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Abstract

Resettably-sound proofs and arguments remain sound even when the prover can reset the
verifier, and so force it to use the same random coins in repeated executions of the protocol.
We show that resettably-sound zero-knowledge arguments for NP exist if collision-resistant
hash functions exist. In contrast, resettably-sound zero-knowledge proofs are possible only for
languages in P/poly.

We present two applications of resettably-sound zero-knowledge arguments. First, we con-
struct resettable zero-knowledge arguments of knowledge for NP, using a natural relaxation
of the definition of arguments (and proofs) of knowledge. We note that, under the standard
definition of proofs of knowledge, it is impossible to obtain resettable zero-knowledge arguments
of knowledge for languages outside BPP. Second, we construct a constant-round resettable
zero-knowledge argument for NP in the public-key model, under the assumption that collision-
resistant hash functions exist. This improves upon the sub-exponential hardness assumption
required by previous constructions.

We emphasize that our results use non-black-box zero-knowledge simulations. Indeed, we
show that some of the results are impossible to achieve using black-box simulations. In particular,
only languages in BPP have resettably-sound arguments that are zero-knowledge with respect
to black-box simulation.
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1 Introduction

Having gained a reasonable understanding of the security of cryptographic schemes and protocols
in the stand-alone setting, cryptographic research is moving towards the study of stronger notions
of security. Examples include the effect of executing several instances of the same protocol con-
currently (e.g., the malleability of an individual protocol [11]) as well as the effect of executing
the protocol concurrently with any arbitrary set of protocols [7]. Another example of a stronger
notion of security, which is of theoretical and practical interest, is the security of protocols under a
“resetting” attack. In a resetting attack, a party being attacked can be forced to execute a protocol
several times while using the same random tape, and without the ability to maintain state between
these executions (as he may not even be aware that he is being “reset”). The theoretical interest
in this notion stems from the fact that randomness plays a pivotal role in cryptographic protocols,
and thus the question of whether one needs fresh (and independent) randomness in each invocation
of a cryptographic protocol is natural. The practical importance is due to the fact that in many
settings it is impossible or too costly to generate fresh randomness on the fly. Moreover, when
parties in a cryptographic protocol are implemented by devices which cannot reliably keep state
(e.g., smart cards), being maliciously “reset” to a prior state could be a real threat.

1.1 Resettable Provers

Resettability of parties in a cryptographic protocol was first addressed by Canetti et al. in [8] who
considered what happens to the security of zero-knowledge interactive proofs and arguments when
the verifier can reset the prover to use the same random tape in multiple executions. Protocols which
remain zero-knowledge against such a verifier, are called resettable zero-knowledge (rZK) protocols.
Put differently, the question of prover resettability, is whether zero-knowledge is achievable when
the prover cannot use fresh randomness in new interactions, but rather is restricted to (re-)using a
fixed number of coins.

Resettability implies security under concurrent executions: that is, any protocol that is reset-
table zero-knowledge is also concurrent zero-knowledge. The opposite direction does not hold, and
indeed it was not a-priori clear whether (non-trivial) rZK protocols exist. The main result of [8]
is a proof that rZK protocols exist for all NP. Specifically, assuming the existence of perfectly
hiding and computationally binding commitment schemes, there exist resettable zero-knowledge
interactive proofs with a polynomial number of rounds for all NP languages [8].1 In order to
obtain a constant-round rZK protocol, [8] introduced a weak public-key model and used a strong
intractability assumption; namely, the existence of a perfectly hiding and computationally binding
commitment scheme that cannot be broken by sub-exponential size circuits. In this model and
under that assumption,2 they were able to construct a constant-round rZK argument system for
NP [8].

On the negative side, [8] point out that resettable zero-knowledge proofs of knowledge are im-
possible to achieve for non-trivial languages, ruling out the use of the Fiat-Shamir [18] paradigm of

1The number of rounds was recently improved to poly-logarithmic [28]. Interestingly, a logarithmic number of
rounds are necessary for any protocol that can be shown to be concurrent zero-knowledge via a black-box simulator [9].

2An essential use of this sub-exponential hardness assumption is made when demonstrating the computational-
soundness of the protocol. The prover and verifier in the protocol both utilize commitment schemes in an interleaved
fashion, which raises the danger of malleability of one commitment scheme with respect to the other. By choosing
different security parameters k and K for each commitment scheme such that 2kε

> 2K and relying on the assumed
sub-exponential hardness 2tε

of breaking a commitment scheme with parameter t, successful malleability is ruled
out. The same assumption is used by Micali and Reyzin [31] who subsequently achieved resettable zero-knowledge
arguments in the public-key model in an optimal number of rounds.
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identification protocols based on proofs of knowledge when the provers may be resettable. This im-
possibility extends to resettable zero-knowledge arguments of knowledge and to resettable witness
indistinguishable proofs and arguments of knowledge. All these negative results are with respect to
the standard definition of proofs of knowledge (cf. [3]), in which the knowledge extractor is provided
only oracle access to the prover (for detailed discussion see Section 1.3.2).

1.2 Resettable Verifiers

In a similar fashion, one may consider what happens to the soundness of (zero-knowledge) interac-
tive proofs and arguments when the prover can reset the verifier to use the same random tape in
multiple concurrent executions.

Informally, we say that an interactive proof or argument achieves resettable soundness if a prover
cannot convince a verifier of an incorrect statement with non-negligible probability, even when the
prover can reset the verifier to use the same random tape in multiple concurrent executions. The
verifier resettability question can be recast as whether soundness can be achieved when the verifier
is restricted to (re-)using a fixed number of coins, rather than using fresh coins in every interaction.

Resettable-soundness in the public key model was already defined and studied by Micali and
Reyzin [32]. They showed that the existing rZK protocols in the public-key model (i.e., [8, 31]) are
not resettably-sound (i.e., do not maintain soundness when the verifier can be reset). Furthermore,
they demonstrated the non-robustness of soundness in the public key model by considering several
natural notions of soundness (i.e., one-time soundness, sequential soundness, concurrent soundness,
and resettable soundness), and showing separations between these notions.

1.3 Our Contributions

In this paper we study resettable-soundness in the standard model, rather than in the public-
key model considered in [8, 32]. As was the case for resettable zero-knowledge, it is not clear
a-priori whether non-trivial resettably-sound zero-knowledge protocols exist at all. In fact, we
show that for resettable soundness (where the verifier is reset), the situation is much worse than for
resettable zero-knowledge (where the prover is reset). Specifically, on the negative side, we show that
resettably-sound zero-knowledge proofs exist only for languages in P/poly.3 Furthermore, if one is
restricted to showing zero-knowledge via a black-box simulator, resettably-sound zero-knowledge
arguments exist only for languages in BPP. This describes our negative results for resettably-sound
zero-knowledge. On the positive side, we construct resettably-sound zero-knowledge arguments for
all NP. Our construction uses the non-black-box zero-knowledge argument system of Barak [1]
as a key component. (Indeed, due to the aforementioned black-box impossibility result, any such
construction must rely on non-black-box techniques.)

Next, we use resettably-sound zero-knowledge arguments for NP (where the verifier may be
reset) in order to obtain two main applications for the setting of resettable zero-knowledge (where
the prover may be reset). Namely:

1. We construct resettable zero-knowledge arguments of knowledge for NP, using a relaxed and
yet natural definition of arguments (and proofs) of knowledge (see Section 1.3.2). Previously,
resettable zero-knowledge arguments of knowledge were not known to exist.

3We also show that resettably sound proofs – without the zero-knowledge requirement – are possible only for
languages in NP/poly.
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2. We construct constant-round resettable zero-knowledge arguments for NP, in the public-
key model, under weaker assumptions than previously known: instead of assuming sub-
exponential hardness, we only assume standard super-polynomial hardness.

All of our positive results inherit the intractability assumption used in the construction of the
non-black-box protocol of [1]; i.e., the existence of collision-resistant hash functions [2]. Since the
existence of collision-resistant hash functions implies the existence of one-way functions, we use the
latter freely. We proceed to give details on our main result and its applications.

1.3.1 Main Result

Our main result is a constant-round resettably-sound zero-knowledge argument for NP, assuming
the existence of collision-resistant hash functions. This is achieved by showing how to transform any
constant-round public-coin zero-knowledge interactive argument into a constant-round resettably-
sound zero-knowledge argument for the same language. We then apply the transformation to the
recent construction of a constant-round public-coin zero-knowledge argument of knowledge for NP
by [1], obtaining the desired result.

Recall that until recently, this transformation would have been useless as no constant-round
public-coin zero-knowledge arguments were known for languages outside of BPP. Indeed, Goldreich
and Krawczyk proved that only languages in BPP have constant-round public-coin arguments and
proofs that are black-box zero-knowledge [24]. Naturally, the construction of [1] of a constant-round
public-coin zero-knowledge argument of knowledge for NP must (and does) use a non-black-box
simulator. Thus, we obtain:

Theorem 1.1 If there exist collision-resistant hash functions, then any NP-language has a (constant-
round) resettably-sound zero-knowledge argument. Furthermore, these protocols are arguments of
knowledge.

Using Theorem 1.1 we obtain the following applications.

1.3.2 Application 1: Resettable-ZK Arguments of Knowledge

The standard definition of an argument (or proof) of knowledge requires the knowledge-extractor
to use the prover’s strategy as a black-box. Furthermore, in a resetting attack on the prover, the
verifier has this very same capability during the execution of the protocol. Loosely speaking, then,
if the extractor can extract anything (e.g., an NP-witness) from the prover, then a cheating verifier
can also extract by mounting a resetting attack. Thus, under the standard definition (cf. [3]),
resettable zero-knowledge arguments of knowledge exist only for BPP.

We adopt a relaxation of the definition of an argument (or proof) of knowledge in which the
knowledge-extractor is given the prover’s program as auxiliary input (rather than given only black-
box access to it). The knowledge-extractor, now, is (at least syntactically) more powerful than the
cheating verifier during a resetting attack in which the latter has in essence black-box access to
the prover’s strategy. The relaxed definition appeared originally in Feige and Shamir [17] (which
differs from the definition in [15]; see discussion in [3]), and suffices for all practical applications of
arguments of knowledge.

The standard definition, allowing only oracle access to the prover’s strategy, was used in the
literature in the past as in principle it allows the consideration of prover strategies which are not
in P/poly (an irrelevant consideration for practical applications and for arguments in particular).
Moreover, it was generally believed, that one cannot benefit from non-black-box access to the
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prover’s code, and thus restricting access to the prover poses no limitation. Thus, the relaxation
that we consider here is arguably the “natural” notion. Henceforth we will use “proof of knowledge”
to refer to the relaxed definition.

Using Theorem 1.1, we construct resettable witness-indistinguishable and resettable zero-knowledge
arguments of knowledge for NP. Our construction is based on a modification of a well-known de-
sign principle underlying protocols such as those in [23, 34, 8]: In these protocols, the verifier starts
by committing to its queries, then the prover sends some information, and the verifier decommits
to the aforementioned queries, which the prover is now supposed to answer. Such protocols usually
fail to yield proofs of knowledge, since the typical way in which a knowledge-extractor works is by
obtaining answers to several different queries regarding the same piece of information. However,
when the queries are committed to before the information is presented, this is no longer possible.
Our modification is to replace the action of decommitment by merely revealing the committed val-
ues and proving in zero-knowledge that the revealed values are indeed those committed to. Toward
this end, the verifier needs to employ a zero-knowledge proof (or argument), in which the prover
plays the role of the verifier, which is why in our setting (in which the main prover is resettable)
this subprotocol has to be resettably-sound. Here is where we use Theorem 1.1, which provides us
with a resettably-sound zero-knowledge argument for NP. Thus, we obtain:

Theorem 1.2 If there exist collision-resistant hash functions, then there exists

1. A constant-round resettable witness-indistinguishable argument of knowledge for NP.

2. A poly-logarithmic round resettable zero-knowledge argument of knowledge for NP.

All applications of the notion of a proof of knowledge, including the Fiat-Shamir paradigm of build-
ing identification protocols from zero-knowledge (and witness indistinguishable) proofs of knowl-
edge [18], are thus salvaged for resettable provers. This holds also with respect to constant-round
protocols in the public-key model; see Theorem 1.3 (below).

1.3.3 Application 2: rZK in the Public-Key Model Under Weaker Assumptions

Current protocols that achieve constant-round resettable zero-knowledge arguments for NP in the
public-key model, rely on a sub-exponential hardness assumption for breaking commitment schemes.
In contrast, using Theorem 1.1 we construct constant-round resettable zero-knowledge arguments
for NP in the public-key model, relying only on the existence of collision-resistant hash functions.
Thus, we replace a sub-exponential hardness assumption by a standard hardness assumption of
collision-resistant hashing secure against all polynomial-time adversaries. Furthermore, both the
protocol and its analysis are conceptually simpler than the corresponding constructions presented
in [8, 31]. Finally, the constant-round protocol constructed is also an argument of knowledge (in
the relaxed sense discussed in previous section). We have:

Theorem 1.3 If there exist collision-resistant hash functions, then there exists a constant-round
resettable zero-knowledge argument of knowledge for NP in the public-key model.

We stress that previously known resettable zero-knowledge protocols (also in the public-key model)
were not known to be arguments of knowledge.
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1.4 Simultaneous Resettability

A natural question that arises is whether it is possible to simultaneously protect both the prover
and the verifier from resetting attacks. That is:

Open Problem 1.4 Do languages outside of BPP have resettably-sound arguments that are re-
settable zero-knowledge.

Some hope for an affirmative resolution of the above question is provided by the fact that some
level of resettable-security for both parties does seem to be achievable.4 That is:

Theorem 1.5 (implicit in [12]): Assuming the existence of enhanced trapdoor permutations,5 any
NP-language has a resettably-sound proof that is resettable witness-indistinguishable.

Theorem 1.5 follows from the following facts regarding ZAPs (as defined by Dwork and Naor [12]).
Loosely speaking, ZAPs are two-round public-coin witness-indistinguishable proofs. Thus, by def-
inition, ZAPs are resettably-sound (because even in a single session the prover obtains all the
verifier’s coins before sending its own message). On the other hand, as noted in [12], any ZAP can
be made resettable witness-indistinguishable (by using pseudorandom functions as in the trans-
formation of [8]). Using a main result of [12], by which ZAPs for NP can be constructed based
on any non-interactive zero-knowledge proofs for NP, which in turn can be constructed based on
enhanced trapdoor permutations (cf. [16, 4, 21]), Theorem 1.5 follows.

2 Preliminaries

2.1 General Preliminaries

In this section, we briefly and informally review some well-known notions.

Polynomial-size adversaries. We focus on polynomial-size adversaries. By this we mean adver-
saries that employ a strategy that can be implemented by a non-uniform family of polynomial-size
circuits.

Interactive proof systems [27]. For most of this paper, we consider computationally-sound
interactive proof systems (a.k.a arguments) [6] in which it is infeasible for any polynomial-size circuit
to cheat with non-negligible probability. Specifically, for every polynomial p and all sufficiently large
inputs x not in the language, every circuit of size p(|x|) (representing a cheating prover strategy)
may convince the verifier to accept only with probability less than 1/p(|x|). We further restrict
the meaning of the term ‘interactive proof system’ by requiring that inputs in the language are
accepted with probability 1 (i.e., so-called perfect completeness).

4The evidence provided by Theorem 1.5 (towards an affirmative resolution of the above question) is admit-
tedly not very strong. In general, zero-knowledge seems a significantly stronger notion of security than witness-
indistinguishability. Furthermore, Theorem 1.5 yields resettably-sound proofs, whereas (as mentioned above) there
is no hope of obtaining resettably-sound zero-knowledge proofs (rather than arguments) for languages not in P/poly.

5See [21, Appendix C.1].
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Zero-knowledge [27]. We adopt the basic paradigm of the definition of zero-knowledge: The
output of every probabilistic polynomial-time adversary (verifier) that interacts with the designated
prover on a common input in the language, ought to be simulatable by a probabilistic polynomial-
time machine (which interacts with nobody), called the simulator. In fact, we focus on universal
simulators that given the code of any polynomial-size adversary (or oracle access to its strategy)
simulates (by itself and without interacting with the prover) the interaction of this adversary with
the prover. In case this universal simulator only uses oracle access to the adversary’s strategy
(rather than being given its code) , we call it black-box.

