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Abstract
This article reviewed both traditional continuum-mechanics-based and recent micro-macro approaches to the flow

analysis of complex fluids. The flow of viscoelastic fluids such as polymeric liquids was mainly treated. As for the
continuum-mechanics-based approach, the development in numerical techniques for stabilizing the numerical scheme
was introduced. As for the micro-macro approach, numerical simulations using the CONNFFESSIT approach and
those based on the Fokker-Planck equation were reviewed. In addition, studies of micro-macro flow analyses of other
complex fluids were briefly introduced.
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1. Introduction

Complex fluid is an art of term that indicates a fluid
having micro structures larger than the scale of molecules.
For example, complex fluids include polymers, suspensions,
surfactant solutions, liquid crystals, and so on [1, 2, 3].
Complex fluids are sometimes referred as soft matter.
According to de Gennes [4], the 1991 Nobel Prize winner in
physics, Americans prefer to call it complex fluids. The
author is not sure that it is true or not, but thinks that
complex fluids are preferably used in the field of fluid
mechanics. In this review, we will use the term of complex
fluids.

Complex fluids often show anomalous rheological
properties and hence their flow behavior remarkably differs
from that of Newtonian fluid [2, 5, 6]. In flow analyses of
complex fluids, the relation between rheological properties
of fluids and their flow behavior has been investigated to
analyze their flow mechanism. Constitutive equations play a
significant role in the numerical analysis based on
continuum mechanics because characteristics of a model
fluid are described by a constitutive equation. Various
constitutive equations have been proposed for various kinds
of complex fluids. Even for polymeric liquids (viscoelastic
fluids), a large number of equations exist and have been
employed for the numerical simulation [7, 8]. In flow
analyses based on continuum mechanics, governing
equations derived from conservation laws and a constitutive

equation are simultaneously solved. Because this traditional
approach requires low computational cost as compared to
so-called micro-macro simulations that are introduced later,
it has been widely employed in the flow analysis of complex
fluids in relatively complex flow geometries.

On the other hand, the continuum-mechanics-based
approach has a weak side. Considering the fact that
characteristic rheological properties and flow behavior of
complex fluids originates from changes in fluid micro
structures induced by flow, it is natural to analyze the
structural change in fluids for the clarification of flow
mechanics of complex fluids. However, a constitutive
equation sometimes loses the information of fluid micro
structures during its derivation process owing to
approximations or averaging operations even though it is
based on the kinetic theory of fluid micro structures. Micro
simulations such as molecular dynamics (MD) simulation
and Brownian dynamics (BD) simulation are possible
methods for the analysis of structural change induced by
flows. However, these simulations usually require high
computational resources and hence it is not possible for
them to treat all flow problems that can be simulated by
continuum-mechanics-based computations. However,
attempts to numerically simulate the flow of complex fluids
considering the fluid micro structure begin to appear as the
computational performance progresses. In a micro-macro
approach, a micro simulation of fluid micro structures is
coupled with macroscopic flow computation. This approach
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is coming into a trend in the numerical flow analysis of
complex fluids in these days.

In the present review, both traditional and recent
approaches in numerical analysis of complex fluid flows are
introduced with focusing the numerical flow analysis of
polymeric fluids (viscoelastic fluids). In addition,
applications to other complex fluids are also briefly
reviewed. This review is structured as follows: In Sec. 2,
traditional approaches, i.e. continuum-mechanics-based
methods, are treated. In Sec. 3, recent approaches of micro-
macro simulations are reviewed. In Sec. 4, micro-macro
approaches for other complex fluids are briefly introduced.
Finally in Sec. 5, we will conclude this review.

