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Abstract. The authors analyze the security of Hierocrypt-3(128-bit)
and Hierocrypt-L1(64-bit) designed on the nested SPN(NSPN) structure
against the differential and linear cryptanalysis, and found that they are
sufficiently secure, e.g., the maximum average differential and linear hull
probabilities (MACP and MALHP) are bounded by 2−96 for 4-round
of Hierocrypt-3; those probabilities are bounded by 2−48 for 4-round of
Hierocrypt-L1. The authors get these results by extending the provable
security theorem by Hong et al.. Furthermore, the extended theory is
applied to Rijndael, and found that MACP and MALHP of 4-round
Rijndael are bounded by 2−96. This outperforms the best previous result
by Keliher et al..

1 Introduction

We estimate the security of two block ciphers, Hierocrypt-3 and Hierocrypt-
L1, against the differential cryptanalysis(DC) and linear cryptanalysis(LC).

Hierocrypt-3 and Hierocrypt-L1 consists of the Nested SPN (NSPN)
structure, which is a hierarchical structure, where an S-box in a higher-
level consists of the lower-level SPN structure [8, 2]. An advantage of the
NSPN structure is that main security properties such as the maximum
differential characteristic probability (MDCP) and the maximum linear
characteristic probability (MLCP) can be evaluated hierarchically.

Recently, Hong et al. proved the theorem of the provable security
against LC and DC, that the maximum average linear hull probability
(MALHP) and the maximum average differential probability (MADP)
are bounded, when the linear transformation module is the maximum
distance separable(MDS) [5].

In this paper, we show that the theorem of provable security can be hi-
erarchically applicable to the nested SPN structure where any linear mod-
ule in any level MDS. This new result has been applied to Hierocrypt-3
and Hierocrypt-L1, and it is found that the upper bound of maximum av-
erage differential/linear probabilities for 2-round Hierocrypt-3 is no more
than 2−96, and those for 2-round Hierocrypt-L1 is no more than 2−48.



The result is also applied to Rijndael(AES) which can be equivalently
transformed into a nested SPN form. Then, we found that the upper
bound of differential/linear probabilities for 4 rounds are bounded by
2−96. The result outperforms the best known result 2−75 for T rounds(7 ≤
T10) by Keliher et al.[6].

The construction of this paper is as follows. In the next section, several
kinds of security measures against DC and LC are defined, and funda-
mental security properties on SPN cipher are presented. In Section 3, the
security properties of Hierocrypt-3 and Hierocrypt-L1 against DC and
LC are shown, by using an extension of provable theory by Hong et al..
In Section 4, the new provable theorem is applied to Rijndael.

2 Preliminary

2.1 Security against Differential and Linear Cryptanalysis

The differential and linear cryptanalysis are effective against general sym-
metric block cryptosystems, the former of which was proposed by Biham
and Shamir [1] and the latter proposed by Matsui [7]. The number of
plaintext-ciphertext pairs needed for the cryptanalysis is known to be
the same order of the inverse of the maximum differential/linear prob-
ability of data randomizing part removing 2 or 3 rounds of both ends.
Therefore, in the component design, the maximum differential and linear
probabilities (MDP and MLP) are the most important security measures
for block ciphers. That is, the cipher is safer against these attacks, when
both probabilities are sufficiently small.

In general, the cipher consists of an iteration of round functions which
depend on respective round keys. The dependency on keys makes it dif-
ficult to estimate the values for MDP and MLP. Therefore two classes
of approximation for these probabilities are used. The first class consists
of MDCP and MLCP where the summation of intermediate states is re-
placed into one intermediate state with the maximum probability. The
second class consists of MADP and MALHP where key-averaged values
are used but the summation of intermediated states are done. The second
ones are considered to be better estimation measures. When the interme-
diate rounds have a sufficiently small MADP and MALHP, the cipher is
called to have a provable security (in the meaning of key average). In the
following subsection, the definition of these probabilities are given.



2.2 Differential and Linear Probabilities

Definition 1. For an n-bit function f , the differential probability DP f

and the linear probability LP f are defined as follows.

