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Abstract
Penetration flows of a Newtonian fluid through a viscoelastic fluid in an abrupt contraction channel were

numerically analyzed. In the numerical simulation, the Phan-Thien Tanner model was employed as a constitutive
equation. The level set method was used to numerically represent the interface between two fluids and effects of
interfacial tension were introduced into the numerical simulation using the continuum surface force model. The
numerical computation predicted the occurrence of fluctuation of interface between a Newtonian penetrating fluid
and a viscoelastic fluid in a downstream conduit of the contraction channel. This fluctuation was a typical
phenomenon for penetration flows through a viscoelastic fluid and was not observed in a penetrate flow through a
Newtonian fluid. Furthermore, it was confirmed that the normal stress effect drove the fluctuation and the amplitude
of fluctuation when elastic properties were strong.
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1. Introduction

We often encounter penetration flows of a fluid through
another one in industrial processes such as a sandwich
injection molding, a lamellar injection molding, and
manufacturing process of hollow fibers. In penetration
flows, an interface between two fluids shows various
phenomena depending on flow conditions. For example,
when a less viscous fluid is injected into a more viscous
fluid, the interface of two fluids is fundamentally unstable
and grows to form a complicated pattern, which is called
viscous fingers. This phenomenon relates many problems in
physics, chemistry, engineering, and so on and has been
studied by many researchers [1−3]. The authors also studied
viscous fingering in polymer solutions [4−6] and surfactant
solutions [7]. The behavior of interface is an important issue
in industry because it affects the quality and function of
final products. In addition, polymer solutions and melts are
utilized in many products and viscoelastic flow behavior of
these fluids is very complicated. Consequently, it is useful to
investigate the interface behavior in viscoelastic fluids and
obtain its knowledge. 

In the present study, we considered penetration flows of a
Newtonian fluid through a Newtonian or a viscoelastic fluid
and performed numerical simulation of the flow in a
contraction channel to analyze the effects of viscoelasticity

on the behavior of interface. The finite volume method
(FVM) was applied to solve basic equations. In addition, the
interface was numerically expressed with the level set
method [8], and a CIP method [9] is used to solve an
advection equation that describes the movement of interface.
Moreover, the Phan-Thien Tanner (PTT) model [10, 11] was
employed as a constitutive equation. This model has been
successfully used in many numerical simulations of
viscoelastic flows such as pipe flow [12], contraction
flows [13, 14], flows in dies [15], melt spinning of hollow
fibers [16], three-dimensional flows through a channel with
a cavity [17], and dip coating flows [18].

2. Basic equations

Basic equations include the equation of continuity,
the equation of motion, and a constitutive equation.
The equation of continuity (1) and the equation of motion
(2) denoted using Einstein's summation rule are as follows:

∂ui⎯⎯ = 0 , (1)∂xi

∂ (ρui) ∂ ∂σ ik⎯⎯⎯ + ⎯ (ρuiuk) = ⎯⎯ + Fi , (2)∂ t ∂xk ∂xk

where ρ is the density, t is time, ui is the xi-component of
velocity vector, and σ ik is the ik-component of the total
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stress tensor. Fi is the xi-component of external force vector.
It should be noted that Einstein's summation rule is also
applied to denote other equations in the present paper. The
stress tensor is divided into the isotropic pressure
component −pδ ij and the extra stress tensor Sij as follows:

σ ij = − pδ ij + Sij , (3)

where p is the pressure, δ ij is Kronecker's delta. It can be
assumed that Sij is divided into a Newtonian contribution
2ηN dij and a polymer contribution τ ij as Sij =2ηN +τ ij, where
dij is the rate-of-deformation tensor defined by dij = (∂ui/∂xj

+ ∂uj/∂xi)/2. 
The Phan-Thien Tanner model [10, 11] is employed as a

constitutive equation. In this model, the polymer
contribution to the stress tensor τ ij obeys the following
equations:

δτ ijgτ ij + λ ⎯⎯ = 2ηpdij , (4)δ t

λε
g = 1 + ⎯ τ ij , (5)ηp

where the differential operator δ /δ t means the upper-
convective time derivative for the simplified PTT
model [10, 11]. ε is a parameter with a value between zero
and unity. 