2. Numerical analysis based on continuum 
mechanics

In flow analyses based on continuum mechanics, balance
equations derived from a corresponding conservation law
and a constitutive equation form a mathematically-closed set
of equations and they are simultaneously solved with
appropriate initial and boundary conditions. Most
constitutive equations for viscoelastic fluids that express
rheological properties of real polymeric liquids relatively
well are non-linear differential or integral equations, e.g. the
Phan-Thien Tanner model [9, 10], the Giesekus model [11],
and families of FENE dumbbell model (FENE-P [12, 13],
FENE-CR [14], FENE-L [15] etc.). In general, nonlinear
constitutive equations cause numerical instability under
some computational conditions. Consequently, numerical
instability is an inevitable issue in the flow analysis of
viscoelastic fluids. For example, the high Weissenberg
number problem (HWNP) is a challenging issue in the
numerical simulation of viscoelastic fluids. The numerical
scheme usually becomes unstable under conditions at high
Weissenberg numbers [6, 16, 17], while characteristic and
anomalous behaviors of viscoelastic fluids appear in
highly elastic flows i.e. at high Weissenberg numbers.
Consequently, it is important to simulate viscoelastic flows
at high Weissenberg numbers. Various numerical techniques
have been proposed to overcome HWNPs. It was recognized
that the hyperbolic nature of constitutive equations in
differential type was an important factor of the numerical
instability. Thus stabilization techniques for the solution of
differential type constitutive equations with the hyperbolic
nature such as upwind differential methods and the
streamline upwind Petrov-Galerkin (SUPG) method have
been employed. The streamline integral method is also a
technique useful for the solution of hyperbolic type
differential equations. Although this method has
disadvantages that it requires particle tracking procedures

and it is not easy to apply to a flow with recirculation, it was
applied to the analysis of die swell in extrusion process
using an integral type constitutive equation [18−20]. Elastic
viscous stress splitting (EVSS) methods are based on the
idea to stabilize the numerical scheme by adding a viscous
term, which is derived by splitting the extra stress tensor
into viscous and elastic parts, to a constitutive equation.
Early studies of numerical simulation of viscoelastic flows
up to the first half of the 1980s are summarized in Ref [21].
Applications to polymer processing in 1970s and early 80s
are introduced in Ref [22]. Although the technique of
computational analysis of polymer processing has been
progressed remarkably until today, the modeling method of
processing introduced in the reference is still useful. Some
results of progress in numerical simulations of polymer
processing are available in Ref [6]. Keunings [23] has
introduced the situation of this research field in late 80s.
Baaijens [24] reviewed the development in numerical
techniques for the flow analysis of viscoelastic fluids in
around one decade from the latter half of 1980s. This review
introduces stabilization techniques, in particular, for the
FEM-based numerical computation for viscoelastic flows
such as the elastic viscous stress splitting (EVSS) method,
the streamline-upwind Petrov-Galerkin (SUPG) method, and
the discontinuous Galerkin (DG) method. These techniques
have been successfully applied to various flow problems. A
book by Owens and Phillips [17] is a suitable literature for
readers who want to learn relatively recent numerical
techniques of viscoelastic flow analyses. In this book,
fundamentals of numerical methods such as the finite
difference method, the finite volume method, and the finite
element method are explained and many numerical
techniques for the simulation of viscoelastic flows such as
several finite element schemes, EVSS-type stabilization
techniques, time integral schemes, and error estimation
methods are summarized.

Various numerical stabilization techniques have been
applied to the computation of viscoelastic flows to make
upper limit Weissenberg numbers increase. For a 4 to 1
axisymmetric contraction flows of the upper-convected
Maxwell (UCM) model which have singularity at a re-
entrant corner, Baaijens [25] indicated stable and accurate
results up to Weissenberg numbers of 4 using the
DEVSS/DG method and Susmal [26] obtained the results at
the Weissenberg numbers of 5 using EVSS/finite volume
method. In specific problems, numerical simulations at
higher Weissenberg number have been performed, e.g. Iwata
and coworkers [27, 28] employed the singular finite element
method [29−31] to achieve computations at the Weissenberg
number up to 130 for a die swell problem in extrusion
process using the Giesekus model as a constitutive equation.
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The continuum-mechanics-based approach is a traditional
and most commonly used method for numerical simulations
of viscoelastic flows especially in relatively complex flow
fields, which are seen in polymer processing. Recent
numerical studies of flows of complex fluids tend to aim the
simulation of more realistic problems such as three-
dimensional non-isothermal flows in complicated geometry
and more accurate quantitative predictions. For the latter
aim, often employed are multi-mode constitutive equations,
which express the stress tensor as a superposition of stress
tensors computed using different values of model
parameters. In addition, the development of constitutive
equations is still an important issue. To the author’s
knowledge, there is no constitutive equation for viscoelastic
fluids that can describe their rheological properties
perfectly; it may be impossible to obtain such a universal
constitutive equation because of the variety of the origin of
viscoelasticity. For some kinds of complex fluids, the
constitutive equation has not been sufficiently developed.
For example, in the case of surfactant solutions (wormlike
micellar solutions), constitutive equations such as the
diffusive Johnson-Segalman model [32−35] and the
Giesekus model [36, 37], and the Bautista-Manero model
and its modifications [38−41] have been used as a
constitutive equation. However, they can not describe the
kinematics of micelles and hence the development of such a
constitutive equation for wormlike micellar solutions should
be necessary.