Witness indistinguishable proof systems [17]. Loosely speaking, these are proof systems
in which the prover is a probabilistic polynomial-time machine with auxiliary input (typically,
an NP-witness), having the property that interactions in which the prover uses different “legit-
imate” auxiliary-inputs are computationally indistinguishable from each other. Recall that any
zero-knowledge proof system is also witness indistinguishable, but there are witness indistinguish-
able proof systems that are not zero-knowledge.

2.2 Resettable Zero-Knowledge and Witness Indistinguishability

In this section, we recall the definition of resettable zero-knowledge and witness-indistinguishability.
The text is adapted from [8].

Given a specified prover P , a common input x and an auxiliary input y to P (e.g., y may be
an NP-witness for x being in some NP-language), we consider polynomially-many interactions of a
potentially adversarial verifier with the deterministic prover strategy Px,y,ω that is determined by
uniformly selecting and fixing P ’s coins, denoted ω. That is, ω is uniformly selected and fixed once
and for all, and the adversary may invoke and interact with many instances of Px,y,ω. An interaction
with an instance of Px,y,ω is called a session. It is stressed that Px,y,ω’s actions in each session are
oblivious of other sessions (since Px,y,ω mimics the “single session strategy” P ); nonetheless, the
actions of the adversary may depend on other sessions.

There are two variants of the above model. In the basic variant, a session must be terminated
(either completed or aborted) before a new session can be initiated by the adversary. In the
interleaving variant, this restriction is not made and so the adversary may concurrently initiate
and interact with Px,y,ω in many sessions. In [8], these variants were proven to be equivalent.
Thus, for the sake of simplicity, we focus on the simpler non-interleaving variant.

An extension to the above model is obtained by allowing the adversary to interact (many times)
with several random independent incarnations of P (rather than with a single one). That is, rather
than interacting many times with one Px,y,ω, where ω is randomly selected, the adversary many
interact many times with each Pxi,yi,ωj , where the ωj ’s are independently and randomly selected.
Intuitively, allowing several independent random incarnations (i.e., several ωj ’s) should not increase
the power of the adversary, but it is not clear whether this intuition is sound. We do know (see [8])
that allowing several different inputs (i.e., xi’s) for the same random-tape does increase the power of
the adversary. Anyhow, with these extensions, resettable security implies security under concurrent
executions.

Definition 2.1 (rZK and rWI - standard model): An interactive proof system (P, V ) for a language
L is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V ∗ there
exists a probabilistic polynomial-time simulator M∗ so that the distribution ensembles D1 and D2

described below are computationally indistinguishable: Let each distribution be indexed by a sequence
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of distinct6 common inputs x = x1, ..., xpoly(n)∈ L∩{0, 1}n and a corresponding sequence of prover’s
auxiliary-inputs y = y1, ..., ypoly(n),

Distribution D1 is defined by the following random process which depends on P and V ∗.

1. Randomly select and fix t = poly(n) random-tapes ω1, ..., ωt for P , resulting in de-
terministic strategies P (i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj (α) = P (xi, yi, ωj , α), for
i, j ∈ {1, ..., t}. Each P (i,j) is called an incarnation of P .

2. Machine V ∗ is allowed to run polynomially-many sessions with the P (i,j)’s. Throughout
these sessions, V ∗ is required to complete its current interaction with the current copy
of P (i,j) before starting a new interaction with any P (i′,j′), regardless if (i, j) = (i′, j′)
or not. Thus, the activity of V ∗ proceeds in rounds. In each round it selects one of the
P (i,j)’s and conducts a complete interaction with it.

3. Once V ∗ decides it is done interacting with the P (i,j)’s, it (i.e., V ∗) produces an output
based on its view of these interactions. This output is denoted by 〈P (y), V ∗〉(x) and is
the output of the distribution.

Distribution D2:

The output of M∗(x).

If there exists a universal probabilistic polynomial-time machine M , so that for every V ∗, M∗ can be
implemented by letting M have oracle-access to V ∗, then we say that P is resettable zero-knowledge
via a black-box simulation.7

An interactive proof system (P, V ) for L is said to be resettable witness indistinguishable (rWI) if
every two distribution ensembles of Type 1 that are indexed by the same sequence of distinct inputs
x = x1, ..., xpoly(n) ∈ L ∩ {0, 1}n, (but possibly different sequences of prover’s auxiliary-inputs,

aux(1)(x) = y
(1)
1 , ..., y

(1)
poly(n) and aux(2)(x) = y

(2)
1 , ...,y

(2)
poly(n)), are computationally indistinguishable.

That is, we require that {〈P (aux(1)(x)), V ∗〉(x)}x and {〈P (aux(2)(x)), V ∗〉(x)}x are computationally
indistinguishable.

2.3 Arguments of Knowledge with Non Black-Box Extraction

In the standard definition of proofs of knowledge (cf. [3]), the knowledge-extractor is given oracle (or
black-box) access to the prover strategy. As mentioned in [8], under this definition, resettable zero-
knowledge proofs (or arguments) of knowledge exist only for languages in BPP. This is because
in a resetting attack, the verifier has the same power as the extractor. Therefore, the proof (or
argument) cannot be zero-knowledge (or even witness indistinguishable).

Below, we recall a natural, yet relaxed definition of arguments of knowledge where the extractor
has access to the description of the prover strategy (cf. [17]). Thus, the extractor has (potentially)
more power than even a verifier that can execute a resetting attack.

Definition 2.2 (system of arguments of knowledge, relaxed definition [17]): Let R be a binary
relation. We say that a probabilistic, polynomial-time interactive machine V is a knowledge verifier
for the relation R with negligible knowledge error if the following two conditions hold:

6This condition (of the inputs being distinct) was mistakenly omitted from the definition in [8], but their analysis
assumes it. It seems that this requirement is essential for the non-triviality of rZK and that no protocol can achieve
the stronger definition (in which some of the xi’s may be equal whereas the corresponding auxiliary yi’s may be either
equal or not). In particular, all known rZK protocol (including ours) are not even rWI under the stronger definition.

7Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [26, 24]).
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• Non-triviality: There exists a probabilistic polynomial-time interactive machine P such that for
every (x, y) ∈ R, all possible interactions of V with P on common input x, where P has auxiliary
input y, are accepting.

• Validity (or knowledge soundness) with negligible error: There exists a probabilistic expected
polynomial-time machine K such that for every probabilistic polynomial-time machine P ∗, every
polynomial p(·) and all sufficiently large x’s

Pr[K(desc(P ∗), x) ∈ R(x)] > Pr[〈P ∗, V 〉(x) = accept]− 1
p(|x|)

where 〈P ∗, V 〉(x) denotes V ’s output after interacting with P ∗ upon common input x, desc(P ∗)
denotes the description of P ∗’s strategy, and R(x) = {y : (x, y) ∈ R} denotes the set of witnesses
for x.

3 Resettable-Soundness

In this section we define and study various notions of resettable-soundness. Specifically, we define
resettably-sound proofs and arguments, and justify our focus on the latter (where soundness holds
only with respect to polynomial-size cheating provers, rather than for arbitrary cheating provers).

3.1 Definitions

We adopt the formalism of resettable zero-knowledge (cf. [8]), with the understanding that here the
adversary plays the role of the prover and has the power to reset the verifier (or invoke it several
times on the same sequence of coins).8

Given a specified verifier program V and a common input x, we consider polynomially-many
interactions with the residual deterministic verifier strategy Vx,r determined by uniformly selecting
and fixing V ’s coins, denoted r. That is, r is uniformly selected and fixed once and for all, and the
adversary may invoke and interact with Vx,r many times. Each such interaction is called a session.
Thus, the adversary and Vx,r engage in polynomially-many sessions; but whereas Vx,r’s actions in
the current session are oblivious of other sessions (since Vx,r mimics the “single session strategy”
V ), the actions of the adversary may depend on other sessions. Typically, x 6∈ L and the aim of
the adversary, or cheating prover, is to convince Vx,r to accept x in one of these sessions. (In the
context of resettable zero-knowledge, the adversary is called a cheating verifier and its aim is to
“extract knowledge” from the prover by possibly resetting it.)

We consider two variants of the model. In the first (and main) variant, a session must be
terminated (either completed or aborted) before a new session can be initiated by the adversary. In
the second (interleaving) variant, this restriction is not made and so the adversary may concurrently
initiate and interact with Vx,r in many sessions. A suitable formalism must be introduced in order
to support these concurrent executions. (For simplicity, say that the adversary prepends a session-
ID to each message it sends, and a distinct copy of Vx,r handles all messages prepended by each
fixed ID.) Note that in both variants, the adversary may repeat in the current session the same
messages sent in a prior session, resulting in an identical prefix of an interaction (since the verifier’s
randomness is fixed). Furthermore, by deviating in the next message, the adversary may obtain two
different continuations of the same prefix of an interaction. Viewed in other terms, the adversary

8In contrast, in the context of resettable zero-knowledge, the adversary plays the role of the verifier and has the
power to reset the prover.
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may “effectively rewind” (or “reset”) the verifier to any point in a prior interaction, and carry-on
a new continuation (of this interaction prefix) from this point.

For sake of simplicity, we will present only the definition of the main (non-interleaving) model.
We can afford to focus on the non-interleaving model because the argument given in [8] by which
the models are equivalent with respect to resettable zero-knowledge hold also with respect to
resettable-soundness; the reason being that this argument merely shows how a resetting-adversary
in the interleaving model can be perfectly emulated by a resetting-adversary in the non-interleaving
model.

Following Canetti et al. [8], we extend the basic model to allow the adversary to interact
(many times) with several random independent incarnations of V (rather than with a single one).
That is, rather than interacting many times with one Vx,r, where r is randomly selected and x is
predetermined, the adversary may interact many times with different Vxi,rj ’s, where the rj ’s are
independently and randomly selected and the xi’s are chosen dynamically by the adversary. One
may be tempted to say that the ability to interact with several incarnations of V should not add
power to the model, but as shown in [8] this intuition is not valid.

One important deviation from the formalism of Canetti et al. [8], is in not fixing a sequence of
(polynomially-many) xi’s ahead of time, but rather allowing the adversary to select such xi’s on
the fly. Furthermore, adversarial selection of inputs is used in both the completeness and soundness
conditions. (We comment that the latter strengthening of the definition is applicable and desirable
also in the setting of resettable zero-knowledge.)

Definition 3.1 (resettable verifier – main model): A resetting attack of a cheating prover P ∗ on
a resettable verifier V is defined by the following two-step random process, indexed by a security
parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, ..., rt, for V , resulting in
deterministic strategies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α ), where x ∈ {0, 1}n

and j ∈ [t].9 Each V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)’s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus
defining V (j)(x), and conducts a complete session with it.

Let P and V be some pair of interactive machines, and suppose that V is implementable in proba-
bilistic polynomial-time. We say that (P, V ) is a resettably-sound proof system for L (resp., resettably-
sound argument system for L) if the following two conditions hold:
• Resettable-completeness: Consider an arbitrary resetting attack (resp., polynomial-size resetting

attack), and suppose that in some session, after selecting an incarnation V (j)(x), the attacker
follows the strategy P .10 Then, if x ∈ L then V (j)(x) rejects with negligible probability.

• Resettable-soundness: For every resetting attack (resp., polynomial-size resetting attack), the
probability that in some session the corresponding V (j)(x) has accepted and x 6∈ L is negligible.

9Recall that V (x, r, α ) denotes the message sent by the strategy V on common input x, random-tape r, after
seeing the message-sequence α.

10In fact, in order to consider honest prover strategies that are implementable in probabilistic polynomial-time,
we need to supply P with an adequate NP-witness. That is, let R be an NP-relation that corresponds to the NP-
language L. Then we consider a resetting attack that for every selected x ∈ L also provides P with (an NP-witness)
w satisfying (x, w) ∈ R. In this case, we require that when V (j)(x) interacts with P (w) it rejects with negligible
probability.

10



We stress that by a resettably-sound proof we mean that the resettable-soundness requirement
holds also for computationally unbounded cheating provers, whereas only polynomial-size cheating
provers are considered in the definition of resettably-sound arguments.

We also adapt the definition of a proof of knowledge to the resettable context. We assume
that the reader is familiar with the basic definition of a proof of knowledge (cf., [3]). The basic
approach is to link the probability that any prover strategy convinces the verifier to the efficiency
of extracting the claimed knowledge by using this prover strategy as an oracle. Thus, a definition of
a resettably-sound proof (or argument) of knowledge should refer to the probability of convincing
the verifier during a resetting attack (rather than to the probability of convincing the verifier in
an ordinary interaction). On the other hand, we relax the definition by allowing the extractor
to depend on the size of the prover strategy (i.e., we focus on polynomial-size provers and allow
a different extractor per each polynomial size-bound).11 The latter relaxation seems important
for our positive results and is certainly sufficient for our applications (as well as for any other
application we can think of). For simplicity, we consider below only NP-relations.

Definition 3.2 (resettably-sound argument of knowledge, sketch): Let R ⊆ {0, 1}∗×{0, 1}∗ be an
NP-relation for an NP-language L = {x : ∃w (x,w)∈R}. We say that (P, V ) is a resettably-sound
argument of knowledge for R if

• (P, V ) is a resettably-sound argument for L, and

• for every polynomial q there exists a probabilistic expected polynomial-time oracle machine
E such that for every resetting attack P ∗ of size q(n), the probability that EP ∗(1n) outputs
a witness for the input selected in the last session is at most negligibly smaller than the
probability that P ∗ convinces V in the last session.

The focus on the last session of the resetting attack is done for simplicity and is valid without loss
of generality (because the prover can always duplicate the interaction of any session of its choice
in the last session).

Important Note: We stress that, in the rest of this section, zero-knowledge mean the standard
notion (rather than resettable zero-knowledge).

3.2 Limitations of Resettably-Sound Proofs

In this subsection we justify our focus on resettably-sound arguments (rather than resettably-sound
proofs): As demonstrated below, resettably-sound proofs exist only in an almost trivial manner,
and more annoyingly resettably-sound zero-knowledge proofs exist only for languages having (non-
uniform) polynomial-size circuits (and thus are unlikely to exist for all NP).

Theorem 3.3 Suppose that there exists a resettably-sound proof for L. Then, L is contained in
non-uniform NP (i.e., L ∈ NP/poly). Furthermore, if this proof system is zero-knowledge then L
is contained in non-uniform polynomial-time (i.e., L ∈ P/poly).

Note that AM ⊂ NP/poly does have resettably-sound proof systems (e.g., the first message sent
in a properly amplified AM-proof system can be used to correctly prove membership of all strings
of adequate length).12 Similarly, BPP ⊂ P/poly does have resettably-sound zero-knowledge proof

11In fact, it suffices to allow a different extractor per each polynomial bound on the number of sessions initiated
by the prover. (Such a relaxation coincides with the standard definition for the case of a single session.) However,
since we focus on polynomial-size provers, we may as well refer to their size.

12Recall that AM stands for the class of languages having two-round public-coin interactive proofs.
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systems (in which the verifier just decides by inspecting the input). We believe that Theorem 3.3
holds also with NP/poly replaced by AM and P/poly replaced by BPP.

Proof Sketch: Intuitively, the verifier’s randomness is a-priori bounded, whereas the number of
sessions in which it takes place (in a resettable attack) is not a priori bounded. Thus, there must be
a session in which the verifier uses very little truly new randomness (i.e., there is a session in which
the verifier’s moves are almost determined by the history of previous sessions). Loosely speaking,
the limitations of deterministic verifiers (with respect to interactive proofs and zero-knowledge
proofs; cf., [19] and [26], respectively) should apply here. The actual proof is more complex; see
below.