In the present computation, we employed the elastic-
viscous split-stress (EVSS) method [14, 19, 20] to stabilize
the numerical scheme. In the EVSS method, the stress tensor
Sij is describe by

Sij = 2η0 dij + Tij , (6)

Tij =τ ij − 2βη0 dij , (7)

where Tij is called the elastic stress tensor and β is defined
by β = ηp/η0 =ηp/ (ηp +ηN). Substituting Eqs (3), (6), and (7)
into Eqs (2) and (4), one obtains the following equations:

∂(ρui) ∂ ∂ ∂ui ∂p ∂Tik⎯⎯⎯ + ⎯ (ρukui) − η0 ⎯ (⎯⎯ ) = − ⎯⎯ + ⎯⎯ + Fi , (8)∂t ∂xk ∂xk ∂xk ∂xi ∂xk

δTij δ
gTij + λ ⎯⎯ = 2βη0 [(1−g) dij − λ ⎯ dij ] . (9)δ t δ t

Numerical computations were performed based on a non-
dimensionalized basic equations. Physical quantities were
scaled as t*= t / (H/U), xi

*= xi/H, ui
*= ui / U, p*= p / (η0U/H),

Tij
*=Tij / (η0U/H), dij

*=dij/ (U/H), and Fi
*= Fi / (η0U/H), where

symbols with asterisk (*) indicate non-dimensional variables
and H and U are the representative length and velocity,
respectively. Consequently, one obtains the following
equations in a non-dimensional form:

∂ui
*

⎯⎯ = 0 , (10)∂xi
*

∂ui
* ∂ 1 ∂p* ∂ 2ui

* ∂Tik
*

⎯⎯ + ⎯⎯ (uk
*ui

*) = ⎯ (− ⎯⎯ + ⎯⎯ + ⎯⎯ Fi
*) , (11)∂t* ∂xk

* Re ∂xi* ∂xk
*2 ∂xk

*

∂Tij
* ∂Tij

* (1−g) ∂dij
* ∂

⎯⎯ + uk
* ⎯⎯ = 2β0 [⎯⎯⎯ dij

*−{⎯⎯ + ⎯⎯ (uk
*dij

*)∂t* ∂xk
* We ∂t* ∂xk

*

(12)
∂ui

* ∂uj
* g ∂ui

* ∂uj
*

− ⎯⎯ dkj
*− ⎯⎯ dki

*}] − ⎯ Tij
*+ ⎯⎯ Tkj

*+ ⎯⎯ Tki
* .∂xk

* ∂xk
* We ∂xk

* ∂xk
*

The Reynolds number Re and the Weissenberg number We

are defined by Re = ρUH /η 0 and We = λU /H, respectively.

3. Numerical scheme

3. 1 Problem setting and numerical method

We consider penetrating flows in a two-dimensional
abrupt contraction channel in Fig.1. The contraction ratio of
the channel is 2 to 1 and the half height of a narrow channel
is H, which is the representative length. The flow direction
is x and the y axis is perpendicular to the flow direction. The
mean velocity in the downstream channel is chosen as
the representative velocity U. Two types of flows are
numerically simulated: one is a flow of a Newtonian fluid
penetrating through another Newtonian fluid and the other is
a Newtonian fluid flow penetrating through a viscoelastic
fluid. The former is denoted by N/N case, and the latter is
done by N/VE case in the present paper. The initial interface
is flat and locates at x = −4.8H perpendicular to the x-axis
shown in Fig. 1. The no-slip condition is adopted on the
channel wall and fully developed flow conditions are
adopted at both the inlet and outlet of the channel. Although
the dynamic contact angle should be given at the contact
points of two fluids and the wall for precise simulation of
interface behavior near the contact point, it is not given in
the present computation because it is not easy to choose
proper values of the contact angle and the flow behavior
near the contact points may not significantly affect the
interface behavior in the downstream channel, which we
focus in the present analysis.

PTT fluids have typical viscoelastic properties.
Rheological properties of PTT fluids such as the non-
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Fig. 1 Schematic diagram of abrupt contraction channel and
problem considered.
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dimensional shear viscosity η/η0 and the non-dimensional
first normal stress coefficient ψ1/ψ10=N1/ (η0λγ• 2) are shown
in Figs. 2 and 3, respectively. In the present simulation, the
viscosity ratio ηs/η0 is 0.04. PTT fluids show shear-thinning
properties in both η and ψ1. The value of ψ1 is large at small
ε and hence elastic properties are stronger for smaller ε. In
addition, PTT fluids have stretch-thickening elongation
viscosity. Their elongation viscosities show stronger strain-
thickening property for smaller ε and grow faster for larger ε
[17, 18].