DP f (∆x→ ∆y) ≡ # {x|f(x)⊕ f(x⊕∆x) = ∆y}
2n

, (1)

LP f (Γy → Γx) ≡
¯̄̄̄
2 · # {x|x · Γx = f(x) · Γy}

2n
− 1

¯̄̄̄2
, (2)

where ∆x, ∆y are input and output differences; Γx and Γy are input and
output masks.

The main part of most block ciphers is multiple-round structure. Let
T -round structure as follows.

ET = ρ[kT ] ◦ ρ[kT−1] ◦ · · · ◦ ρ[k1] .

xi = ρ[ki](xi−1) , i = 1, . . . , T.

For ET , the input(plaintext) is x = x0, and the output(ciphertext) is
y = xT .

The maximum differential probability for a T -round encryption ET is
defined as

Definition 2 (MDP/MLP). Let x, y and k be an input, an output and
a key vectors. Then, the maximum differential probability(MDP) and the
maximum linear probability(MLP) for a T -round encryption ET is defined
as follows.

MDP (ET ) ≡ max
∆x 6=0,∆y,k

X
∆x1,∆x2,...,∆xT−1

TY
i=1

DP ρi[ki](∆xi−1 → ∆xi) (3)

MLP (ET ) ≡ max
Γx,Γ y 6=0,k

X
Γx1,Γx2,...,ΓxT−1

TY
i=1

LP ρi[ki](Γxi → Γxi−1) (4)

If MDP/MLP is sufficiently small, it can be assured that there is no
weak key against DC/LC.

The estimation of MDP and MLP is very difficult for most practical
block ciphers. Therefore, instead of MDP and MLP, key-averaged values
MADP and MALHP are used as the second best security measures.

Definition 3 (MADP/MALHP). The maximum average differential
probability(MADP) and the maximum average linear hull probability(MALHP)



are defined as follows.

MADP (ET ) ≡ max
∆x 6=0,∆y

ave
k

X
∆x1,...,∆xT−1

TY
i=1

DP ρi[ki](∆xi−1 → ∆xi) (5)

MALHP (ET ) ≡ max
Γx,Γy 6=0

ave
k

X
Γx1,...,ΓxT−1

TY
i=1

LP ρi[ki](Γxi → Γxi−1) (6)

A block cipher is called provably secure against DC and LC, if the
upper bounds of MADP and MALHP can be estimated theoretically.

For most practical ciphers, even MADP and MALHP are difficult to
estimate, because the summation for intermediate states should be done.
The next best approximation is a single path approximation MDCP/MLCP,
where the summation for intermediate states is substituted into the max-
imum value for intermediate states.

Definition 4 (MDCP/MLCP). The maximum differential character-
istic probability(MDCP) and the maximum linear characteristic probabil-
ity(MLCP) are defined as follows.

MDCP (ET ) ≡ max
∆x 6=0,∆y

ave
k

X
∆x1,...,∆xT−1

TY
i=1

DP ρi[ki](∆xi−1 → ∆xi) (7)

MLCP (ET ) ≡ max
Γx,Γy 6=0

ave
k

X
Γx1,...,ΓxT−1

TY
i=1

LP ρi[ki](Γxi → Γxi−1) (8)

2.3 SPN structure

The fundamental structure of SPN cipher is an iteration of the round
function, which consists of key addition, word-wise substitution (S-box
layer) and block-size mixing (diffusion layer) [9, 3, 4]. In the rest of this
paper we omit to draw key addition for simplicity. Besides the fundamen-
tal part, some modification is applied such as the key addition just before
the output.

In the SPN cipher, the diffusion layer provides an avalanche effect. An
important measure of avalanche effect is the minimum number of active
S-boxes both for differential and linear, where an active S-box is defined
as follows.

Definition 5 (Active S-box). A differential active S-box is defined as
an S-box with non-zero input difference. A linear active S-box is defined
as an S-box with non-zero output mask.