We start with the main part of the theorem: Suppose that (P, V ) is an interactive proof as in the
main part of the theorem, and suppose that on common input x machine V uses a random-tape
of length m = poly(|x|). We consider a (generic) deterministic cheating (resetting) prover that
interacts with V for several sessions. Each possible execution sequence of i sessions determines a
set of possible verifier tapes that are consistent with the verifier’s actions in these i sessions. We
say that a certain transcript of i sessions is critical if there is no way for the prover to interact in
the i+1st session so that the possible sets determined by the i+1 session-executions are all smaller
than 99% of the size of the set determined by the i first sessions. (The above prover’s actions
include the selection of a common input of adequate length.)

Let us consider such a critical transcript, and denote by S the set of possible verifier tapes that
are consistent with the verifier’s actions in this transcript. In fact, we consider a critical transcript
and a corresponding set S so that completeness and soundness of the next session hold also when
the verifier’s random-tape is uniformly distributed in S.13 The actions of V during the next session
can be (almost) determined ahead of time by the cheating prover (which, being computationally
unbounded, may uniformly select s ∈ S and act according to the tape s). Thus, given the critical
transcript, one may provide “almost an NP-proof” for membership in L. It is instructive to think
of S as a singleton, in which case the prover can supply NP-proofs for membership in L. In general,
when S is not a singleton, we construct a non-uniform constant-round proof system as follows.
The new (non-uniform) verifier incorporates in its code a critical transcript α (possibly of several
sessions) and the cardinality of the set S of the corresponding tapes of V that are consistent with
this transcript. On common input x, the new prover uniformly selects s ∈ S and sends to the verifier
the corresponding transcript of the next session that is consistent with the actions of V on input
x and random-tape s. Next, the parties execute a (constant-round) random selection protocol so
that the new verifier obtains an almost-random r ∈ S. (The new verifier uses the critical transcript
α and |S| in order to execute its part in the protocol, which requires the verifier to know |S| and
to be able to decide membership in S. The fact that the prover is computationally unbounded is
necessary for playing its role in the random selection protocol.) Finally, the new verifier accepts x
if and only if the the transcript of the current session (sent by the prover) is consistent with the
actions of V on input x and random-tape r (rather than s). Observe that the new interactive proof
emulates almost perfectly the execution of the next session of the original proof system (under a
resetting attack). Using the hypothesis that completeness and soundness of the next session (played
by V ) hold also when the verifier’s random-tape is uniformly distributed in S, it follows that the
new proof system satisfies the completeness and soundness properties. Thus, L has a non-uniform
constant-round proof system. Using known results about constant-round interactive proofs (i.e.,
IP(O(1)) ⊆ AM and AM ⊂ NP/poly), the first part of the theorem follows.

13The last sentence makes sense only when considering computationally-unbouded cheating provers.
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We now turn to the second part of the theorem, and consider the case where the above
(resettably-sound) proof system is zero-knowledge. We consider the critical transcript α and set S
as defined above. Recall that the completeness and soundness of the next session hold also when
the verifier’s random-tape is uniformly distributed in S. Fixing two random strings s, r ∈ S, and
using the simulator guaranteed by the (ordinary) zero-knowledge condition of (P, V ), we obtain a
non-uniform polynomial-size circuit that decides whether or not x (of suitable length) is in L as
follows. The circuit, which incorporates the strings s and r, uses the original simulator to generate
a transcript of an interaction of V ′ with P , where V ′ behaves as V on input x and coins s. The
circuit accepts if and only if the generated transcript is accepting and consistent with the actions
of V on input x and coins r (rather than coins s). Using the hypothesis that completeness and
soundness of the next session (played by V ) hold also when the verifier’s random-tape is uniformly
distributed in S, it follows that the circuit decides correctly.

3.3 On the Triviality of Resettably-Sound Black-Box Zero-Knowledge

In this section we explain why the resettably-sound zero-knowledge arguments presented in the
next subsection are not accompanied (as usual) by a black-box simulator. Specifically, we show
that only a language in BPP can have a resettably-sound argument with a black-box zero-knowledge
simulator (and, in fact, BPP languages have trivial “proof” systems in which the prover does not
even take part). Independently, Reyzin in [33] showed that Theorem 3.4 holds even in the public-key
model.

Theorem 3.4 Suppose that there exists a resettably-sound argument for L, and that this protocol
is black-box zero-knowledge. Then, L ∈ BPP.

Proof Sketch: Intuitively, a (probabilistic polynomial-time) cheating prover mounting a resettable
attack on the verifier, may emulate the actions of the black-box simulator (with access to the
deterministic verifier defined by fixing the random-tape). Thus, in case x ∈ L, this cheating prover
causes the verifier to accept x (because the emulated simulator succeeds in producing an accepting
conversation). On the other hand, by the resettable-soundness condition, the cheating prover is
unlikely to cause the verifier to accept x 6∈ L. Finally, observing that the cheating prover described
above is implementable in probabilistic polynomial-time, we obtain a probabilistic polynomial-time
decision procedure for L. Details follows.

Let (P, V ) be a resettably-sound argument for L, and let M be a (probabilistic polynomial-time)
black-box simulator such that for every family of polynomial-size circuits {Vx}x∈L the distributions
{〈P, Vx〉(x)}x∈L and {MVx(x)}x∈L are computationally indistinguishable, where 〈P, Vx〉(x) means
the transcript of an ordinary interaction between (non-resettable) interactive machines. Using M ,
we construct a cheating prover P ∗ that operates in the model of resettable-soundness and thus
may reset the verifier. (In fact, P ∗ uses its input, x, in all sessions it conducts with Vx, rather
than selecting adaptively an input for each session.) The cheating prover P ∗(x) just emulates the
actions of M(x), while treating the (resettable) verifier as an oracle. (Recall that each query to the
oracle corresponds to a sequence of prover messages, and so obtaining the corresponding answer
amounts to initiating a new session with Vx and sending messages as in the given sequence/query.)
We will focus on the last session in the interaction of the cheating prover with the verifier, which
corresponds to the output produced by M (since, w.l.o.g., M performs a full session corresponding
to its output before writing-out its output).

For every common-input x and random-input r (for V ), we consider the (deterministic) verifier
strategy Vx,r (as in Definition 3.1). By the completeness condition, for every x ∈ L and almost all
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r’s, with high probability, the strategy Vx,r accepts x when interacting with (the honest prover) P .
Thus, with high probability over the choices of r and the internal coin tosses of M , it is the case
that MVx,r(x) is an accepting transcript (of a single session). It follows that (with high probability
over the internal coin tosses of V and of the cheating resetting prover P ∗), the last session in
the interaction of Vx,r with P ∗ on common input x ∈ L is convincing. On the other hand, by the
resettable-soundness condition, with high probability, every session of V (with any feasible resetting
cheating prover) on common input x 6∈ L is not convincing. Thus, with very high probability, the
last session in the interaction of Vx,r with P ∗ on common input x 6∈ L is not convincing.

Combining the (probabilistic polynomial-time) cheating prover P ∗ with V , we obtain a proba-
bilistic polynomial-time decision procedure for L: On input x, we select a random r and emulate
the interaction of the cheating prover P ∗ with Vx,r. We accept x if and only if the last session in
this interaction is accepting.

3.4 How to Construct Resettably-Sound Zero-Knowledge Arguments

The main result of this section is obtained by combining the following transformation with a recent
result of Barak [1].

Proposition 3.5 (a transformation): Let L ∈ NP and R be a corresponding witness relation.
Suppose that (P, V ) is a constant-round public-coin argument of knowledge for R, and let {fs :
{0, 1}∗ → {0, 1}|s|} be a collection of pseudorandom functions. Assume, without loss of generality,
that on common input x, in each round, the verifier V sends a uniformly distributed |x|-bit string.
Let Ws be a deterministic verifier program that, on common input x ∈ {0, 1}|s|, emulates V except
that it determines the the current round message by applying fs to the transcript so far. Let W
be defined so that on common input x and uniformly random-tape s ∈ {0, 1}|x|, it acts as Ws(x).
Then:

1. (P, W ) is a resettably-sound argument for L. Furthermore, (P,W ) is a resettably-sound
argument of knowledge for R.

2. If (P, V ) is zero-knowledge then so is (P,W ). Furthermore, if the simulator of (P, V ) runs in
strict polynomial-time, then so does the simulator of (P,W ).

3. If (P, V ) is witness-indistinguishable then so is (P, W ).

Recall that only languages in BPP have a constant-round public-coin zero-knowledge argument
with a black-box simulator. Thus, Proposition 3.5 may yields something interesting only when
applied to protocols that do not have a black-box simulator.14 Recall that no such (non-trivial)
zero-knowledge arguments were known until very recently. Here is where the result of Barak [1]
plays a role: Using his recent constant-round public-coin zero-knowledge argument of knowledge
for NP (which indeed uses a non-black-box simulator), we obtain resettably-sound zero-knowledge
arguments (of knowledge) for NP. This establishes Theorem 1.1.

14In particular, we may apply Proposition 3.5 to some known constant-round public-coin interactive proofs that
are known to be witness-indistinguishable (e.g., parallel repetitions of the basic zero-knowledge proof of Goldreich,
Micali and Wigderson [25]). This yields witness-indistinguishable arguments that are resettably-sound. However,
for witness-indistinguishable protocols, stronger results are known; see Section 1.4. Thus, we focus below on zero-
knowledge protocols.

14



Proof Sketch for Proposition 3.5: Parts 2 and 3 follows immediately because the zero-
knowledge condition (as well as the witness-indistinguishability condition) does not refer to the
honest verifier (which is the only thing we have modified) but rather to all possible polynomial-size
adversaries (representing cheating verifiers).

As a preliminary step towards proving Part 1, we consider an imaginary verifier (denoted WF )
that, on common input x, uses a truly random function F : {0, 1}∗ → {0, 1}|x| (rather than a
pseudorandom function fs, for |s| = |x|). Loosely speaking, by the definition of pseudorandom-
ness, all non-uniform polynomial-size provers must behave in essentially the same way under this
replacement.

(The actual proof is slightly more subtle than one may realize because in our context this
“behavior” is the ability to convince the verifier of the membership in L of x 6∈ L that is chosen
on the fly by the prover. The problem is how will the distinguisher determine that this event
took place (notice that the distinguisher itself may not necessarily know whether or not x ∈ L).
Thus, we actually proceed as follows. First, we show (below) that P ′ may convince WF to accept
an input not in L only with negligible probability. Next, we use the hypothesis that (P, V ) is an
argument of knowledge of an NP-witness, to extract such witnesses for every input accepted by WF .
Specifically, for any input accepted by WF we may employ the knowledge-extractor to to a related
(non-resetting) P ′′ (defined below) and obtain an NP-witness. Thus, for the (P ′,WF ) transcript,
we expect to couple each accepted input with a corresponding NP-witness. If this does not occur
with respect to the (P ′,Ws) transcript (where a pseudorandom function), then we distinguish a
random function from a pseudorandom one. Otherwise, we are done (because when a random
function is used all accepted inputs will be coupled with NP-witness guaranteeing that they are
indeed in L.)15

We claim that for any polynomial-size cheating prover P ′ that convinces the resettable-verifier
WF to accept some common input x with probability ε, there exists a polynomial-size cheating
prover P ′′ that convinces the original (non-resettable) verifier V to accept the same x with proba-
bility at least ε/mc, where m is a bound on the number of messages sent by the prover P ′ and c
is the number of rounds in the original protocol. Furthermore, we shall show how to transform a
cheating prover for the resettable-verifier setting into a cheating prover for the standard setting of
interactive proofs. This will establish Part 1 (both its main claim and the furthermore-clause).

For sake of simplicity, we shall assume that the original cheating prover P ′ tries to convince
the resettable-verifier WF to accept a fixed x, and only invokes a single incarnation of WF (and
does so on common input x). The argument extends easily to the general case in which P ′ invokes
multiple incarnations of WF and selects the common inputs adaptively.

The new cheating prover, denoted P ′′, tries to convince the original (non-resettable) verifier
V to accept x, while emulating the actions of a cheating prover P ′ that may reset the imaginary
resettable verifier WF . The new cheating prover P ′′ proceeds as follows: It uniformly selects
i1, ..., ic ∈ {1, ...,m}, and invokes (the resetting prover) P ′ while emulating an imaginary verifier
WF as follows. If the prefix of the current session transcript is identical to a corresponding prefix of
a previous session, then P ′′ answers by copying the same answer it has given in the previous session
(to that very same session transcript prefix). If (in the current session) P ′ sends along a message
that together with the previous messages of the current session forms a new transcript prefix (i.e.,

15The above text suffices for establishing the main part of Part 1. To establish the furthermore-part, we employ
analogous reasoning with respect to the event that P ′ convinces WF (or Ws) to accept an input without “knowing”
a corresponding NP-witness, where “knowing” means that our extraction succeeds. As before, this event occurs with
negligible probability when P ′ interacts with WF and therefore the same must hold with respect to the interaction
of P ′ with Ws.
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the prefix of the current session transcript is different from the prefixes of all prior sessions), then
P ′′ answers according to the following two cases:

1. The index of the current message of P ′ does not equal any of the c integers i1, ..., ic selected
above. In this case, P ′′ provides P ′ with a uniformly selected |x|-bit long string.

2. Otherwise (i.e., the index of the current message of P ′ equals one of the c integers i1, ..., ic),
P ′′ forwards the current message (of P ′) to V and feeds P ′ with the message it obtains from
V . (We stress that these are the only c messages of P ′ for which the emulation involves
interaction with V .)

In both cases, the message passed to P ′ is recorded for possible future use.
Clearly, for any possible choice of the integers i1, ..., ic, the distribution of messages seen by P ′

when P ′′ emulates an imaginary verifier is identical to the distribution that P ′ sees when actually
interacting with such an imaginary verifier. The reason being that in both cases different prefixes of
session transcripts are answered with uniformly and independently distributed strings, while session
transcripts with identical prefixes are answered with the same string. (Observe that indeed this
emulation is possible because the original verifier is of the public-coin type, and thus it is possible
to efficiently emulate the next verifier message.)16

Towards the analysis, we call a message sent by P ′ novel if together with the previous messages of
the current session it forms a new transcript prefix (i.e., the prefix of the current session transcript
is different from the prefixes of all prior sessions). Recall that the novel messages are exactly
those that cause P ′′ to pass along (to P ′) a new answer (rather than copying an answer given
in some previous session). The UrMessage17 of a non-novel message is the corresponding message
that appears in the first session having a transcript-prefix that is identical to the current session
transcript-prefix. That is, the answer to the UrMessage of a (non-novel) message is the one being
retrieved from memory in order to answer the current message. The UrMessage of a novel message
is just the message itself. Using this terminology, note that the new prover P ′′ succeeds in cheating
V if the chosen integers i1, ..., ic equal the indices (within the sequence of all messages sent by P ′)
of the c UrMessages that correspond to the c messages sent in a session in which P ′ convinced the
imaginary verifier. Since with probability ε such a convincing session exists, P ′′ succeeds provided
it has guessed its message indices (i.e., c indices out of m).

4 Constructing rWI and rZK Protocols: A Paradigm Revisited

A general paradigm for constructing rWI (resettable witness indistinguishable) and rZK (resettable
zero-knowledge) protocols was presented in [8]. They considered a certain class of proof systems,
called admissible proof systems, and defined a slight strengthening of the concurrent model, called
the hybrid model. Next, they presented a transformation applicable to admissible proof systems
and showed that if the original proof system is admissible and WI (respectively, ZK) in the hybrid
model, then the transformed proof system is rWI (respectively, rZK) in the standard model.

In this section, we generalize the class of admissible proof systems and show that for this more
general class, the transformation of [8] also holds. We use this generalization for showing that
the admissible hybrid WI argument of knowledge presented in Section 5 yields a rWI argument

16In contrast, if the verifier were not of the public-coin type, then generating a next verifier message might have
required to invert an arbitrary polynomial-time computable function (mapping the verifier’s coins to its first message.)

17We use the German prefix Ur, which typically means the most ancient version of.
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of knowledge. (We note that this generalization is necessary, since the argument of knowledge of
Section 5.1 is not admissible by the definition of [8].)

4.1 The Generalized Class of Admissible Protocols

Intuitively, as in [8], we consider protocols (P, V ) in which the first verifier-message “essentially
determines” all its subsequent messages. That is, the only freedom retained by the verifier after
sending its first message is either to abort (or act so that the prover aborts) or to send a practically
predetermined message.