The basic equations are discretized with a FVM, and a

hybrid scheme [21, 22] is used to stabilize the numerical
scheme. In addition, SIMPLE scheme is adopted for a
coupling method of the equation of motion and the equation
of continuity. The detail of SIMPLE scheme is available in
several literatures (e.g. [21, 22, 23]). 

3. 2 Expression of interface

In the present problem, we should numerically express the
interface between two fluids. We employed the level set
method [8, 24], in which, a signed distance function from an
interface f is considered and the interface is expressed by a
contour of f = 0. A region of − α ≤ f ≤ α is treated as a
transition zone between two fluids. In this region, an
approximate Heaviside function Hα( f) defined by 

−0.5 ( f > α)
f 1 π f

Hα( f ) = {0.5 (⎯ + ⎯ sin ( ⎯ )) (| f | ≤α ) (13)α π α
0.5 ( f > −α)

is used to interpolate density ρ and viscosity η in N/N case as

ρ( f ) = 0.5 (ρ 1+ρ 2) + (ρ 1−ρ 2)Hα( f) , (14)

η( f ) = 0.5 (η1+η2) + (η1−η2)Hα( f) , (15)

where the subscripts 1 and 2 specify a fluid. In N/VE case,
density and the extra stress is interpolated in a similar way
of N/N case.

The movement of interface is computed based on the
advection equation of f :

∂f ∂f
⎯ + νi ⎯⎯ = 0 . (16)∂t ∂x i

The distance function f has a property that |∇ f |=1. This
property, however, diminishes during the numerical
computation. Hence, the property is restored with a re-
initialization procedure, which is denoted by the following
equations:

∂f
⎯⎯ + S ( f ) (1−|∇ f | ) = 0 , (17)
∂ t∼

f
S ( f ) = ⎯⎯⎯⎯ (1−|∇ f | ) = 0 , (18)

√ f 2 + δ2

where t∼ is time for progressing the re-initialization process
and is not necessarily equal to t . δ is a value with the
dimension of length and is usually chosen as 1.5 to 3.5 times
of the representative size of computational cell. In the
present computation, δ is 1.5 times of the cell size.
Furthermore, we adopted a volume conserving re-
initialization method proposed by Chang et al. [24] to
conserve the volume of a penetrating fluid. Equations (16),
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Fig. 2 Non-dimensional shear viscosity η /η0 as a function of
non-dimensional shear rate λγ• .

Fig. 3 Non-dimensional first normal stress coefficient
ψ1/ψ10=N1/ (η0λγ• 2) as a function of non-dimensional shear
rate λγ• .
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(17), and (18) are non-dimensionalized in a manner similar
to the non-dimensionalization method for the basic
equations and are numerically solved with a CIP method [9]. 

The effect of interfacial tension is introduced into the
computation using the continuum surface force (CSF)
model [25]. In this model, the surface force due to the
interfacial tension is translated to an equivalent volume
force Fν defined by

∇f
Fv = −γ {∇ · (⎯⎯ )} · ∇Hα , (19)

|∇ f |

where γ is the surface tension. Fv is included in the external
force term in Eq (11). Consequently Eq (11) becomes

∂ui
* ∂ 1 ∂p* ∂2ui

* ∂ Tik
* 1

⎯⎯+⎯⎯ (uk
*ui

*)=−⎯ (⎯⎯ +⎯⎯ +⎯⎯ +⎯ (Fv)i
*) (20)

∂ t* ∂xk
* Re ∂xi

* ∂xk*2 ∂xk
* Ca

where Ca is the capillary number defined by Ca=η0U/γ.

4. Results

4. 1 N/N case

Firstly, we consider N/N case. The ratio of dynamic
viscosity is kept to 1 and the capillary number and the
Reynolds number are varied. Figure 4 shows the evolution
of interface between two Newtonian fluids at Re=10 and
Ca =1.2. One fluid (gray) penetrates into the other fluid
(black). A protrusion part passes through the contraction and
flows into the downstream channel. The width of protrusion
in the downstream channel varies with position: The width
of protrusion decreases with increasing x, shows an
inflection point, and slightly increases to reach a steady state
value in a downstream region.