The following lemma gives the upper bounds for MDCP and MLCP
by using the lower bounds of active S-boxes and the differential/linear
probability of S-box.
Lemma 1. Let p be the maximum differential probability of S-box, and
let q be the maximum linear probability of S-box. When the lower bounds
for differential/linear active S-boxes are LASD and LASL, respectively.
Then the characteristic probabilities MDCP and MLCP are bounded as
follows.

MDCP (ET ) ≤ pLASD , MLCP (ET ) ≤ qLASL . (9)

In the analysis of active S-box number, the branch number of diffusion
layer has an important role. Consider the SPS structure shown Fig. 5,
where two S-box layers containing M -parallel S-boxes are connected by
the diffusion layer. The branch number is defined for differential and linear
cryptanalysis as follows.
Definition 6 (Branch Number). The differential branch number BD is
defined as the minimum number of active S-boxes in the SPS structure for
a non-zero input difference. The linear branch number BL is defined as the
minimum number of active S-boxes in the SPS structure for a non-zero
output mask.

The branch numbers are bounded by the following lemma.

Fig. 1. Simple SPS Structure

Lemma 2. Both differential and linear branch numbers are bounded by
M + 1, where the diffusion layer consists of M-parallel S-boxes.

BD ≤M + 1 , BL ≤M + 1 . (10)

When both branch numbers take their maximum values, the diffusion
layer is called MDS, as such diffusion layer can be made based on the
maximum distance separable code.



For the multiple-round SPN structure, the upper bound of maximum
differential/linear characteristic probability (MDCP/MLCP) is easily es-
timated.

Lemma 3. When the maximum differential/linear probability of S-box
is p/q, and the differential/linear branch number is BD/BL for T-round
SPN encryption ET , its MDCP and MLCP are bounded as follows.

For even T

MDCP (ET ) ≤ pBDT/2 , MDCP (ET ) ≤ pBLT/2 . (11)

For odd T

MDCP (ET ) ≤ pBD(T−1)/2+1 , MDCP (ET ) ≤ pBL(T−1)/2+1 . (12)

Hong et al. proved the following important theorem for the provability
of SPN cipher.

Theorem 1 (Hong et al.). If the diffusion layer is MDS, i.e., BD =
BL =M + 1, and T ≥ 2,

MACP (ET ) ≤ pM , MALHP (ET ) ≤ qM . (13)

If the invertible diffusion layer satisfies BD = BL =M , and T ≥ 2,

MACP (ET ) ≤ pM−1 , MALHP (ET ) ≤ qM−1 . (14)

3 Nested SPN Structure and Hierocrypt

3.1 Nested SPN structure (NSPN)

The nested SPN is a hierarchical SPN structure, where an S-box in a
higher level consists of SPN in the lower level. Figs. 2 shows a fundamental
concept of the nested SPN structure. We propose the following conditions
to achieve an efficient data randomization [8].

(a) The final round of SPN consists only of an S-box layer (not followed
by a diffusion layer) in all levels;

(b) All permutations are MDS in each level;

(c) The number of rounds is even in all levels except for the highest;
(d) Bit-wise key additions are located directly before all lowest-level S-

box layers and directly after the final.



Fig. 2. Nested SPN structure Fig. 3. 4-Round Nested SPN Cipher

3.2 Hierocrypt

The Hierocrypt is a family of NSPN block ciphers which satisfy the con-
ditions from (a) through (d) in the previous subsection. The newest ver-
sions are Hierocrypt-3 and Hierocrypt-L1 1. Hierocrypt-3 is a 128-bit
block cipher which supports 3 kinds of key length: 128-, 192- and 256-bit.
Hierocrypt-L1 is a 64-bit block cipher which supports a 128-bit key. Fig.4
shows data randomizing parts of both algorithms.

For both algorithms, all lower-level S-boxes s (8-bit) are the same,
and the maximum differential/linear probabilities are 2−6. The lower-
level diffusion mdsL(32-bit) is the same for both algorithms. The mdsL

satisfies the MDS condition, i.e., the branch number is 5. The higher-
level diffusion layer MDSH of Hierocrypt-3 is of 128-bit, and the branch
number is 5. The higher-level diffusion layer MDSH of Hierocrypt-L1 is
of 64-bit, and the branch number is 3.