We formalize the above intuition as follows. After the first verifier-message, called the determin-
ing message, each subsequent message of the verifier is categorized as either a main message or as a
message belonging to an authenticator module. Every main message is followed by an authenticator
module and the role of this module is to assure the prover that the main message sent is consistent
with the determining message. In the special case that the first verifier-message is a commitment
and the main verifier-message is the revealed value, a possible authenticator module is simply the
(single) message consisting of the decommitment information that establishes the validity of this
revealed value. However, in general, the authenticator module may be a protocol consisting of a
number of messages (note that unlike the main message, these messages may not be determined by
the verifier’s determining message). For example, rather than sending the decommitment informa-
tion, the verifier may authenticate the revealed value by proving (say, in zero-knowledge) that this
value is indeed the value committed to in the determining message. In this case, the authenticator
module contains more than one message and varies depending on the randomness of both the prover
and verifier.

In an admissible protocol (as defined below), the verification of the authenticator module de-
pends only on the prover’s random-tape, the first verifier-message and the accompanying main
message. (That is, the prover does not consider any other messages sent during the protocol when
checking the validity of an authenticator module.) Furthermore, the prover’s subsequent actions
in the rest of the protocol must depend solely on whether the authenticator module is accepted
(otherwise it aborts), and in case it is accepted the subsequent actions must depend only on the
main message.

We first set some useful conventions regarding the presentation of protocols in the concurrent
and resettable settings. A session is initiated by the verifier by specifying an incarnation of P .
The first message is sent by the prover, and is called the prover initialization message. (In our
protocol below, this message will actually be empty; however we include it in order to cover the
class of admissible protocols defined in [8].18) As mentioned above, the second message, sent by
the verifier, is called the determining message of the session. (By our convention, the determining
message includes the previous two messages.) This terminology will become self-explanatory below.

Definition 4.1 (admissible proof-systems): A proof-system (P, V ) is called admissible if the follow-
ing requirements hold:

1. The prover P consists of two parts, P1, P2. Similarly, the prover’s random input ω is parti-
tioned into two disjoint parts, ω(1), ω(2), where ω(i) is given to Pi. The prover initialization
message is sent by P1.

2. Each verifier message (other than the first one) is first received by P1. If the message is
a main message, then P1 interprets the following messages as belonging to an authenticator

18This prover initialization message is important for the constructions shown in [8].
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module. P1 decides whether to accept the authenticator module or to abort based on the first
verifier-message (called the determining message), the main message and the transcript of the
authenticator module itself.19 If P1 accepts, it forwards the main message to P2, who generates
the next prover message.

3. Let V ∗ be an arbitrary (deterministic) polynomial-size circuit, where V ∗ may execute a resetting-
attack on P (as described in Distribution 1 of Definition 2.1). Recall that all messages sent
by V ∗ to P are prepended by the full transcript of messages sent so far. Thus, in particular,
the prefix of any message sent by V ∗ contains the determining message. Now, let m be some
determining message and let V ∗ interact with some incarnation of P = (P1, P2). Then, ex-
cept with negligible probability, V ∗ is unable to generate two different main messages for some
round ` whose prefix contains the same determining message m, and yet P1 accepts both.

There are several differences between our generalized definition of admissible protocols and the
definition of [8]. Firstly, in [8], the authenticator is limited to being a single message, rather than
a module. Furthermore, P1’s decision whether or not to accept the authenticator is not dependent
on its randomness ω(1) (and so is universally verifiable). Finally, in [8], the requirement of item (3)
is stated with respect to V ∗ who does not have the capability of executing a resetting-attack on
P .20 However, here this (stronger) requirement is needed for the transformation.

4.2 The Hybrid Model and the CGGM Transformation

The hybrid model. We consider the same hybrid model as that defined in [8] and recall the
definition here. Loosely speaking, the hybrid model is a model of attacks that stands somewhere
between the concurrent and resettable models. That is, in this model the verifier is given the
ability to “partially” reset the prover (while otherwise interacting in a concurrent setting). More
specifically, the difference between the concurrent model and the resettable model is that in the
resettable model the “cheating verifier” V ∗ can invoke many incarnations of the prover with the
same random input ω, whereas in the concurrent model any two incarnations of the prover have
independently chosen random inputs. The hybrid model is defined for admissible protocols as
defined above (where the random input of the prover is of the form ω = ω(1), ω(2)) and provides
the following intermediate power to V ∗. Here V ∗ can invoke many incarnations of the prover with
the same value of ω(1); but any two incarnations of the prover must have independently chosen
values for ω(2). Thus, the randomness used by the prover for generating the prover initialization
message and for running the verification of the authenticator modules may be reused (as in the
resettable setting). On the other hand, the randomness used for the other prover messages (i.e.,
those determined by P2) is fresh for each session (as in the concurrent setting).

More formally, in admissible proof systems an incarnation of the prover is identified via three
indices: P (i,j,k) = Pxi,yi,ωj,k

, where ωj,k = ω
(1)
j , ω

(2)
k . That is, i specifies the common and auxiliary

inputs, j specifies the random input to P1 and k specifies the random input to P2.
19We stress that P1’s decision may depend on the randomness ω(1). Thus, unlike in [8], we do not require that the

validity of the verifier’s messages be universally verifiable (but rather may be verifiable only by the prover).
20In the context of [8], if the prover specified by the protocol definition is probabilistic polynomial-time, then

there is no difference between the power of an adversarial V ∗ who can reset P and one who cannot. That is, the
transformation from admissible hybrid ZK (resp., WI) to rZK (resp., rWI) holds either way. This is due to the
universal verifiability of the authenticators defined there. However, in our case, where the authentication may be
interactive and dependent upon the prover’s randomness, it is crucial to the transformation that in an admissible
protocol, V ∗’s main messages are determined even if it is able to reset the prover.
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Definition 4.2 (hZK and hWI): A hybrid cheating verifier V ∗ works against admissible proof sys-
tems as described above. That is, V ∗ proceeds as in Distribution 1 of Definition 2.1 with the
exception that V ∗ cannot interact with incarnations P (i,j,k) and P (i′,j′,k′) such that k = k′. An
admissible proof system is hZK (resp., hWI) if it satisfies Definition 2.1 with respect to hybrid
cheating verifiers.

The transformation. We now describe the transformation from admissible proof systems to
resettable ones (the transformation is exactly the same as that defined by [8]):

Construction 4.3 Given an admissible proof system (P, V ), where P = (P1, P2), and a collection
{f} of pseudorandom functions (see [22]), we define a new proof system (P,V) as follows.

The new verifier V is identical to V .

The new prover P: The new prover P’s randomness is viewed as a pair (ω(1), f), where ω(1) ∈
{0, 1}poly(n) is of length adequate for the random-tape of P1, and f :{0, 1}≤poly(n)→{0, 1}poly(n)

is a description of a function taken from an ensemble of pseudorandom functions. For con-
venience, we describe the new prover P as a pair P = (P1,P2). P1 is identical to P1 with
random-tape ω(1); P2 emulates the actions of P2 with a random tape that is determined by
applying f to the input, the random coins ω(1) and the determining message. That is, upon
receiving the determining message, denoted msg, P2 sets ω(2) = f(x, ω(1), msg) and runs P2

with random input ω(2). From this step on, P2 emulates the actions of P2 using ω(2) as P2’s
random-tape.

4.3 Validity of the Transformation for the Generalized Class

We now prove that the above transformation suffices for achieving resettable witness indistinguisha-
bility and resettable zero-knowledge. Our proof is similar in spirit to that of [8], with some crucial
differences. In particular, our treatment of main messages and their corresponding authenticator
modules is completely different. We begin by proving that a resetting attack on the transformed
protocol (P,V) can be “simulated” by a verifier W ∗ that interacts with P in the hybrid model. As
we will state formally later, this implies that if (P, V ) is hZK (resp., hWI), then the transformed
protocol (P,V) is rZK (resp., rWI).

Theorem 4.4 Suppose that (P, V ) is admissible, and let P be the prover strategy obtained from P
by applying Construction 4.3. Then:
• Assuming that pseudorandom functions exist, for every probabilistic polynomial-time resetting

cheating verifier V∗ (as in Definition 2.1) there exists a probabilistic polynomial-time hybrid
cheating verifier W ∗ (as in Definition 4.2) such that 〈P (y),W ∗〉(x) is computationally indistin-
guishable from 〈P(y),V∗〉(x).

• If (P, V ) is a proof (or argument) of knowledge, then so too is (P,V).

Proof: Our analysis refers to a mental experiment in which P utilizes a truly random function
rather than a pseudorandom one. As usual, the corresponding views of the verifier V∗ in the two
cases (i.e., random versus pseudorandom function) are computationally indistinguishable. From this
point on, we identify the random-tape of P with a truly random function. Recall that 〈P(y),V∗〉(x)
denotes the view (or output) of V∗ after interacting with P on various inputs under the resettable
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model. Similarly, 〈P (y),W ∗〉(x) denotes the view (or output) of W ∗ after interacting with P on
various inputs under the hybrid model.

We construct a hybrid-model adversary W ∗ that interacts with incarnations of P , denoted
P (i,j,k) (as in Def. 4.2). To satisfy Definition 4.2, this W ∗ will invoke each P (i,j,k) at most once, and
furthermore if it invokes P (i,j,k) then it will not invoke any other P (i′,j′,k). Loosely speaking, W ∗

serves as a “mediator” between adversary V∗ and the incarnations of the prover P . That is, W ∗

runs V∗; whenever V∗ starts a new session whose determining message is different from all previous
ones, W ∗ merely relays the messages of this session between V∗ and P . When V∗ “replays” an
existing session s (i.e., V∗ starts a new session whose determining message is identical to that of an
existing session s), W ∗ responds to V∗ using the answers of P in session s, without interacting with
P . Finally W ∗ outputs whatever V∗ outputs. Recall that W ∗ works in the hybrid model, whereas
V∗ works in the resetting model. In the description below, we refer to the “current session” of V∗.
This is consistent with the variant of a resetting attack where a session must be terminated (either
completed or aborted) before a new session is initiated by the adversary. (This is equivalent to the
general, interleaving case; see Section 2.2.)

The construction of W ∗. Working in the hybrid model, W ∗ handles the messages of V∗ as
follows (we note that the handling of authenticator messages sent by V∗ is described in Item (4)
and this is the only deviation from the description in [8]):

1. V∗ initiates a new session with some P(i,j): In this case W ∗ initiates a new session with
P (i,j,k), where k is a new index not used so far. Next it obtains the prover initialization
message, and forwards it to V∗.

We stress that a session with P (i,j,k) may be invoked (in the hybrid model) even if a session
with some P (i,j,k′), with k′ 6= k, was invoked before. In the latter case, since the randomness
ω

(1)
j is identical in both sessions, the prover initialization message obtained from P (i,j,k) is

identical to the prover initialization message obtained previously from P (i,j,k′).

2. V∗ sends a new determining message to P(i,j): That is, we refer to the case where V∗ sends a
determining message in the current session, and assume that this message is different from all
determining messages sent in prior sessions with P(i,j). Let msg denote the message sent by
V∗. Then W ∗ sends msg to one of the sessions of the form P (i,j,·) that still awaits a determining
message, obtains the response, and forwards it to V∗. In addition, W ∗ designates this session
with P(i,j) as the active session of (i, j, msg), and stores the prover’s response.

(All subsequent sessions of V∗ with P(i,j) in which the determining message equals msg will
be “served” by the single session of W ∗ designated as the active session of (i, j, msg).)

3. V∗ repeats a determining message to P(i,j): That is, we refer to the case where the current
message sent by V∗ is the determining message in the current session, and assume that this
message equals a determining message msg sent in a prior session of V∗ with P(i,j). In this
case, W ∗ retrieves P ’s prior answer in the active session of (i, j, msg), and forwards it to V∗.

We stress that W ∗ does not communicate with any session of P in this case. (Note that in the
hybrid model, if W ∗ were to send the same message msg to two sessions P (i,j,k) and P (i,j,k′)

where k 6= k′, then the responses could have differed. In contrast, in the resetting model,
V∗ expects to see exactly the same answer in sessions with P(i,j) in which it sends the same
determining message.)
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4. V∗ sends a main message to P(i,j): That is, we refer to the case where V∗ sends a main
message in the current session with P(i,j). The key point here is to ensure that W ∗ forwards
the message to P in the active session of (i, j, msg) only if the message is valid. Actually,
the requirement is even more strict and demands that W ∗ forwards the message to P only
if P itself would accept the authenticator. We stress that W ∗ must not forward any invalid
main message of V∗ to an active session of P (or, likewise messages from an authenticator
module that P would reject). Otherwise, P would close the active session and W ∗ would not
be able use it in order to handle a corresponding valid message or accepting authenticator
module that may be sent by V∗ in a future session.21 (Recall that V ∗ can reset P with the
same randomness and so can start the execution again from scratch. In contrast, W ∗ cannot
restart an execution with a prover P (i,j,k) twice.)

Therefore, at this point W ∗’s aim is to check whether or not P , in the active session of
(i, j, msg), will accept the main message and authenticator module from V∗. (Note that the
active session of (i, j, msg) is run by P (i,j,k′) for some k′.) Machine W ∗ does this as follows:
W ∗ invokes a new session with P (i,j,k), where k is a new index not used so far. We stress
that this invocation is used only by W ∗ and messages from it are never passed to V∗. Then,
after invoking P (i,j,k), machine W ∗ sends it the verifier’s determining message msg. Next,
W ∗ replays every message to P (i,j,k), as sent by V∗ in the active session of (i, j, msg), until
the current main message. Now, W ∗ is ready to use P (i,j,k) to check whether or not this
main message and authenticator module from V∗ will be accepted by the active session of
(i, j, msg).

Before showing how this is done by W ∗, we prove that P (i,j,k) accepts the current main
message and the corresponding authenticator if and only if P would have accepted it in the
active session of (i, j, msg). First, note that msg is a valid determining message for the session
with P (i,j,k) (even though V∗ sent it in a session with P (i,j,k′) for some k′ 6= k). This is
because the validity of msg can depend only on the prover initialization message, which in
turn depends only on the input xi and the random string ω

(1)
j . Since xi and ω

(1)
j are common

to both P (i,j,k) and the active session of (i, j, msg) (with P (i,j,k′)), we have that the prover
initialization message is the same in both cases. Given the above, we argue that a main
message and authenticator module is accepted by P (i,j,k) if and only if it is accepted by the
active session of (i, j, msg). This is because P (i,j,k) and the active session of (i, j, msg) use
the same randomness (i.e., ω

(1)
j ) for verifying the authenticator modules. Furthermore, the

authentication procedure of P depends only on this randomness, the verifier’s determining
message and the current main message. Therefore, these authenticator modules are accepted
by the active session of (i, j, msg) if and only if they are also accepted by P (i,j,k). This implies
that all the main messages and authenticator modules sent by W ∗ to P (i,j,k) are accepted
by P (i,j,k) (recall that these authenticator modules were previously accepted by the active
session of (i, j, msg)). We therefore conclude that at this point P (i,j,k) expects to receive a

21One may think that a possible solution to this problem is to first have W ∗ verify the authenticator module itself.
Then, if the authentication succeeds, W ∗ knows that the main message is valid. Therefore, W ∗ can forward this
message to P and continue with the authenticator module (after “rewinding” V∗ back to this point). The problem
that arises with such a strategy is that although W ∗ may accept the authenticator, this does not mean that P will.
(For example, V∗’s strategy may be such that the authenticator is accepted with probability 1/2. Then, even though
the main message is valid, W ∗ may accept the authenticator and P may reject it.) Furthermore, by the definition
of admissible protocols, we allow the authenticator module to be such that only P (with its randomness ω(1)) can
authenticate it. This means that W ∗ must use P in some way in order to verify the module, without aborting an
active session in the case that the authentication fails.

21



main message from V ∗ (and has not aborted), exactly as P in the active session of (i, j, msg).
Furthermore, if P (i,j,k) accepts the current main message and authenticator module from
V∗, then P in the active session of (i, j, msg) will also accept the current main message
authenticator module.