3. Micro-macro simulation

As indicated previously in the traditional approach, a
constitutive equation is necessary to close the system of
governing equations that consist of the balance equations. In
addition, some approximations are required to obtain a
mathematically closed form of constitutive equation and
these procedures diminish the capability of original theory
of kinematics of macro structures of complex fluids on
which the constitutive equation is based [1, 6−8]. These
approximations sometimes result in failure in adequate
prediction of rheological properties of real complex fluids.
To avoid such a problem, so-called micro-macro simulations
have been carried out. In the micro-macro approaches,
stochastic simulations or direct simulations of kinematics of
polymers are performed and macroscopic quantities such as
stress are evaluated using the ensemble average of results of
micro simulations.

We briefly introduce the process of derivation of a
constitutive equation based on a polymer kinematics theory
to remind the readers of procedures in derivation of a closed
form of constitutive equation; Detail discussions are

available in literatures [1, 6−8]. Here we will take an elastic
dumbbell model as an example. A polymer chain is modeled
by a pair of beads connected by an elastic spring, which
expresses equivalent potential energy between ends of a
polymer chain, and the orientation of dumbbell is
represented by the end-to-end vector R (Fig. 1). The forces
acting on a bead are inertia, viscous drag, the elastic spring
force F, a random Brownian force FB except for the external
forces such as the gravity force and the electromagnetic
force. From the equations of motion of each bead, one
obtains the equation of motion of R:

mR̈ = ζ (L · R − Ṙ) − 2F + FB , (1)

where ζ is the frictional factor, L is the velocity gradient
tensor. Neglecting the acceleration term and substituting
FB = − 2kBT (∂lnψ / ∂R) to Eq. (1) yield the following
equation:

2 2 ∂lnψ
Ṙ = L · R − ⎯ F − ⎯ kBT ⎯⎯⎯ , (2)

ζ ζ ∂R

where kB is the Boltzmann constant, T is the absolute
temperature, and ψ is a probability density function: The
probability that a dumbbell having an end-to-end vector in
the range R to R + dR at time t is given by ψ (R, t) dR.

This equation can be directly solved with the BD
simulation, while the computational cost is very expensive.
It can be reduced by introducing a stochastic procedure as
follows: Multiplying Eq. (2) by ψ, differentiating with
respect to R, and using the probability balance equation in
the R-space

∂ψ ∂⎯⎯ + ⎯⎯ · (Ṙψ ) = 0 , (3)
∂t ∂R

one obtains a diffusion equation of probability density called
as the Fokker-Planck (F-P) equation (4) after some
calculations:

∂ψ ∂ψ 2 ∂ 2kBT ∂2ψ⎯⎯+L · ⎯⎯ − ⎯ ⎯⎯ (ψF) − ⎯⎯⎯ ⎯⎯ I=0,
∂t ∂R ζ ∂R ζ ∂R2

(4)
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Fig. 1   Schematic diagram of elastic dumbbell model.
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where I is the unite tensor. The time evolution of ψ is
predicted by solving this equation. The numerical cost may
be lower than that of the BD simulation but is still high. The
F-P equation can be transformed into an evolution equation
of a second order tensor <RR> by multiplying the both sides
of Eq. (4) by RR and integrating over the R-space:

D⎯⎯ <RR> − L · <RR> − <RR> · LT

Dt

2 2kBT= − ⎯ <RF> + ⎯⎯⎯ I , (5)
ζ ζ

where the superscript T means the transposition operator
and an ensemble average <...> is defined by

<...> = ∫R3 ... ψ (R, t) dR . (6)

The stress tensor ττ is expressed with the Kramers expression
as follows:

ττ = − nkBTI + 2η s D + n<RF> , (7)

where n is the number density of the dumbbells and D is the
rate-of-deformation tensor (D = (L + LT) /2). The spring
force F depends on characteristics of spring: The Hookean
elastic spring (F = HR: H is the spring constant) is a simple
model and the UCM model is derived from Eqs. (5) and (7)
with the Hookean elastic spring. The UCM model can not
express shear-rate-dependent viscosity and predict
unbounded stretch-thickening in elongational viscosity at a
critical elongation rate. These unrealistic properties are due
to an inadequate modeling of spring force. The FENE
(F–initely E–xtensible N–onlinear E–lastic) spring is a more
realistic model for polymer molecules. The relation between
F and R for the FENE spring is expressed by

HR
F = ⎯⎯⎯⎯ , (8)

1 − R2/R0
2

where R0 is the maximum length of a spring. The FENE
spring model and its modifications have been widely applied
to numerical simulations of polymer dynamics. Recent
studies of modeling and micro simulations of complex fluids
using the FENE dumbbell model have been reviewed in
detail by Kröger [42]. When the FENE spring is employed,
a mathematically closed form of constitutive equation is not
obtained from Eqs. (7) and (8). Thus some closure
approximations have been proposed, e.g. [12−15]. One of
familiar closure approximations is the Peterlin
approximation in which the spring force (8) is approximated
by

HR
F = ⎯⎯⎯⎯⎯ . (9)

1 − <R2/R0
2>

Substituting Eq. (9) to Eqs. (5) and (7) yields the FENE-P
model [12, 13]:

δττ D 1nZ
Zττ + λ ⎯⎯ − λ ⎯⎯⎯ (ττ + nkBTI) = 2nkBλD , (10)

δ t Dt

where Z (ττ) = 1+ (3/b )(1 + trττ/ (3nkBT)), b = HR0
2/ (kBT), λ =

ζ /(4H), and δ /δt means the upper-convected derivative.
This model predicts the shear-thinning in shear viscosity and
bounded stretch-thickening in elongation viscosity. Other
closure approximations have been proposed to derive other
FENE-dumbbell-based constitutive equations such as
FENE-CR [14] and FENE-L [15] models.

Although the computational cost remarkably decreases, it
can be known from Eq. (10) that information of fluid micro
structures is not obtained from this equation. Theoretically
speaking, we can simulate the dynamics of polymer
molecules at several stages during the process of derivation
of a constitutive equation. If Eq. (2) is directly computed for
a large number of dumbbells and <RR> (or <RF>) is
obtained as the ensemble average of results for each
dumbbell, the stress tensor can be evaluated without any
closure approximation. This direct computation corresponds
to the BD simulation, which generally requires huge
computational resources. The numerical simulation based on
the F-P equation (4) needs low computational costs as
compared to the BD simulation, while it still requires heavy
computation.

A relatively recent approach that does not require closed
form constitutive models are the so-called micro-macro
formulations based on kinetic theories. The CONNFFESSITT
approach [43] is a familiar micro-macro approach, which was
first proposed by Laso and Öttinger [44] and Feigl et al. [45]:
CONNFFESSIT is an abbreviation of C–alculation O–f N–on-
N–ewtonian F–low: F–inite E–lement and S–tochastic SI—mulation
T–echniques. As one can recognized from this denomination,
macroscopic flow computation with a finite element method
is combined with micro simulation based on stochastic
calculations in CONNFFESSIT. For a dilute polymer
solution, the kinematics of polymers is simulated by solving
a stochastic differential equation equivalent to Eq. (2) and
stress is evaluated using the ensemble average of results of
the stochastic simulation. Laso and Öttinger [44] simulated a
startup of plane Couette flow of elastic dumbbell models by
computing the kinematic equation of R with stochastic
simulation and found a significant deviation between the
behavior of the FENE-P and FENE models. Feigl et al. [45]
have computed abrupt contraction flows for the Hookean
dumbbells with the CONNFFESSIT approach and compared
the results with the counterparts for the Oldroyd-B fluids
and indicated the potential of the CONNFFESSIT approach.
Laso et al. [46] have computed journal bearing flows of
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FENE fluids.
The CONNFFESSIT approach has been adapted also to