4 Security of Hierocrypt against Differential/Linear
Cryptanalysis

The upper bounds for 4 security measures MDCP, MLCP, MADP and
MALHP are estimated in this section for Hierocrypt-3 and Hierocrypt-L1.

4.1 Upper bounds for MDCP and MLCP

Before analyzing Hierocrypt, we consider a general case of two-level NSPN
cipher where the round numbers in both levels are two, the higher-level

1 The oldest versions are 128-bit ciphers, Hierocrypt Type-I and Type-II [8]



Fig. 4. Structure of Hierocrypt

S-box layer consists of M1 parallel XS, and the lower-level S-box layer
consists of M2 parallel s (See Fig.5). Similarly for the simple SPN case,
the fundamental unit of security estimation is 2-round structure also for
NSPN cipher.

For a pair of inputs with non-zero difference, at least M1 + 1 higher-
level S-boxes (XS’s) are active, and each active XS contains no less than
M2 + 1 active (lower-level) S-boxes (s’s). Therefore, we get the following
two lemmas.
Lemma 4. In Fig.5, the number of differential/linear active(lower-level)
S-boxes is no less than (M1 + 1)(M2 + 1).
Lemma 5. If the maximum differential/linear probability for the lower S-
box s is p/q, the MDCP and the MLCP satisfy the following inequalities.

MDCP ≤ p(M1+1)(M2+1) , MLCP ≤ q(M1+1)(M2+1) . (15)

The fundamental probabilities and branch numbers are given for Hi-
erocrypt as follows.

Hierocrypt-3:
p = q = 2−6 , M1 =M2 = 4. (16)

Hierocrypt-L1:
p = q = 2−6 , M1 = 2, M2 = 4. (17)



Fig. 5. 2-level Nested SPS module(NSPS)

For Hierocrypt-3, from Eqs. (15) and (16), the upper bound of MDCP/MLCP
for 2-round Hierocrypt-3 is estimated as 2−6×(4+1)×(4+1) = 2−150. The up-
per bound for 1-round Hierocrypt-3 is estimated by assuming only one
XS is active, i.e., 2−6×(4+1) = 2−30. Combining these results, we can
estimate MDCP/MLCP of Hierocrypt-3 for more rounds(Fig.6).

For Hierocrypt-L1, from Eqs. (15) and (17), the upper bound of
MDCP/MLCP for 2-round is estimated as 2−6×(4+1)×(2+1) = 2−90. The
upper bound for 1-round is the same to that of Hierocrypt-3, i.e., 2−6×(4+1) =
2−30. Combining these results, we can estimate MDCP/MLCP of Hierocrypt-
L1 for more rounds(Fig.6).

Fig. 6. Upper bound of MDCP/MLCP Fig. 7. Upper bound of MADP/MALHP



4.2 Provable Security of Hierocrypt(MADP and MALHP)

Before analyzing Hierocrypt, we consider a general case of Fig.5. The
MADP and MALHP 2 for the nested SPS structure(NSPS, Fig.5) is esti-
mated by the following Theorem 2.

Theorem 2. If the key is uniformly random, and if the maximum differ-
ential/linear probability of lower-level S-box is p/q, MADP and MALHP
of NSPS is bounded as follows,

MADP (NSPS) ≤ pM1M2 , (18)

MALHP (NSPS) ≤ qM1M2 . (19)

Proof. Theorem 1 assures that the MADP ofXS is bounded by pM2. Then
we can considerXS as a function whose maximum differential probability
is no more than pM2 in the meaning of key average. Again, Theorem 1
assures that the MADP of 2-level nested SPN (NSPS) is bounded by

MADP (NSPS) ≤
³
pM2

´M1
= pM1M2 .

Quite similarly, we can prove the inequality for the linear probability
MALHP. ¶

Now, we can estimate the MADP and MALHP of Hierocrypt.

Hierocrypt-3 Substituting the fundamental quantities in Eq.16 to The-
orem 2 (Eqs. (18) and (19)), we get the upper bounds of MADP and
MALHP for 2-round as follows.