Thus, all W ∗ needs to do in order to check if the current main message and authenticator
module will be accepted by the active session of (i, j, msg) is to see if P (i,j,k) accepts them. So,
W ∗ continues by sending the current main message to P (i,j,k) and forwarding the messages
of the authenticator module between V∗ and P (i,j,k). Following this, W ∗ receives P (i,j,k)’s
response (which is either abort or the next prover message). We differentiate between two
cases:

(a) If P (i,j,k) aborts after completing the authentication, then W ∗ sends the standard abort
message to V∗. We stress that in this case no messages are sent to the active session of
(i, j, msg).

(b) If P (i,j,k) does not abort after completing the authentication, then we know that the
main message is valid and the accompanying authenticator module will be accepted in
the active session of (i, j, msg). We now distinguish two cases, depending on whether
this is the first time that an accepting main-message and authenticator of the current
round was sent in a session of V∗ with P(i,j), in which the determining message equals
msg. Let ` > 1 denote the index (within the current session) of the current message sent
by V∗.

i. The current session is the first session of V∗ with P(i,j) in which the determining
message equals msg and the `th verifier-message along with its authenticator module
is accepted by some P (i,j,·): In this case W ∗ forwards the current main message to
the active session of (i, j, msg). Then, W ∗ rewinds V∗ to the point after it sends the
main message (before beginning the authenticator module) and relays all messages
from the authenticator module between V∗ and the active session of (i, j, msg).
Finally, after completing the authenticator module, W ∗ obtains P ’s response (i.e.,
its response to the main message), stores it, and forwards it to V∗.
(As explained above, we are assured here that W ∗ obtains the next prover message
from the active session of (i, j, msg) and not abort.)

ii. The current session is not the first session of V∗ with P(i,j) in which the determin-
ing message equals msg and the `th verifier-message along with its authenticator is
accepted by some P (i,j,·): In this case W ∗ does not communicate with any session of
P . Instead, it merely retrieves the corresponding prover response from its storage,
and forwards it to V∗. (Here, W ∗ does not rewind V∗ and as such the next message
that V∗ expects to receive is indeed the prover’s response.) Note that this prover
response has already been stored in the history of the active session of (i, j, msg) by
the assumption on this case.22

(We remark that by Definition 4.1, it is infeasible for V∗ to send two different
main messages along with authenticator modules that are accepting in the same
round of two sessions starting with the same verifier determining message. Thus,
the responses of P(i,j) to valid `th messages, in sessions starting with the same

22We stress that it is also imperative in this case that W ∗ first verifies that P will accept the authenticator. This
is because it is possible that in the past V ∗ sent the same main message with an accepting authenticator and this
time V ∗ sends it with a rejecting authenticator. Therefore, were W ∗ to reply to V ∗ with the next prover message
without first checking if P accepts the authenticator, the simulation would no longer be accurate.
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determining message, are identical. It follows that V∗ will be content with the
identical responses supplied to it by W ∗.)

5. V∗ sends a message that belongs to an authenticator module: Messages of these dealt are dealt
with in item (4) above (authenticator modules always immediately follow main messages).

6. V∗ terminates: When V∗ sends a termination message, which includes its output, W ∗ just
outputs this message and halts.

We stress that W ∗ is defined to operate in the hybrid model. That is, in every session it invokes
with P , a different incarnation is used, and furthermore for every k the adversary W ∗ holds at
most one session with an incarnation of the form P (·,·,k). Thus the second part of P ’s random-tape
in this session is independent of the random-tape in all other sessions. In contrast, V∗ operates in
the (stronger) resettable model and may invoke each incarnation of P many times, and so the tape
ω(2) as determined (by the same incarnation of P) in these sessions is identical. Nevertheless, we
claim that the output of W ∗ is computationally indistinguishable from the output of V∗. The key
observations justifying this claim refer to the actions of P in the various sessions invoked by V∗:
• In sessions having different determining messages, the second parts of the random-tape (i.e.,

the ω(2) part) are independent. The same is true for sessions in which a different incarnation
P(i,j) is used. This is because P determines ω(2) by applying a random function on the triplet
(xi, ω

(1)
j , msg), where msg is the determining message. (Recall that for i 6= i′, the inputs xi and xi′

are distinct and thus for different incarnations of P, the random coins of ω(2) are independent.)
This explains the strategy of W ∗ in opening a new incarnation of P (i,j,k) whenever V ∗ sends a
new determining message (or invokes a new P(i,j)).

• In sessions having the same common-input, the same ω(1), and the same determining message,
the actions of P are essentially determined by the determining message. This is because in this
case P determines the same ω(2), and practically the only freedom of V∗ with respect to the
main messages is to choose whether to send a predetermined value or to abort. Thus, P2’s
responses (that are dependent only on ω(2) and V∗’s main messages) are also determined here.
We note that by the definition of admissible protocols, V∗’s lack of freedom in sending its main
messages holds even when V∗ can execute a resetting attack (and it therefore holds here, in the
hybrid setting, in which V∗ is emulated).

Therefore, the transcripts of all these sessions correspond to various (augmented) prefixes of
one predetermined transcript, where each prefix is either the complete transcript or a strict prefix
of it augmented by an abort message. This explains W ∗’s strategy of replaying the prover’s
response in the case that V ∗ repeats a main message in a session with the same determining
message.

The corresponding transcripts (of imaginary sessions with P) are generated by W ∗ by merely copy-
ing from real sessions it conducts with P . Each set of P(i,j)-sessions sharing the same determining
message, is generated from a single (distinct) session with P (called the active session of that
message). The way in which W ∗ detects and handles invalid main messages of V∗ (or likewise,
main messages with accompanying authenticator modules that fail) guarantees that it never aborts
an active session, and so such a session can always be extended (up-to completion) to allow the
generation of all P(i,j)-sessions sharing that determining message. We stress again that W ∗ does
not need to (and in fact does not) abort a session in order to produce P’s abort message; it merely
determines whether P aborts (and, if so, generates the standard abort message by itself).
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Finally, we note that if the original protocol (P, V ) is a system of arguments of knowledge, then
so too is the transformed protocol (P,V). This is because the extractor (of (P, V )) must work for
any P ∗, and in particular for a P ∗ that works as defined in the transformation. (Recall that V is
identical to V .)

Theorem 4.4 demonstrates that it suffices to construct witness-indistinguishable and zero-knowledge
protocols for the hybrid model. This is due to the fact that a protocol (P, V ) that is hZK, for ex-
ample, can be transformed via Construction 4.3 into a protocol (P,V) with the following property:
any verifier V∗ interacting with P in the resetting model can be “simulated” by a verifier W ∗ that
interacts with P in the hybrid model. Applying the assumption that (P, V ) is hZK, we obtain that
there exists a simulator M∗ for this W ∗ (and so also for V∗). In conclusion, we obtain the following
corollary:

Corollary 4.5 Let (P, V ) be an admissible proof system and let (P,V) be the proof system derived
from it by applying the transformation of Construction 4.3. If (P, V ) is hWI, then (P,V) is rWI.
Similarly, if (P, V ) is hZK, then (P,V) is rZK.

4.4 Discussion

The above proof of the transformation of hybrid protocols to resettable ones has some essential dif-
ferences to the analogous proof in [8]. In particular, unlike here, the authenticator of an admissible
protocol as defined in [8] is universally verifiable. Thus, in the emulation by W ∗, machine W ∗ is
able to verify itself whether or not P will accept a message from V∗. This also means that for every
session with P opened by V∗, machine W ∗ opens a single session with P . This is very different
from what we have done above, where W ∗ used P in order to verify authenticators (because it
cannot authenticate messages itself). Thus, W ∗ opens a new incarnation of P (i,j,·) for every main
message sent by V∗.

The motivation regarding the use of the hybrid model is also very different. In [8], the hybrid
model was introduced in order to overcome a technical difficulty; specifically, that known proof
systems start with the prover sending a message (this message is the receiver-message of a two-
round perfectly-hiding commitment scheme). However, the intuition underlying the transformation
(obtaining resettability) is to have the verifier send the first message that then determines all its
future messages. The hybrid model was thus introduced in order to allow a separate analysis of the
setting in which (only) the first prover message may be re-used (or “reset”). On the other hand,
our use of the hybrid model enables us to analyze the case that the prover may be reset during
the authentication of every main message (and where this authentication may be interactive and
dependent on the prover’s re-useable randomness).

5 rZK and rWI Arguments of Knowledge

In this section we will prove Theorem 1.2. We begin by proving (in Section 5.1) the first part
of the theorem; that is, the existence of constant-round rWI arguments of knowledge for NP.
We do this by constructing an admissible hWI argument of knowledge for NP and then applying
the transformation of Construction 4.3. Next, we prove the second part of the theorem; that is,
the existence of rZK arguments of knowledge. Our construction is based on a modification of the
Richardson-Kilian protocol [34] while using an admissible rWI argument of knowledge. By referring
to the analysis of [28], we obtain poly-logarithmic round complexity.
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We stress that our arguments of knowledge are according to Definition 2.2, where the extractor
is given access to the description of the prover’s strategy (and not just black-box access). As we
have mentioned, this additional information is essential for obtaining rWI or rZK arguments of
knowledge.

5.1 Resettable Witness Indistinguishable Arguments of Knowledge

We now present a rWI argument of knowledge for Hamiltonicity. The core of the protocol is the
3-round proof of Hamiltonicity of Blum [5] (see the Appendix). As in [23], we augment Blum’s
protocol23 by having the verifier initially commit to its query string (rather than choose it after the
prover’s commitment). Then, after receiving the prover’s commitments, the verifier reveals its query
string and “proves” to the prover that this is indeed the string that was committed to in the first
step of the protocol. In the protocol of [23], the verifier proves the consistency of the query string
with the initial commitment by simply decommitting. (The prover then continues as in Blum’s
protocol.) In contrast, in our protocol (below), the verifier proves the consistency of the query
string with a resettably-sound zero-knowledge argument. The zero-knowledge argument used must
be resettably-sound in order to protect the prover, who may be reset, against a cheating verifier.
(This technique of achieving simulation by proving the validity of the revealed value rather than
actually decommitting was introduced in [29].) Since the verifier is bound to its initial commitment
by the above argument, the fact that the protocol is hWI is shown in a similar manner to the proof
(shown in [8]) that the protocol of [23] is hWI. Then, using the transformation of Construction 4.3
we obtain a rWI protocol.

Indeed, the novelty of our protocol is that it is an argument of knowledge (for Hamiltonicity)
rather than merely an argument of membership. That is, we construct an extractor K who, given
access to the code of a prover P ∗, extracts a Hamiltonian cycle with probability negligibly close to
the probability that P ∗ convinces V . In general, the strategy for extraction from the basic proof of
Hamiltonicity (of Blum) involves obtaining the answer to two different query strings with respect
to the same set of prover commitments. The real resetting verifier is unable to do this since it
is bound to its queries by the initial commitment (otherwise, the protocol would clearly not be
witness indistinguishable). However, K has an advantage over the verifier in that it has access
to the code of P ∗. Therefore, K can run the (non black-box) simulator for the resettably-sound
zero-knowledge proof that asserts the validity of the decommitment. This enables K to cheat and
“decommit” to different query strings, thus extracting the Hamiltonian cycle.

As we have mentioned, we construct a hWI argument of knowledge here and then use the
transformation of Construction 4.3 to convert this into a rWI argument of knowledge.

Protocol 5.1 (hWI Argument of Knowledge for Hamiltonicity):

• Common Input: A directed graph G = (VG, EG), with n
def= |VG|.

• Auxiliary Input for P : a directed Hamiltonian Cycle, C ⊂ EG, in G.

• Fixed Randomness for P : ω = (ω1, ω2) ∈R {0, 1}2n.

• The Protocol:

1. V chooses a random query string q ∈R {0, 1}n and sends a perfectly-binding commitment
c = Commit(q) = C(q; r) to P .

23The reason we use Blum’s protocol rather than the 3-colorability protocol of [25] is that knowledge-extraction is
somewhat easier for this protocol.
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2. P selects n random permutations π1, . . . , πn over the vertices VG and sends the verifier V
(perfectly binding) commitments to the adjacency matrices of the resulting permuted graphs.
That is, for every i, P sends an n-by-n matrix of commitments so that the (πi(j), πi(k))’th
entry is a commitment to 1 if (j, k) ∈ EG, and is a commitment to 0 otherwise. Denote by
ci the commitment to the adjacency matrix of πi(G).
All the random choices in this step are determined by ω2.

3. V sends q to P (without decommitting).

4. V proves to P that there exists a string r such that c = C(q; r), using a resettably-sound
zero-knowledge proof system (i.e., V proves that q is the correct decommitment).
All the random choices of P in this step are determined by ω1.

5. If P accepts the proof (in Step 4), then it replies to the query string q = q1, . . . , qn as
follows. For every i,

• If qi = 0, then P sends πi along with all the decommitments to ci.

• If qi = 1, then P decommits to the n entries (πi(j), πi(k)) of ci for which (j, k) ∈ C.

6. For every i, 1 ≤ i ≤ n, V checks P ’s replies as follows.

• If qi = 0, then V checks that the revealed graph is isomorphic to G (with isomorphism
πi).

• If qi = 1, then V checks that all n revealed values equal 1 and that the corresponding
entries form a simple cycle of length n.

In both cases V also checks that the prover’s decommitments are proper.
V accepts if and only if all the above conditions hold.

Theorem 5.2 Protocol 5.1 is an admissible system of arguments of knowledge that is hWI.

Proof: Completeness is immediate. We therefore begin by showing that the protocol is sound as
an argument of knowledge (with respect to computationally bounded provers).

Lemma 5.3 (knowledge soundness with negligible error): There exists a probabilistic expected
polynomial-time knowledge extractor K such that for every probabilistic polynomial-time P ∗, every
polynomial p(·) and every sufficiently large graph G,

Pr[K(desc(P ∗), G) ∈ HAM(G)] > Pr[〈P ∗, V 〉(G) = accept]− 1
p(|G|)

where desc(P ∗) denotes the description of P ∗’s strategy and HAM(G) denotes the set of Hamiltonian
cycles in G.

Proof: The principle upon which the extraction is based is that if K obtains replies from P ∗ to two
different query strings (for the same series of permuted adjacency matrices), then the Hamiltonian
cycle can be retrieved. This is because for some i, the extractor K obtains πi(G), πi and a simple
cycle of length n in πi(G). Therefore, it is easy for K to compute a simple cycle of length n in
G itself. Typically, this strategy is achieved by rewinding P ∗ and sending different query strings.
However, notice that in Protocol 5.1, the query string is committed to before the prover commits
to the adjacency matrices. Thus, we must show how, despite this initial commitment, K is able to
obtain replies to different query strings. The key point is that K can cheat in the zero-knowledge
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proof of Step 4 by running the proof simulator. Then, due to the hiding property of the commitment
scheme, P ∗ cannot distinguish this behavior from the behavior of an honest verifier. Thus, K can
“decommit” in two different ways and obtain replies for different queries. As described above, this
enables K to reconstruct a Hamiltonian cycle in G.

The extractor K (upon input a description of P ∗ and the graph G) works as follows:

1. K chooses a uniformly distributed string R for the random tape of P ∗.

2. K chooses q ∈R {0, 1}n, computes c = Commit(q) = C(q; r) for a uniform r and (internally)
passes c to P ∗. K then receives a message from P ∗ which is denoted by c1, . . . , cn. Formally,
this is obtained by K computing P ∗(G,R, c), where P ∗(G,R,m) denotes the message sent
by P ∗ upon input G, random tape R and sequence of incoming messages m.

3. K chooses q′ ∈R {0, 1}n (independently of the above q) and sends q′ to P ∗. Furthermore,
K runs the zero-knowledge simulator for the proof given to P ∗ in Step 4, where the verifier
is defined by P ∗(G,R, c, q′).24 Denote the resulting transcript by tpf . (Note that since by
Theorem 3.4, the simulator for a resettably-sound zero-knowledge proof must be non black-
box, K needs non black-box access to P ∗ to implement this stage.)