concentrated polymer solutions and polymer melts by using
the Doi-Edwards (DE) or the Curtiss-Bird (CB) models [43].
The DE model [47−49] is based on the concept of reputation
theory [50] and the CB model [51, 52] was derived using an
anisotropic friction tensor to describe the restriction of
sideway motion of polymers in concentrated systems.
Although these models were derived from different
concepts, the final expressions of these models are basically
the same. Hence, the stochastic differential equation of these
model can be also expressed in the same form of a diffusion
equation of ψ (u, s, t) which is a probability density of the
polymer chain whose direction is u at the position s ∈ [0, 1]
in a chain at time t [47−49, 51]. The diffusion equation can
be translated into stochastic differential equations of two
processes: one relates u and the other s [43]. For example,
computation of the DE and the CB models with the
CONNFFESSIT approach have been carried out for the
startup of Couette flow for polymer solutions, polymer
melts, and liquid crystals [53]; the startup of two
dimensional flow past a cylinder [54]; the startup flow
between parallel plates [55]; and fiber spinning flows [56].

In principle, the CONNFFESSIT approach requires the
stochastic simulation for a large number of “polymers” for
the evaluation of macroscopic quantities. Temporal and
spatial fluctuations occur if the number of simulation runs is
not enough large. The spatial fluctuation causes numerical
error in polymer stress and derives fatal error in the
calculation of divergence of stress tensor (∇ · ττ) in the
momentum equation (the equation of motion): This error
may cause numerical instability in the numerical scheme of
a macroscopic flow computation.

To reduce the statistical error and improve the numerical
scheme, variance reduction techniques have been proposed
by Melchior and Öttinger [57, 58]. Their strategy is based
on importance sampling and the idea of control variables.
Moreover, other strategies for the variance reduction have
been developed: In the Brownian configuration field (BCF)
method proposed by Hulsen et al. [59, 60], the evolution of
a large number of continuous configuration fields R (x, t)
are computed instead of the computation of the end-to-end
vector R (t) of each polymer. The evolution of R (x, t) is
solved in an Eulerian sense without particle tracking
procedures. Consequently the stochastic differential
equation of BCF method includes a term describing the
convection of fields, which provides the variant reduction
effect. On the other hand, Lagrangian techniques such as the
Lagrangian particle method (LPM) [61] and the backward
Lagrangian particle tracking method (BLPM) [62] have
been proposed and were applied to micro-macro

simulations. Halin et al. [61] applied LPM to the numerical
simulation of journal bearing flows of the FENE model.
Warappom et al. [62] simulated journal bearing flows and
abrupt contraction flows of the FENE model by using the
DEVSS/DG method combining the BLPM.

In recent studies, the improvement of the CONNFFESSIT
scheme has been studied: Jourdain et al. [63] analyzed a
variance reduction method, Ellero and Kröger [64] proposed
a hybrid Brownian and distribution function storing strategy
as a memory saving method for the CONNFFESSIT
approach, and Laso et al. [65] showed an implicit time
integral scheme for micro-macro simulations. In recent
studies, the CONNFFESSIT approach has been applied to
relatively complex flows, e.g. flows through fibrous media [66],
die exit flows [67], free surface flows such as jets and mold
filling [68] and transient flows in a planer contraction
channel and flows around a confined cylinder [69].

Next, we will review numerical simulations of viscoelastic
fluids based on the F-P equation. In this approach, one can
obtain the information of the distribution of molecular
orientation, which is useful for the analysis of flow induced
structure of complex fluids. It is relatively recent that the
results of F-P equation based simulation have appeared in
research journals and this research field is under
development [70]. Chauvière and Lozinski [71] have
proposed a fast solver of the F-P equation of FENE
dumbbells and simulated a flow past a cylinder. They also
computed planer homogeneous flows and a flow through a
cylinder for two-dimensional FENE dumbbell model [72]
and three-dimensional flows through a confined cylinder
using the FENE model [73]. Lozinski et al. [74] proposed a
mixed finite-difference/spectral method based on a F-P
equation to numerically simulate inhomogeneous flows of
FENE fluids. 

