
be given in the random oracle model applying the technique introduced by
Pointcheval in [14]. It would be interesting to provide IND-CCA security in the
standard model to Catalano et al. scheme as well as to ours. To achieve this
goal, the recent work of Cramer and Shoup [5] could provide useful ideas.

Since the publication of Paillier’s crytosystem [12], several new decisional
assumptions have been formulated (e.g in [3],[7],[8]). There is little knowledge
about the validity of these assumptions, and a careful study of it would be
worthwhile.
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