4. K obtains P ∗’s decommitments by computing P ∗(G, R, c, q′, tpf ).

5. K verifies the answer according to V ’s instructions.

(a) If the verification fails, then K halts with output ⊥.

(b) If the verification succeeds, then K continues by repeating Steps 3–5 until another success
occurs. Denote the string for which the success occurs by q′′. (In each of these repetitions,
K uses independently chosen query strings, but the same randomness for the zero-
knowledge simulation; this technical point simplifies the analysis.)
If q′′ 6= q′, then extraction succeeds and K outputs the cycle C (as we have described, in
this case K has obtained π(G), π(C) and π, and so can derive C). On the other hand,
if q′′ = q′, then extraction fails and K outputs failure.

We first claim that the probability that K halts with output ⊥ is negligibly close to the probability
that V rejects a proof upon interaction with P ∗. That is:

Claim 5.4 For every probabilistic polynomial-time prover P ∗, every polynomial p(·) and every
sufficiently large graph G,

|Pr[〈P ∗, V 〉(G) = reject]− Pr[K(desc(P ∗), G) = ⊥]| < 1
p(|G|)

Proof: Notice the following two differences between a transcript generated by K (in Steps 1–4)
and the transcript of a real (P ∗, V ) execution:
• The query string q′ sent by K is independent of the value initially committed to.

• The zero-knowledge proof is simulated and not real.
24Notice that K does not follow the honest-verifier strategy here. This strategy simplifies the analysis because K

behaves the same way in the first iteration and in later rewindings (see step 5b below).
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Intuitively, despite these differences, the distribution of transcripts generated by K is computa-
tionally indistinguishable from transcripts resulting from real (P ∗, V ) executions. This is due to
the hiding property of the commitment scheme and the indistinguishability of simulated proofs
from real ones. Now, Protocol 5.1 is such that given the proof transcript one can easily derive the
verifier’s decision of whether to accept or reject the proof from P ∗. Thus the indistinguishability
of the transcripts implies that the probability that K outputs ⊥ (which occurs when P ∗ fails to
supply a convincing proof) is negligibly close to the probability that V rejects after interaction with
P ∗. (Otherwise, this could be used to distinguish the transcripts.) We now formally prove that the
transcripts in the above two scenarios are indeed indistinguishable. This proof is quite standard
and may be skipped with little loss.

First consider a hybrid, mental experiment in which the query string sent by K is indeed the
same string as that committed to initially, yet the zero-knowledge proof is simulated. We claim
that the transcript output in this hybrid experiment is computationally indistinguishable from the
transcript of a (P ∗, V ) execution. This is because the only difference between them is that in the
transcript output in the hybrid experiment, the zero-knowledge proof is simulated and not a real
proof. Therefore, indistinguishability is guaranteed by the zero-knowledge property of the proof;
specifically by the formulation of zero-knowledge with respect to auxiliary inputs.

Next, we claim that the transcript output in the hybrid experiment is indistinguishable from a
transcript output by K (where the only difference is regarding the value of the initial commitment).
Intuitively, this is due to the hiding property of the commitment scheme. Formally, if the transcripts
can be distinguished, then we can construct a distinguisher D for the commitment scheme in the
following sense. D generates two independent and uniformly distributed strings of length n: q0

and q1. Next, a bit b ∈R {0, 1} is chosen and D receives a commitment c, where c = Commit(qb),
and D’s goal is to attempt to guess b with probability non-negligibly greater than 1/2. In order
to do this, D simulates an interaction with P ∗ as follows (D internally incorporates P ∗ and works
similarly to K). First D (internally) passes P ∗ its challenge commitment c. Then, after receiving
P ∗’s reply (which should consist of commitments to adjacency matrices), it passes P ∗ the query
string q0 and runs the simulator for the zero-knowledge proof of Step 4 with P ∗ as the verifier.
Finally, D runs a distinguisher D′ on the resulting transcript, outputting whatever D′ does. Now,
consider the transcript resulting from D’s simulation. If b = 0 (i.e., c = Commit(q0)), then the
transcript has exactly the same distribution as a transcript from the hybrid experiment. On the
other hand, if b = 1 (i.e., c = Commit(q1)), then the transcript has exactly the same distribution
as a transcript output by K. We conclude that if there exists a D′ who, with non-negligible
probability, can distinguish transcripts from the hybrid experiment from transcripts output by K,
then D can distinguish the commitments with non-negligible probability. By combining the above,
we conclude that the distribution of transcripts output by K is computationally indistinguishable
from the distribution of transcripts resulting from (P ∗, V ) executions.

Having bounded the probability that K outputs ⊥, we now bound the probability that it fails.
That is,

Claim 5.5 For every probabilistic polynomial-time prover P ∗ and every graph G over n nodes,

Pr[K(desc(P ∗), G) = failure] =
1
2n

Proof: Recall that K outputs failure in the event that it reaches Step 5 and upon the conclusion of
the repeated iterations of steps 3–5, it turns out that q′′ = q′. Let R′ denote the (fixed) coins used
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by K in the simulation of the zero-knowledge proof given to P ∗ in every repetition of Step 3, and
let pR,R′ denote the probability (over the random choices of K in the repetitions) that K accepts
the proof from P ∗ in any given repetition of steps 3–5 (recall that the coins of P ∗ are fixed to R for
all repetitions). Notice that in these repetitions, the only randomness used by K is in the choice of
the n-bit query string q′ that it hands to P ∗. Therefore, the probability pR,R′ that K accepts the
proof depends only on the choice of the query string q′. This means that there are exactly pR,R′ ·2n

different strings q′ for which K accepts the proof from P ∗. This implies that the probability that
q′′ = q′ equals 1/pR,R′ · 2n (because K halts the repetitions the first time that it accepts the proof
and so the probability that the string q′′ causing it to halt is exactly q′ is 1/pR,R′ · 2n).

Since the probability that K outputs failure equals the probability that K accepts the proof
from P ∗ in the first execution of steps 3–5 times the probability that q′′ = q′, we have that K
outputs failure with probability pR,R′ · 1

pR,R′ ·2n = 2−n. (Note that these events are independent
because the query string q′′ is chosen uniformly at random and independently of previous events.)

We have shown that K outputs failure with probability 2−n. Furthermore, we have shown that
the probability that K outputs ⊥ is negligibly close to the probability that V rejects. Finally,
notice that if K does not output failure and does not output ⊥, then this means that it outputs
a Hamiltonian cycle. Therefore, by combining Claims 5.4 and 5.5, we have that the probability
that K extracts a Hamiltonian cycle is negligibly close to the probability that V accepts in an
interaction with P ∗.

It remains to show that K runs in expected polynomial-time. Recall that the extraction works
by running the protocol (with the simulated proof and independent query string) once and then
in case the first execution was accepting, the exact same steps are repeated until another success
occurs. Now, each repetition of Steps 3–5 involves a polynomial number of steps plus a single
invocation of the (resettably-sound) zero-knowledge simulator. Recall that the random coins R′

used by the simulator are fixed and that the running-time depends only on this R′. (We note that
the running-time does not depend on P ∗’s random coins R. This is because they are previously
fixed and the simulator must work for any verifier, in particular for a verifier with fixed random
coins.) We thus denote by tR′ the (exact) running-time of the simulator when its random coins
equal R′. Therefore, the expected running-time of the extractor is:

∑

R′

1
2|R′|

(
1 + pR,R′ · 1

pR,R′

)
(poly(n) + tR′) = poly(n) +

1
2|R′|

∑

R′
tR′

where pR,R′ equals the probability (over K’s coin tosses with the coins of the simulator fixed to
R′) that the verification of the proof received by K from P ∗ is successful, and the poly(n) factor
includes all steps of K excluding the simulation of the zero-knowledge proof. Since the simulator
is expected polynomial-time, we have that the overall expected running-time of the extractor is
polynomial, as required.

Having established that Protocol 5.1 is a system of arguments of knowledge, we proceed to show
that it is hWI.

Lemma 5.6 (hybrid witness indistinguishability): Protocol 5.1 is an admissible system of argu-
ments that is hWI.

Proof: It is easy to verify that Protocol 5.1 is admissible: the first message sent by the verifier
(i.e., in Step 1) is a commitment to its query string that is later sent in Step 3 (this first message is
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thus the determining message). There is only one main message sent by V (i.e., in Step 3) and one
accompanying authenticator module (Step 4). By the resettable-soundness of the zero-knowledge
argument of Step 4, we have that except with negligible probability, in two executions with the
same determining message, V cannot send two different messages in Step 3 such that P accepts
both. (We stress that due to the resettable soundness of the zero-knowledge argument, this holds
even when V can execute a resetting-attack on P .) Finally, we note that syntactically P fulfills the
requirements of an admissible protocol. That is, P indeed consists of two parts, where P1 controls
Steps 4 and 5 and uses randomness ω1, and P2 controls Steps 2 and 5 and uses randomness ω2.
Furthermore, P2 computes its response (of Step 5) based only on the main message sent by V in
Step 3.

Next, notice that Protocol 5.1 is zero-knowledge in a stand-alone setting. This can be shown
using almost the same argument as in [23]. (In fact the only difference is that in [23] the verifier
decommits to its query string, whereas here it proves that its decommitment is correct. Thus, there
is at most a negligible difference.) Thus, it follows that Protocol 5.1 is witness indistinguishable in
the concurrent setting (cf. [14]). However, we need to show that it is witness indistinguishable in
the hybrid model. Denote the randomness used by P in generating the commitments in Step 2 by
ω2 and the randomness used by P in verifying the zero-knowledge proof of Step 4 by ω1. Then,
the extra power of the adversary in the hybrid model is to invoke sessions with the same (random)
value of ω1. (Recall that in the hybrid model, V ∗ may invoke different incarnations of P , using the
same randomness for the prover initialization message and for the verification of the authenticator
modules.) However, P only uses the random string ω1 for verifying a resettably-sound proof.
Therefore, soundness holds even when ω1 is reused in a polynomial number of different sessions.
(Note that here we need the adaptive version of soundness where the statements are not chosen by
the adversary ahead of time, but are rather selected on the fly.) This means that if we limit V ∗’s
view to the messages outside of this zero-knowledge argument, then there is at most a negligible
difference between V ∗’s view in the concurrent and hybrid models. Therefore, Protocol 5.1 remains
witness indistinguishable in the hybrid model. This completes the proof.

Combining Lemmas 5.3 and 5.6, we complete the proof of Theorem 5.2.

By applying the transformation of Theorem 4.4 to Protocol 5.1 (proven in Theorem 5.2 to be
witness-indistinguishable in the hybrid model), and noting that all the primitives can be constructed
from collision-resistant hash functions, we obtain the following Corollary:

Corollary 5.7 Assuming the existence of collision-resistant hash functions, there exists a system
of resettable witness-indistinguishable arguments of knowledge for any NP-language.

5.2 Deriving rZK arguments of knowledge for NP
Part 2 of Theorem 1.2 is proved by applying Construction 4.3 to an admissible (as per Definition 4.1)
argument of knowledge forNP that is zero-knowledge in the hybrid model (of Definition 4.2). Thus,
we need to assert the existence of such a protocol.

Proposition 5.8 Suppose that there exist collision-resistant hash functions, and two-round perfectly-
hiding commitment schemes. Then, every NP-relation has an admissible argument of knowledge
that is zero-knowledge in the hybrid model. Furthermore, the round complexity of this protocol is
poly-logarithmic.

Combining Theorem 4.4 and Proposition 5.8, Part 2 of Theorem 1.2 follows. Since the proof of this
proposition is almost identical to [8], we provide only a very brief sketch.
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Proof Sketch: We show that the concurrent zero-knowledge proof system of Richardson and
Kilian [34] (with a setting of parameters as in [28]) can be modified so that the resulting protocol
satisfies all requirements. Recall that the Richardson and Kilian protocol, hereafter referred to as
the RK-protocol, consists of two stages with Stage 2 being any witness-indistinguishable proof (or
argument) system applied to a statement defined by Stage 1. The modification is analogous to
the one presented in [8]: As in [8], we use an admissible witness-indistinguishable (WI) protocol in
Stage 2, and the modification amounts to moving the first (i.e., determining) verifier message of the
WI protocol to the very beginning of the entire protocol. A key difference from [8] is that we use
our (constant-round) witness-indistinguishable argument of knowledge (i.e., Protocol 5.1), rather
than using the witness-indistinguishable proof of [23] (or its admissible version derived in [8]). We
stress that in contrast to the protocol of [23], which is unlikely to be an argument of knowledge,
Protocol 5.1 is an argument of knowledge. Furthermore, like the protocol of [23], Protocol 5.1 is
admissible and is witness-indistinguishable in the hybrid model. Thus, the proposition is obtained
by verifying the following:

1. The modified protocol is an argument of knowledge (for the same relation as the original one).

The key point is to notice that before modification the above protocol is an argument of
knowledge (and not merely an argument for membership in the language). This fact follows
from the soundness proof of the RK-protocol which guarantees that, with overwhelming
probability, in real executions the only possible NP-witness for the statement proven (by the
WI argument of knowledge) in Stage 2 is an NP-witness for the common input. Thus, using
the knowledge-extractor for the WI argument of knowledge (executed in Stage 2), we can
obtain the desired NP-witness.

To show that the modified protocol remains an argument of knowledge we observe that the
prover gains nothing by the modification. This is the case because the message that we are
discussing is a perfectly-hiding commitment (which anyhow yields no knowledge to the prover,
and this fact is used anyhow in the soundness proof of the RK-protocol).

2. The modified protocol is admissible and is zero-knowledge in the hybrid model.

Recall that the verifier’s first message in the modified protocol consists of two strings, the
first being the first message of Stage 1 and the second being the first message of Stage 2 in the
original (unmodified protocol). The determining feature of the first string (w.r.t Stage 1) is
proven exactly as in [8], whereas the determining feature of the second string (w.r.t Stage 2) is
proven as in Lemma 5.6. The modified protocol is clearly concurrent zero-knowledge (because
we have only weakened the cheating verifier by the modification), and the fact that it is zero-
knowledge in the hybrid model is proven analogously to the proof in [8]. (Note that the
simulation strategy of [8] does not depend at all on the specific witness indistinguishable
proof that is used. Therefore, replacing it with ours makes no difference.)

The proposition follows. A full proof can be derived by reproducing the relevant proof of [8] with
the adequate changes.

6 Resettable Zero-Knowledge in the Public-Key Model

Canetti et al. [8] introduced a weak notion of a public-key setup, in order to obtain constant-
round resettable zero-knowledge arguments (a somewhat stronger assumption was independently
suggested by Damg̊ard [10]). The only requirement in this public-key model is that all verifiers
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deposit some public-key in a public file before the prover begins any interaction. We stress that
there is no requirement whatsoever on the “validity” of the public keys deposited. The use of
the public-file is simply to limit the number of different identities that a potential adversary may
assume (note that the adversary may try to impersonate any registered user, but it cannot act on
behalf of a non-registered user). For a more detailed description of the public-key model, see [8].

Constant-round resettable zero-knowledge arguments were presented in this model in [8, 31].
However, these constructions require a subexponential hardness assumption. In this section, we
present a constant-round resettable zero-knowledge argument of knowledge (in the public-key
model) under seemingly weaker assumptions. Specifically, our construction requires the existence
of one-way functions and resettably-sound zero-knowledge arguments, where the latter follows from
the existence of a family of hash functions that are collision-intractable for polynomial-size circuits.
Our protocol and its proof are also much simpler than that of [8, 31]. Furthermore, our argument is
an argument of knowledge. Thus, we extend the possibility of obtaining resettable zero-knowledge
arguments of knowledge to constant-round protocols in the public-key model as well.

6.1 Definition

Micali and Reyzin [32] showed that the notion of soundness in the public-key model is delicate and
specifically that it is not enough to consider a single execution. In fact, they define four (separate)
levels of soundness: one-time soundness, sequential soundness, concurrent soundness and resettable
soundness. Each of these notions refers to an adversarial prover’s power when interacting with an
honest verifier. That is, for sequential soundness, we say that a protocol is sequentially sound if
a cheating prover P ∗ cannot convince the verifier V of a false statement even after a polynomial
number of sequential executions. (We stress that P ∗ can adaptively choose the statements to
be proven.) Concurrent soundness is defined similarly for concurrent executions of P ∗ with V .
(Resettable-soundness concurs with Definition 3.1 when adapted to the public-key model.)