We evaluate the replacement ratio rR defined by the ratio
of protrusion width to the channel width to investigate the
dependence of the width on Ca and Re. Figure 5 shows
change in rR with time t* at x = 9.6H, where t* means
dimensionless elapsed time from the startup of flow. When
the protrusion reaches this position, rR quickly increases,
fluctuates because of passage of a constriction part of
protrusion, and gradually approaches a steady value. At
large capillary numbers, this phenomenon is clearly
observed, while at small capillary numbers the fluctuation is
not seen because constriction part is little. The width of
protrusion is wider, i.e. rR is larger, for smaller Ca. Figure 6
shows the dependence of rR on Ca in a far downstream
region where the width of protrusion is nearly constant. The
value of rR approaches around 0.5 with increasing Ca. This
result is consistent with a two-dimensional numerical

simulation for a straight channel [26] and experimental
results of viscous fingering in a Hele-Shaw cell [27]. We
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Fig. 4 Evolution of interface between a penetrating Newtonian
fluid (gray) and a Newtonian fluid (black) at Re=10 and
Ca=1.2: (a) t*=3.1, (b) t*=6.2, (c) t*=7.8, (d) t*=9.4,
(e) t*=12.9, and (f) t*=18.7.

Fig. 5 Change in replacement ratio rR with time t* at x=9.6H for
Re = 10 and Ca = 0.2, 0.4, 0.8, 1.2, 1.6, and 2.
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also performed calculations by changing Re in a range of 2.5
to 10. However, significant difference is not seen among the
results of each Re. Hence Ca is dominant in the range of Re

between 2.5 and 10 for the interface behavior.

4. 2 N/VE case

Here we investigate the penetration flow through a
viscoelastic fluid. The ratio of dynamic viscosity of a
Newtonian fluid to that of a viscoelastic fluid is kept to 0.01,
where the dynamic viscosity of viscoelastic fluid is
evaluated by the zero-shear-rate viscosity divided by
density. Figure 7 shows the evolution of interface between a
penetrating Newtonian fluid (gray) and a viscoelastic fluid
(black) at Re = 10, Ca = 2, We = 0.5, and ε = 0.001. The
protrusion shows similar behavior to the counterpart of N/N
case at early stages. However, a fluctuation of interface,
which is not observed in N/N case, appears as the protrusion
progresses (Fig. 7e, 7f).We focus this phenomenon and
investigate its mechanism. Figure 8 shows shapes of
interface when protrusions progresses enough. The results at
Re = 10, Ca = 2, ε = 0.001, and We = 0.2, 0.4, and 0.6 are
indicated. The fluctuation of interface is not seen clearly at
We=0.2, and appears remarkably at large We. Especially at
We=0.6, the shape of interface is drastically changed by the
fluctuation. These results indicate that elastic properties of
viscoelastic fluid strongly affect the fluctuation. In addition,
results of computations for various values of ε , which are
discussed later, show that the amplitude of fluctuation is
larger for smaller ε . These results suggest that the

fluctuation appears strongly under highly elastic conditions.
Figure 9 shows the change in rR with time for Re=10, Ca= 2,

We=0.5, and ε=0.001, 0.01, 0.1, 0.25, and 0.5 at x=4.8H

and 9.6H. At both positions, we can see the fluctuation in rR

with time, which is not observed in N/N case. Values of rR

increase with fluctuating and approach to steady state values
and the cycle of fluctuation is similar in both cases. At
x=4.8H, effects of ε are weak and significant difference
among the results is not seen. On the other hand, at x=9.6H,
comparison of distance between a peak and a trough after t*

around 10 indicates that small difference appears and the
distance is larger for smaller ε , i.e. for more elastic fluids.
Consequently the fluctuation appears more strongly under
more elastic condition. The fluctuation is not observed just
downstream of the entrance to the contraction and appears in
a wide region downstream of the contraction. This means
that a fluctuation of interface emerges owing to a flow
behavior near the contraction and some mechanism for
driving the fluctuation exists. In addition, numerical
predictions suggest that elastic properties of viscoelastic
fluid relate the fluctuation. Consequently, we will next
investigate the mechanism of fluctuation by analyzing the
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Fig. 6 Dependence of replacement ratio rR on the capillary
number Ca in a far downstream region where the width of
protrusion is nearly constant.