4. Brief introduction of micro-macro approach
for other complex fluids

We can see similar situation in the derivation process of a
closed type constitutive equation for other complex fluids.
Here we will briefly introduce a case of particulate
suspensions. For relatively dilute suspensions of hard
spheres, the suspensions can be treated as Newtonian fluids
with a volume-fraction-dependent shear viscosity η
expressed by [75]

η = ηs (1 + 2.5φ + 6.2φ 2) , (11)

where ηs is the solvent viscosity and φ is the volume fraction
of particles. At very low φ, η can be well described by the
first two terms in the right hand side of Eq. (11): This model
is called as Einstein’s formula. For suspensions of spheres,
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the orientation of particles does not affect their rheological
properties because the particle shape is isotropic. On the
other hand, for suspended particles having anisotropic
shapes such as fibers and clay minerals, the orientation of
particles dominates the flow behavior of suspensions.
Consequently, it is necessary to consider the particle
orientation in a constitutive equation of a suspension of
anisotropic particles. A spheroidal particle is a simple model
of a particle with an anisotropic shape: When the aspect
ratio of a spheroid ra defined as shown in Fig. 2 is much
larger than unity, it is a model of rod-like particles such as
short fibers; when ra is much smaller than unity it is a model
of disc-like particles such as clay minerals. The kinematics
of spheroidal particles is described by an evolution equation
of a director p, which is a unit vector directed along the
major axis of spheroid. For dilute spheroidal suspensions,
the evolution equation is described by Jeffery’s equation [76]:

ra
2 −1

ṗ = W · p − ⎯⎯⎯ (D · p − D: ppp) , (12)
ra

2 +1

where W is the vorticity tensor, and the extra stress tensor σ
is expressed as follows:

σ = 2ηsφ{AD:<pppp> + B[D · <pp> + <pp> · D] + CD},
(13)

where A, B, and C are coefficients depending on ra [77, 78].
A Fokker-Planck equation can be derived from Eq. (12) [1, 79]

and be applied to the micro simulation of suspensions.
Similarly to the case of the FENE dumbbell model, closure
approximations [80−83] are required to obtain a closed type
constitutive equation. At the limit of ra → ∞, this model
describes the motion of rod-like particles and hence it is
applicable as a model of short fibers. Recent studies of
numerical simulation of kinematics of fiber suspensions and
particle suspensions have been reviewed by Chiba [84].

The CONNFFESSIT approach has been employed also in
micro-macro simulations of fiber suspensions. Fan et al. [85]
used the BCF method and analyzed flows past a cylinder in
a tube and Phan-Thien and Fan [86] computed flows past a
sphere settling in a tube. Chinesta et al. [87] have performed

numerical simulations of steady recirculating flows based on
the F-P equation. Similarly to the case of viscoelastic fluids,
the numerical simulation based on the F-P equation is a
developing issue at present.

5. Conclusion

In the present article, we reviewed both traditional and
recent approaches to the flow analysis of complex fluids by
taking polymeric liquids as an example. The traditional
continuum-mechanics-based simulation is still commonly-
used approach in the flow analysis of complex fluids, in
especial, for flows in complex geometries encountered in
engineering applications such as polymer processing. On the
other hand, the recent micro-macro approaches provide
essential information of fluid micro structures. They are
expensive numerical methods that require large amount of
computational power and memory. However, the micro-
macro simulation are recent trends in research field because
one can avoid the closure approximation, and moreover one
can analyze the flow-induced change in fluid micro
structures, which is an origin of typical flow behavior of
complex fluids. Applications of the traditional approach to
practical engineering problems, i.e. numerical simulations
under more realistic flow conditions, and micro-macro
approaches considering the flow-induced change in fluid
micro structures will be two trends in future studies of the
flow of viscoelastic fluids or complex fluids.

Although the micro-macro simulation has important
advantages that no closure approximation is need and that
the information of change in micro structures in flows is
available, results of micro simulation such as the motion of
individual polymer and the probability density function are
not enough utilized for the flow analysis of complex fluids;
in many cases, only the ensemble average of the results of
micro simulation is used to avoid a closure approximation
for the evaluation of macroscopic quantities, e.g. stress, that
is necessary for the computation of macroscopic flows. In
future study, the flow analysis of complex fluids should
consider multi-scale problems in which analyses of both the
microscopic behavior of fluid micro structures and the
macroscopic flow behavior should be performed in the flow
analysis of complex fluids.
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Fig. 2   Schematic diagram of spheroidal particles.
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