The protocol that we present fulfills sequential soundness but is probably not concurrently
sound.25 We now proceed by defining sequentially-sound resettable zero-knowledge.

Definition 6.1 (sequential soundness in the public-key model): A sequential attack of a cheating
prover P ∗ on a verifier V in the public-key model is defined by the follow two-step random process,
indexed by a security parameter n.

1. Run the key-generation stage of V to obtain (PK, V K).

2. On input 1n and PK, machine P ∗ is allowed to initiate poly(n)-many interactions with V .
The activity of P ∗ proceeds in rounds. In round i, the machine P ∗ chooses xi ∈ {0, 1}n and
interacts with V on input SK and xi. We stress that the actions of P ∗ in round i may depend
on PK (as well as the history of previous rounds).

Let P and V be some pair of probabilistic polynomial-time interactive machines. We say that
(P, V ) is a sequentially-sound system of arguments in the public-key model for a language L, if it is
complete26 and for every polynomial-size P ∗ executing a sequential attack on V , the probability that
there exists an i such V accepts in the i’th round and xi 6∈ L is negligible.

25We note that, in practice, this means that a verifier must not open more that one session at a time. This is a
significant limitation and it means that although resettable zero-knowledge implies concurrent zero-knowledge with
respect to the prover’s security, it does not necessarily imply that the verifier is protected in a concurrent setting.
We stress that this problem only arises in the public-key model and is due to the dependence of different sessions
induced by a common (verifier) public-key.

26That is, for every x ∈ L, the verifier V outputs accept after interacting with P .
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Naturally, a system of arguments (in the public-key model) is said to be sequentially-sound resettable
zero-knowledge if it is both sequentially-sound and resettable zero-knowledge.

6.2 The Protocol

Similarly to the public-key protocol of [8], in the first stage of our protocol the verifier proves a
zero-knowledge argument of knowledge of the secret-key associated to its public-key (in the public
file). The nature of the public-key is such that simulation is made “easy” (without any necessity for
rewinding) if the associated secret-key is known. Therefore, simulation proceeds by first extracting
the secret-key and then completing the simulation (without any rewinding). As in [8], the role of
the public file is to prevent the adversary from using “too many” public keys. We note, however,
that (for reasons to be discussed below) the second stage of our protocol is completely different
from the protocol of [8]. Despite this difference, both protocols share the property that the “hard
part” of the simulation is extracting the secret-key and the “easy part” is simulating the second
stage, given the secret key. Another important difference between our protocol and the protocol
of [8] relates to the argument of knowledge used by the verifier in the first stage. We use a
resettably-sound zero-knowledge argument of knowledge, whereas they rely on a (resettably-sound)
proof system that can be simulated in subexponential time. This difference expresses itself in
the proof of soundness, and is one of the reasons why we get away with a weaker intractability
assumption (while using a simpler proof of soundness). The other reason is that our protocol
avoids issues related to the malleability of commitment schemes (which are resolved in [8] by using
a subexponential intractability assumption). We now briefly describe the protocol. The verifier’s
public-key consists of a commitment to a pseudorandom function. In the first stage of the protocol,
the verifier provides a zero-knowledge argument of knowledge that it knows the decommitment.
(Since the prover is resettable and plays the verifier in this subprotocol, the argument used must
be resettably-sound.) In the second stage of the protocol, the prover proves that the common input
G is Hamiltonian by running the basic proof of Hamiltonicity in parallel. However, the verifier
must be prevented from obtaining answers to more than one query for a single series of prover
commitments. (Otherwise, a cheating verifier can extract a cycle by resetting P .) This is achieved
by having the verifier choose its queries by applying the pseudorandom function, committed to
in the public-key, to the prover’s commitments. In order to prevent the verifier from cheating, it
continues by proving that it indeed computed the query correctly, where like before, the proof used
is a resettably-sound zero-knowledge argument.27 Notice that in essence, the verifier’s query string
is determined by its public-key and the prover’s set of commitments. Intuitively, this prevents a
cheating verifier from gaining anything in a resetting attack. We note that given the pseudorandom
function, the simulator can generate commitments that it can answer (without accessing the verifier
V ∗). Thus, the key point in the simulation is showing that the pseudorandom function can be
extracted. Having discussed the simulation strategy, we now briefly mention an important point
regarding soundness. The verifier V ’s instructions in our protocol ensure that V never applies the
pseudorandom function to the same value twice (even if the prover tries to prove the same theorem
twice and uses the same commitments in the second stage). Therefore, the verifier’s queries as
determined by the pseudorandom function are indistinguishable from the case that the verifier
chooses its queries at random (and independently of other sessions).

27If we had used a Verifiable Pseudorandom Function [30] then this second resettably-sound zero-knowledge ar-
gument would not have been needed. But since the first resettably-sound zero-knowledge argument of knowledge
cannot be avoided (even for VRFs), there is no point in using this stronger primitive here.
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Notation: Let {fs}s∈{0,1}n be a pseudorandom function ensemble.

The public key: Let V be a verifier with identifier id. Then, its public-key (denoted PKid),
consists of a perfectly-binding commitment to a random n-bit string (to be used as a seed to the
pseudorandom function). That is, PKid = c where c = C(s; r). The associated secret key (denoted
SKid) consists of the pair (s, r).

Protocol 6.2 (rZK Argument of Knowledge of Hamiltonicity):

• Common Input: A directed graph G = (VG, EG) with n
def= |VG|, and a public-file F consisting

of pairs (id, PKid).

• Auxiliary Input for V (with identity id): the secret-key SKid.

• Auxiliary Input for P : a directed Hamiltonian Cycle, C ⊂ EG, in G.

• Fixed Randomness for P : ω = (ω1, ω2, ω3) ∈R {0, 1}3n.

• Stage 0: V Sends a Unique Session Identifier: V chooses a random string R ∈R {0, 1}n (to be
used as a unique session identifier) and sends it to P , along with its identity id.

• Stage 1: V Proves Knowledge of SKid

V and P run a resettably-sound zero-knowledge argument of knowledge in which V
proves that it knows (s, r) such that c = C(s; r). The randomness used by P when it
plays the verifier equals ω1.

• Stage 2: P Proves that G is Hamiltonian.

1. P selects n (“random”) permutations π1, . . . , πn of the vertices VG and sends the verifier V
(perfectly binding) commitments to the adjacency matrices of the resulting permuted graphs.
That is, P sends an n-by-n matrix of commitments so that the (πi(j), πi(k))’th entry is a
commitment to 1 if (j, k) ∈ E and is a commitment to 0 otherwise. Denote by Ci the
matrix of commitments corresponding to the adjacency matrix of πi(G).
The randomness for choosing the permutation and computing the commitments is obtained
by applying a pseudorandom function, keyed by ω2, to G and the verifier’s public-key PKid.

2. For every i (1 ≤ i ≤ n), V chooses a query bit by computing qi = fs(R, Ci, i) (recall that s
is the string committed to in the public file and R is the random session-identifier chosen
by V in Stage 0). V sends q

def= q1 · · · qn to P .28

3. V proves to P that it chose the queries correctly. That is, it proves that

∃(s, r) s.t. c = C(s; r) and for every i, qi = fs(R, Ci, i)

using a resettably-sound zero-knowledge proof system. The randomness used by P when it
plays the verifier equals ω3.

28The reason that V also applies the pseudorandom function to R is to ensure that the queries in different sessions
are (computationally) independent of each other. We note that if we do not include this session-identifier in the
computation of the queries, then the protocol is not sequentially-sound. This is because a cheating prover may
exploit the fact that he has learned values of fs(·) in previous sessions in order to cheat in the current session. By
including R in the computation of qi, we have that the values of fs(·) from previous sessions are computationally
independent of the its values in the current session. (Recall that in proving soundness we consider an honest verifier.
Therefore, with overwhelming probability, the session-identifiers of different sessions are different.)

We also note the reason why the index i is included in the computation of the pseudorandom function. This is to
prevent the verifier from replying with the same query bit in the case that the prover sends the same commitment n
times. Otherwise, the prover could successfully cheat with probability 1/2.
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4. If P accepts the proof, then it replies to the queries qi (for every 1 ≤ i ≤ n) as follows.

• If qi = 0, then P sends πi along with the decommitments to the matrix Ci.

• If qi = 1, then P decommits to the entries (πi(j), πi(k)) of the matrix Ci with (j, k) ∈ C.

5. For every i, 1 ≤ i ≤ n, V checks P ’s replies as follows.

• If qi = 0, then V checks that the revealed graph is isomorphic to G (with isomorphism
πi).

• If qi = 1, then V checks that all revealed values are 1 and that the corresponding entries
form a simple n-cycle.

In both cases V also checks that the decommitments supplied by P are proper.
V accepts if and only if all the above conditions hold.

Theorem 6.3 Protocol 6.2 is a sequentially-sound system of rZK arguments in the public-key
model.

Proof: It is easy to see that the protocol is complete (i.e., if the graph is Hamiltonian and both P
and V are honest, then V always accepts). We continue by showing that the protocol is sequentially
sound (with respect to arbitrary polynomial-size provers).

Sequential Soundness: The differences between the above protocol and the (parallelized) basic
proof of Hamiltonicity is that V uses a pseudorandom function to choose its queries, and provides
two zero-knowledge proofs related to this pseudorandom function. Intuitively, since the function
used by V to choose its queries is pseudorandom and V never applies the function to the same
value twice, P ∗ cannot distinguish these choices from the behavior of a verifier in the basic proof
of Hamiltonicity (who chooses its queries independently and at random). (The fact that V never
applies the function to the same value twice is guaranteed by having V include the random session-
identifier and the index i of the commitment in the computation of the query.) Furthermore, the
zero-knowledge proofs are simulatable and thus cannot help P ∗ learn anything about the pseudo-
random function. Therefore the soundness of the proof system can be reduced to the soundness
of the parallelized basic proof of Hamiltonicity (for which soundness is known to hold). We now
proceed with the formal proof.

Assume by contradiction that there exists a (deterministic) polynomial-size P ∗ executing a sequential-
attack on V , such that with non-negligible probability, in one of the rounds the common-input is
a graph G that is not Hamiltonian and yet V outputs accept. Then, we show how to use P ∗

to contradict the sequential soundness of the basic parallel proof of Hamiltonicity in the standard
model (i.e., where there is no public-key). Specifically, we show how to construct a cheating prover
P ∗∗, who executes an analogous sequential attack in the standard model and with non-negligible
probability succeeds in convincing a verifier Vbasic that G is Hamiltonian, where Vbasic is the verifier
specified by the parallelized version of the basic proof of Hamiltonicity. (We note that sequential
soundness in the standard model follows immediately from “one-time” soundness.)

We now define a prover P ∗∗ for the parallel version of the basic proof of Hamiltonicity. P ∗∗ internally
incorporates P ∗ and uses P ∗ to cheat in its interaction with Vbasic. This is done by having P ∗∗ create
an interface between P ∗ (who works according to Protocol 6.2) and Vbasic (who works according
the parallel basic proof of Hamiltonicity), such that each side sees only the messages it expects to
see. Thus, P ∗∗ emulates the verifier messages of Protocol 6.2 that do not belong to the basic proof
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of Hamiltonicity (this actually includes all messages except for the string of queries q = q1 · · · qn).
Furthermore, P ∗∗ only forwards to Vbasic messages belonging to the basic proof of Hamiltonicity.

We note that P ∗∗ internally incorporates P ∗ and thus has both “internal”, emulated communi-
cation with P ∗ and real (external) communication with a verifier Vbasic. The prover P ∗ is a function
of the public-file, the input graph and the series of incoming messages received by P ∗ during a pro-
tocol execution. Thus, formally, P ∗∗ obtains P ∗’s next message by computing P ∗(F, h, G,m) where
F is the public-file, h some history transcript (representing messages from previous sessions of the
sequential attack), G the current statement being proven and m a series of incoming messages to
P ∗.29 P ∗∗ works as follows:
• Initialization: P ∗∗ chooses a random seed s and computes pk = Commit(s). The commitment

pk is then used by P ∗∗ as a public-key PKid for the simulated interface with P ∗. That is, P ∗∗

defines a public file F = {(id, pk)}.30

• Let hi denote the history of messages received by P ∗ until the i’th round – in the first iteration
h1 is empty. Then, for every round of the sequential attack executed by P ∗∗:

1. P ∗∗ obtains the statement Gi to be proven by P ∗ in this round and forwards it to Vbasic.
Formally, P ∗∗ obtains Gi by computing P ∗(F, hi).

2. Emulating Stage 0, P ∗∗ sends a random string Ri ∈R {0, 1}n to P ∗.

3. P ∗∗ (internally) plays V ’s role in Stage 1 and proves the resettably-sound zero-knowledge
argument of knowledge of the decommitment of pk, with P ∗(F, hi, Gi, Ri) as the verifier.
P ∗∗ can do this because it indeed knows the decommitment for pk in F . Denote the
resulting transcript by tpok. (We stress that this proof is not simulated but is properly
executed by P ∗∗.)

4. Entering the emulation of Stage 2, P ∗∗ (internally) obtains a message from P ∗ and forwards
it to Vbasic (this message “should” consist of commitments to n adjacency matrices).

5. P ∗∗ then receives an n-bit string from Vbasic, denoted q.

6. P ∗∗ runs the zero-knowledge simulator for the zero-knowledge proof of Step 3 in Stage 2
where the verifier is defined by P ∗(F, hi, Gi, Ri, tpok, q). (I.e., here P ∗ simulates V ’s role in
Step 3 of Stage 2.) Denote the resulting transcript by tpf .

7. Finally, P ∗∗ (internally) obtains a message from P ∗ and forwards it to Vbasic (this message
should consist of answers to the query string q).
Set hi+1 = (hi, Gi, Ri, tpok, q, tpf ).

We note the following differences between P ∗’s view in a real execution with V and its view in the
interface provide by P ∗∗ in its interaction with Vbasic (from here on, we refer to this interface by
“the emulation by P ∗∗”):
• In the emulation by P ∗∗, the query string in every round is uniformly chosen (by Vbasic), rather

than being computed by qi = fs(Ri, Ci, i).

• In the emulation by P ∗∗, the zero-knowledge proof in Stage 2 is simulated rather than real.
Intuitively, despite the above two differences, P ∗’s view in a real execution with V is computation-
ally indistinguishable from its view in the simulation by P ∗∗. These views are indistinguishable

29We note that some of this is redundant as by the definition of a sequential attack, P ∗ chooses G on the basis of
F and h. However, we include it explicitly for the sake of clarity.

30For simplicity, we assume that the public file contains a single identity. This is without loss of generality since
the public-keys are independent of each other. Therefore, if there exists a cheating prover who succeeds when there
are many public-keys, then there also exists a cheating prover who succeeds when there is just one.
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due to the pseudorandomness of the function used to compute verifier queries and due to the in-
distinguishability of transcripts of real and simulated proofs. Since P ∗’s view implicitly includes
the verifier’s accept or reject decision, and the decision to accept depends solely on the messages
from the basic proof of Hamiltonicity, we have that Vbasic accepts in its execution with P ∗∗ with
negligibly close probability to V in its execution with P ∗. By the sequential soundness of the
parallel proof of Hamiltonicity, we obtain a contradiction. We now formally show that P ∗’s view
is indeed indistinguishable in the above two scenarios.

First consider a hybrid, mental experiment, where the query string is chosen by computing
qi = fs(Ri, Ci, i) (as in the real execution), yet the proof of Stage 2 is simulated (as in the emulation
by P ∗∗). P ∗’s view in the mental experiment is indistinguishable from the real execution by the
indistinguishability of simulated proofs for auxiliary input zero-knowledge. (Actually, we replace
here polynomial many proofs by simulated ones. Thus, formally we need to consider a hybrid
argument for this. This argument is, however, standard and is therefore omitted here.)