Fig. 7 Evolution of interface between a penetrating Newtonian
fluid (gray) and a viscoelastic fluid (black) at Re=10, Ca=
2, We=0.5, and ε=0.001: (a) t*=3.1, (b) t*=6.6, (c) t*=8.2,
(d) t*=9.8, (e) t*=12.9, and (f) t*=19.1.
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numerical results of stress field to clarify the mechanism.
We analyze the stress field to confirm the relation between

the interface fluctuation and the fluid elasticity. Fig. 10
shows the distribution of normal stress difference τ xx−τ yy at
Re = 10, Ca = 2, We = 0.5 and 0.6. In Fig. 10, τ xx−τ yy in the
downstream channel distributes parallel to the channel wall
and is large near the wall when a protrusion does not
penetrate the channel enough and after the protrusion flows
into the downstream channel more, regions of large τ xx−τ yy

appear. When a fluctuation of interface begins, the stress
distribution changes and τ xx− τ yy increases in a narrow
viscoelastic film region, where the force towards the channel
center is large. This phenomenon appears remarkably at
larger We, i.e. We = 0.6. On the other hand, in a wide
viscoelastic film, τ xx−τ yy is small. In large normal stress
difference regions, the viscoelastic fluid pushes the
Newtonian protrusion inside the channel and the protrusion
narrows. These elastic effects have been observed also in
gas penetration flows through a viscoelastic fluid in a tube
[28]. The narrowed protrusion tends to spread until its width
reaches that when the normal force effect does not exist, i.e.
the width of a corresponding N/N case, and hence the
fluctuation continues. The position of a large τ xx−τ yy region
moves little with time after the region appears. At higher
Weissenberg numbers, the stress difference is larger and
hence the fluctuation appears more strongly. In the present
flow problem, elongational properties of viscoelastic fluid
are not very important because a viscoelastic fluid does not
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Fig. 8 Interface between a penetrating Newtonian fluid (gray) and
a viscoelastic fluid (black) when protrusions progresses
enough at Re=10, Ca=2, and ε=0.001: We=(a) 0.2, (b) 0.4,
and (c) 0.6.

Fig. 10 Distribution of normal stress difference τ xx−τ yy at Re=10,
Ca=2, and ε =0.001: (a) We=0.5, t*=12.9, (b) We= 0.5,
t*=19.1, (c) We=0.6, t*=12.9, and (d) We=0.6, t*= 19.1.

Fig. 9 Change in the replacement ratio rR with dimensionless time
t* at x=4.8H and 9.6H for Re=10, Ca=2, and We= 0.5.

(a)

(b)
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exists in a region where elongational flow is dominant, and
the shear flow near the channel wall in flows in the
downstream channel strongly affects this fluctuation flow
phenomenon.

The magnitude of τ xx− τ yy is relatively large near the
reentrance corner of contraction and this stress distribution
is a trigger of the fluctuation. In addition, just downstream
of the contraction, the velocity vector has a component
towards the channel center and hence velocity component in
the y− direction turns its sign just downstream of the
contraction for approaching a steady velocity distribution
whose y−component is zero. This development in velocity
distribution is also a possibility of a trigger of the
fluctuation. Once a fluctuation occurs, it is driven by the
normal force effect in N/VE cases.

5. Conclusion

We numerically analyzed penetration flows through a
viscoelastic fluid in an abrupt contraction channel with the
PTT model as a constitutive equation and with the level set
method as a numerical expression of interface between two
fluids. The numerical computation indicates that the
fluctuation of interface between a Newtonian penetrating
fluid and a viscoelastic fluid occurs in the downstream
conduit of the contraction channel. This fluctuation is a
typical phenomenon for penetration flows through a
viscoelastic fluid and is not observed in a penetrate flow
through a Newtonian fluid. Furthermore, numerical
simulations predict that the elastic property, i.e. the normal
stress effect, drives the fluctuation. If the Weissenberg
number is much higher, interface instabilities following an
interface fluctuation will occur, which are interesting and
important problems in a practical point of view. However,
some improvements in numerical scheme are necessary for
the simulation at high Weissenberg numbers.
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