MADP (NSPS) ≤
³
2−6

´4×4
= 2−96 , (20)

MALHP (NSPS) ≤
³
2−6

´4×4
= 2−96 . (21)

Hierocrypt-L1 Substituting the fundamental quantities in Eq.17 to
Theorem 2 (Eqs. (18) and (19)), we get the upper bounds of MADP
and MALHP for 2-round as follows.

MADP (NSPS) ≤
³
2−6

´4×2
= 2−48 , (22)

MALHP (NSPS) ≤
³
2−6

´4×2
= 2−48 . (23)

2 The maximum probabilities in the meaning of key average.



5 Provable Security of Rijndael

Rijndael is the most famous SPN-type cipher, and recently adopted as
FIPS encryption algorithm, Advanced Encryption Standard(AES). The
linear transformation consists of a byte shift operations and a mix column
operation. The mix column operation is MDS module for a 1-byte (8-bit)
word, that is, no less than 5 from 8 bytes on input and output are active
for non-zero input differential.

Fig. 8. 4-R Rijndael Fig. 9. nested SPN expression of Rijndael

Two major results are known for the security of Rijndael against the
differential/linear cryptanalysis. The first result, given by the designers,
is that both MDCP and MLCP are no more than 2−150, which is derived
from the fact that consecutive 4 rounds contain no less than 25 active
S-boxes and that the maximum differential/linear probability is 2−6. The
second result is given by Keliher et al. for the upper bound of MALHP
for several rounds from 2 through 10 [6]. With an large-scale calculation,
they get the upper bounds 2−75 for 7 ≤ T ≤ 10 (Fig.10).

5.1 Equivalent Transformation to NSPN

Rijndael can be equivalently transformed into a nested SPN form with
M1 = M2 = 4 (Figs.8 and 9. The property of mix column module have
already shown that the lower-level linear transform is MDS. Fig. 9 can be



Fig. 10. New upper bound of MDCP/MLCP for Rijndael

shown that the higher-level linear transform is also MDS for 32-bit word
as follows. If input difference is not zero, at least 1 from 4 mix column
modules is active. And each input and output bytes are connected to
respective 32-bit XS-boxes. Therefore, the higher-level linear transform,
the large dotted rectangle in the center of Fig. 9, is MDS for 32-bit words.
Quite similarly, we can show that the higher-level linear transform is
MDS for LC. Therefore, we found the new and best bound of MADP
and MALHP for Rijndael; 2−96 for 4 and more even rounds, and 2−24 for
2 rounds. Using these results, we can estimate MACP and MALHP of
Rijndael for an arbitrary round number(Fig.10).

Furthermore, it is easily seen that 4 consecutive rounds of Rijndael
contains at least 25 active S-boxes.

6 Conclusion

Hierocrypt is a block cipher family designed on the nested SPN (NSPN)
structure. We have discussed the security of nested SPN structure against
the differential and linear cryptanalysis, and succeeded in estimating the
upper bounds of characteristic probabilities, MDCP and MLCP for the
newest versions Hierocrypt-3(128-bit) and Hierocrypt-L1(64-bit). For 4-
round Hierocrypt-3, both MDCP and MLCP is found to be no more than
2−150. For 4-round Hierocrypt-L1, both MDCP and MLCP is found to be
no more than 2−90.



Furthermore, we extend the provable security theory for SPN by
Hong et al. to NSPN structure. Based on the theorem, we found that
both MACP and MALHP are bounded by 2−96 for 2-round Hierocrypt-
3, and that both MACP and MALHP are bounded by 2−48 for 2-round
Hierocrypt-L1.

These results assure that Hierocrypt-3 and Hierocrypt-L1 are very
secure against the differential/linear cryptanalysis, as the proposed mini-
mum round numbers 6 for both algorithms is sufficiently large compared
to 2.

Furthermore, we found that MACP and MALHP for 4-round Rijndael
is no more than 2−96. In the derivation of this result, we use the fact
that Rijndael is equivalently transformed into the nested SPN form. This
upper bound largely outperforms the result 2−75 for T -round Rijndael
(7 ≤ T ≤ 10) by Keliher et al..
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