On the other hand, we show that the mental experiment (in which the query string is chosen
according to the protocol definition) is indistinguishable from the emulation by P ∗∗ (in which
the queries are chosen uniformly at random). There are two key points to take note of here.
First, the function fs(·) is pseudorandom even to a distinguisher given pk = Commit(s) and a
zero-knowledge proof of knowledge of the decommitment of pk.31 Second, notice that except with
negligible probability, the pseudorandom function is always applied to distinct values. This is due to
the random session identifier Ri that is sent in the beginning of every round and the fact that even
if the prover sends the same commitment more than once in the same round, each commitment is
associated with a unique index that is included in the computation of fs(·). Therefore, we have that,
except with negligible probability, the honest verifier never computes fs(·) twice at the same point.
Thus, P ∗ cannot distinguish between the case that fs(·) is used and the case that independent
queries are chosen each time (which is equivalent to the case that a random function is used since
the function is always applied to distinct values). In other words, P ∗ cannot distinguish between
the case that it interacts in the mental experiment and the case that it interacts with P ∗∗ and
Vbasic.

By combining the above we have that P ∗’s view in a real execution with V is indistinguishable
from its view in the interface provided by P ∗∗ in the interaction with Vbasic. Thus the probability
that P ∗∗ succeeds in convincing Vbasic of a false statement in the basic proof of Hamiltonicity
is negligibly close to the probability that P ∗ succeeds in convincing V of a false statement in
Protocol 6.2. This completes the proof of soundness.

Resettable Zero-Knowledge: First, consider a stand alone execution of the above protocol
(rather than an execution in a resettable setting). A simulation would proceed as follows. The
simulator, given access to the verifier (black box manner would suffice here), extracts in Stage 1
SKid. This is possible because Stage 1 is a argument of knowledge of SKid (from verifier to
prover). This gives the simulator the seed s (contained in SKid) for the pseudorandom function
fs to subsequently be used by the verifier to specify his queries in this session. Once extraction
is completed, S proceeds to generate a sequence of commitments that it can open as required by
the verifier (assuming that the verifier’s queries are as prescribed in the protocol; i.e., are obtained

31This is shown by first simulating the zero-knowledge argument of knowledge. Then it is shown that a distinguisher
for fs(·) can be used to distinguish a commitment to s from a commitment to s′ (where s and s′ are two independently
chosen random seeds). This is because if pk = Commit(s′) then fs(·) is pseudorandom (as the commitment is
independent of fs(·)). Thus, if a distinguisher could distinguish fs(·) from a random function when pk = Commit(s),
then we would obtain an algorithm for distinguishing commitments to s from commitments to s′.
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by applying the pseudorandom function to the corresponding commitments). The simulator S
initializes empty lists Q and C, and proceeds in n steps: For i = 1 to n, the simulator chooses
at random qi ∈ {0, 1}. If qi = 0, then S chooses at random a permutation of the vertices πi, and
prepares a perfectly binding commitment of an adjacency matrix of the graph permuted according
to π. Otherwise (i.e., qi = 1), S chooses at random cycle of n vertices and prepares a a perfectly
binding commitment of an n by n matrix in which all entries are 0 except for those entries on
the random cycle chosen. Let us denote the commitment prepared by ci. After this preparation,
S computes q′i = fs(R, ci, i). If q′i = qi, then S augments the lists of commitments it can handle
(i.e., sets C = C, ci and Q = Q, qi), and goes on to iteration i + 1, else S goes back and chooses
another qi. (The expected number of times each iteration is repeated is ≈ 2.) Next, S sends C
to V , and expects to receive back a sequence of queries Q′ ∈ {0, 1}n (which is expected to equal
Q). At this point, V is expected to prove in resettably-sound (zero-knowledge) fashion that indeed
Q′ was computed correctly by applying the pseudorandom function committed to in the public file
which corresponds to SKid. The simulator S, plays here the role of P in the real protocol in the
same way that P would (taking no advantage of his knowledge of s or of Q). Finally, if S accepts
the proof of V (as P would have), then S needs to reply to the queries about C specified by Q′.
However, if Q = Q′ (which happens with high probability, otherwise the proof above would fail
with high probability) then S is able to supply the answers V is expecting regarding C.

Now, what happens in a resettable setting? Note that the main change in the above argu-
ment needed pertains to the simulator’s extraction of SKid from the POK32 of Stage 1 (another
point to note is that the fact that the “correct behavior” proof given by the verifier in Stage 2
is resettably-sound and thus remains valid also in case the verifier can reset P ). Once SKid is
extracted successfully, the rest of the simulation will follow exactly as above.

The way we extract SKid from the POK of Stage 1 executed in a resettable setting generalizes
the way an analogous task is performed in the public-key model protocol of [8]. All that is needed
is to generalize the description in [8], which refers to a specific POK (of Stage 1) to an arbitrary
(resettably-sound POK).

We now focus on the extraction of SKid in Stage 1, in a resettable setting. What complicates
matter is that it is not a single key that need be extracted but many secret keys as for each verifier
there are many possible public-keys (or identity’s) id1, id2, ..., idi, ... (and their corresponding secret
keys SKid1 , ..., SKidi ,...) from which the verifier picks one at Stage 0 of a session. Once a particular
key SKid is extracted, all sessions using this key can be simulated with no problem.

Let LIST (initialized to be empty) contain all the id’s for which the simulator already extracted
SKid. Define pLIST

idi
to be the probability (taken over the coin tosses of P and V ) that, among all

the id’s not in LIST , the identity to be used in the first session for which V gets through a complete
run of Stage 1, is idi. Note that for any LIST , the sum of pLIST

idi
’s is at most 1, but may be much

smaller (if the probability that no session with identity out of LIST gets through a complete run
of Stage 1 is large). If for a fixed value of LIST , for all i such that idi not in LIST , the probability
pLIST

idi
is negligible, then it is easy for S to simulate an entire run of the resettable protocol due to

the following observations.

• All the actions of P during the Stage 1 POK are independent of P ’s additional knowledge of
the witness of x ∈ L (which P knows but S doesn’t) and can be preformed by S exactly as
P would do them. Thus, as long as V does not run Stage 1 to completion (say he aborts)
and goes on to Stage 2, a session can be simulated perfectly by S in the role of P . Thus, as

32POK is a common shorthand for proof of knowledge, and we slightly abuse it here by referring to Stage 1 that is
an argument of knowledge.
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long as for all i such that idi not in LIST , the probability pLIST
idi

is negligible, we never get
passed Stage 1 for an SKid that S does not know, and such aborted sessions can be simulated
perfectly.

• If we do get passed Stage 1 we are (w.h.p) in a session for which id ∈ LIST . Thus the
simulator S already knows SKid and can continue to answer as P would have through Stage 2
of this session (as outlined above in the case of standard zero-knowledge).

Thus, the interesting case is when for some i such that idi is not in LIST , the probability pLIST
idi

is non-negligible. For simplicity, think that this probability is noticeable (although standard tech-
niques can be applied to remove the dependency of the description on such a false dichotomy [23]).

Suppose we are in this case for some intermediate value of LIST . The simulator task is either
to extract a new SKid for which id not in LIST , or produce a view H of an execution of the entire
resettable protocol (either way progress is made). The (partial) view H is initialized to the empty
string. The simulator S starts running acting as the prover would in Stage 1 of any session that
gets invoked by the verifier. Whenever the protocol calls for the prover to use his pseudorandom
function, the simulator tosses coins, making sure of course that on the same session prefix the same
coin are used as would be the case for a true random function. There are a few cases to consider.

• If a session for any id halts midway Stage 1, the simulator extends H to include an aborted
transcript of this session.

• If a session for which id ∈ LIST gets passed Stage 1, then the simulator uses his knowledge
of SKid to answer the verifier and gets through Stage 2 of this session. The (partial) view H
is extended to contain the transcript of this session.

• If a session for which id is not in LIST gets passed Stage 1, then the simulator tries to obtain
the corresponding SKid by using the knowledge-extractor (guaranteed for the POK used in
Stage 1). What complicates matters is that the extractor may get to situations in which it
cannot operate (because during extraction is may need to proceed in a Stage 2 of a session
for which the identity is not yet in LIST ). The solution is to emulate for the extractor, a
knowledge-prover that aborts its execution just after completing Stage 1 of the first session
with identity not in LIST . Note that this imaginary (or residual) knowledge-prover still
succeeds to convince the knowledge-verifier to accept Stage 1 of the session with identity id
with probability pLIST

id , and thus the extractor will succeed in extracting the corresponding
SKid within expected running-time inversely proportional to pLIST

id . (Standard tricks, first
appearing in [23], have to be applied here; details are omitted.)

Once the extraction of SKid is completed, the simulator may proceed as in the previous case.
Alternatively, it may sets H back to empty and start the entire process again (of course) with
the current LIST (which was just extended by one id). In any case, the partial view H is
not effected by the extraction process itself.

We stress that the extraction procedure is invoked only for a fixed polynomial number of
times (corresponding to the size of the public file).

• Suppose that all sessions encountered are either using an id ∈ LIST , or never get passed
Stage 1, then when V terminates, we finally output H as te simulators view. Indeed, eventu-
ally either LIST will contain all the identities of V or we shall arrive to the point that pLIST

idi

is negligible for all idi not in LIST. In either case, we can get through an entire simulation of
the resettable protocol w.h.p. and output H.
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It remains to formally analyze the running time of this simulator and show that indeed it works in
expected polynomial-time. We delay this to the final paper, but remark that the analysis proceeds
against the same outline as does the analysis (of the simulator for the public-key rZK protocol)
of [8].

6.3 Knowledge Extraction

As we have claimed above, Protocol 6.2 is actually a system of rZK arguments of knowledge. In
this section, we briefly describe the extraction procedure, which turns out to be very similar to
the extraction procedure for Protocol 5.1. That is, in Protocol 5.1 the verifier is committed to its
queries before the prover sends the commitments. Then, in order to extract, the extractor cheats
and decommits in more than one way. Likewise here, given the public-key, session-identifier and
prover commitments, the verifier is essentially committed to its queries. However, as in Protocol 5.1,
the extractor can cheat and send different queries, where the cheating is made possible by running
the zero-knowledge simulator in Step 3 of Stage 2, rather than providing a real proof.

Formally, a proper definition of “sequential-extraction in the public-key model” should be pro-
vided. (This is analogous to the issue of sequential-soundness which is not implied by one-time
soundness in the public-key model.) However, we describe the extractor here in terms of a single
execution (recall that above we have shown that sequential soundness does hold for Protocol 6.2).
We note that one issue that must be resolved is whether or not the extractor has access to a
secret-key corresponding to a public-key in the public file. Since the extractor demonstrates that
the prover knows the witness and the prover does not know the verifier’s corresponding secret-key
when proving, we have chosen not to provide the extractor with this information. Furthermore,
this also provides a stronger definition that implies the alternative.

The Extraction Procedure: Recall that it is enough to obtain correct replies to two different
queries (for the same set of prover commitments) in order to successfully extract a Hamiltonian
cycle. We denote by P ∗(F,G, r,m) the next message sent by P ∗ where F is the public-file, G
the common input graph, r its random-tape and m the series of incoming messages to P ∗. The
extractor K (upon input an encoding of P ∗, a public file F = {(id, PKid)} and a graph G) works
as follows:

1. K chooses a uniform string r for the random tape of P ∗.

2. Emulating Stage 0, K gives a random string R ∈R {0, 1}n to P ∗.

3. Emulating Stage 1, K simulates the resettably-sound zero-knowledge argument of knowledge
of the decommitment for PKid, where the verifier is defined by P ∗(F, G, r,R). Denote the
transcript of the proof by tpok.

4. Entering the emulation of Stage 2, K obtains the next message from P ∗, which is denoted by
c1, . . . , cn.

5. K uniformly chooses q ∈R {0, 1}n and sends q to P ∗. Furthermore, K runs the zero-
knowledge simulator for the proof of Step 3 of Stage 2 where the verifier is defined by
P ∗(F,G, r,R, tpok, q). (We note that the ability of K to provide a simulated proof rather
than a real proof here, is central to the extraction procedure. Furthermore, recall that for
languages outside of BPP, the simulator for a resettably-sound zero-knowledge argument
cannot be black-box. Thus, the fact that K is given non black-box access to P ∗ is essential.)
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6. K then obtains the next message from P ∗ (which should be decommitments).

7. K verifies the proof according to V ’s instructions.

(a) If the verification fails, then K halts with output ⊥.

(b) If the verification succeeds, then K continues by repeating Steps 5–7 until another success
occurs, where in each repetition, the string q is chosen independently and uniformly.
Denote the string for which the success occurs by q′. (In each of these repetitions,
K uses the same randomness for the zero-knowledge simulation; this technical point
simplifies the analysis.)
If q′ 6= q, then extraction succeeds and K outputs the cycle C. On the other hand, if
q′ = q, then extraction fails and K outputs failure.

Claim 6.4 Let K be the extractor described above. Then, for every probabilistic polynomial-time
machine P ∗, every public-file F , every polynomial p(·) and all sufficiently large graphs G,

Pr[K(desc(P ∗), F, G) ∈ HAM(G)] > Pr[〈P ∗, V 〉(F, G) = accept]− 1
p(|G|)

where HAM(G) denotes the set of Hamiltonian cycles in G.

Proof Sketch: We first claim that the probability that K halts with output ⊥ is negligibly close
to the probability that V rejects a proof upon interaction with P ∗. Notice the following differences
between a transcript resulting from a real interaction between P ∗ and V and a transcript resulting
from Steps 1–6 of K’s program above:
• The zero-knowledge proofs are simulated and not real.

• The query string is independent of the public-key and its corresponding pseudorandom function.
In the proof of soundness of Protocol 6.2 above, we have shown almost the same claim (the only
difference being that there the first zero-knowledge proof was real and not simulated – this difference
is not, however, significant). Thus, indistinguishability holds. Since whether or not V should reject
is easily derived from a transcript, we have that the probability that K halts with output ⊥ is
negligibly close to the probability that V rejects a proof upon interaction with P ∗.

Next, we claim that K outputs failure with probability 2−n exactly. This follows using an
identical argument as in the proof of Lemma 5.3. The same argument follows since Steps 5–7 of
the extraction procedure here are essentially the same as Steps 3–5 of the extractor described in
Lemma 5.3.

Now, notice that if K does not output ⊥ and does not output failure, then it outputs a Hamil-
tonian cycle. Thus, combining the above together, we have that the probability that K outputs a
Hamiltonian cycle is negligibly close to the probability that V accepts in an interaction with P ∗.

It remains to show that K is expected polynomial-time. Once again, the same analysis as in
Lemma 5.3 is correct here and we therefore refer the reader there.
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Appendix: Blum’s Protocol [5]

In the main text, we consider n parallel repetitions of the following basic proof system for the Hamil-
tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language in
NP). We consider directed graphs (and the existence of directed Hamiltonian cycles).

Construction A.1 (Basic proof system for HC):

• Common Input: a directed graph G = (V, E) with n
def= |V |.

• Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊂ E, in G.

• Prover’s first step (P1): The prover selects a random permutation π over the vertices V ,
and commits (using a perfectly-binding commitment scheme) to the entries of the adjacency
matrix of the resulting permuted graph. That is, it sends an n-by-n matrix of commitments
so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0
otherwise.

• Verifier’s first step (V1): The verifier uniformly selects σ ∈ {0, 1} and sends it to the prover.

• Prover’s second step (P2):

– If σ = 0, the prover sends π to the verifier and decommits to all of the commitments in
the adjacency matrix.

– If σ = 1, the prover decommits to the commitments of entries (π(i), π(j)) for which
(i, j) ∈ C (and only to these commitments).

• Verifier’s second step (V2):

– If σ = 0, the verifier checks that the revealed graph is indeed isomorphic, via π, to G.

– If σ = 1, the verifier checks that all revealed values are 1 and that the corresponding
entries form a simple n-cycle. In both cases the verifier checks that the decommitments
are proper (i.e., that they fits the corresponding commitments). The verifier accepts if
and only if the corresponding condition holds.

Proposition A.2 The protocol which results by n parallel repetitions of Construction A.1 is a
proof of knowledge of Hamiltonicity with knowledge error 2−n.
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