
New Notions of Soundness and Simultaneous Resettability in
the Public-Key Model1

 Yunlei Zhao2 3

 Abstract

 In this paper, some new notions of soundness in public-key model are
presented. We clarify the relationships among our new notions of soundness and
the original 4 soundness notions presented by Micali and Reyzin. Our new
soundness notions also characterize a new model for ZK protocols in public key
model: weak soundness model. By ``weak” we mean for each common input x
selected by a malicious prover on the fly, x is used by the malicious prover at
most a-priori bounded polynomial times. The weak soundness model just lies in
between BPK model and UPK model. Namely, it is weaker than BPK model but
stronger than UPK model. In the weak soundness model (also in the UPK model,
since weak soundness model implies UPK model), we get a 3-round black-box
rZK arguments with weak resettable soundness for NP.
 Note that simultaneous resettability is an important open problem in the field of
ZK protocols. And Reyzin has proven that there are no ZK protocols with
resettable soundness in the BPK model. It means that to achieve simultaneous
resettability one needs to augment the BPK model in a reasonable fashion.
Although Barak et al. [BGGL01] have proven that any language which has a
black-box ZK arguments with resettable soundness is in BPP. It is the weak
soundness that makes us to get simultaneous resettability.
 More interestingly, our protocols work in a somewhat ``parallel repetition”
manner to reduce the error probability and the verifier indeed has secret
information with respect to historical transcripts. Note that in general the error
probability of such protocols can not be reduced by parallel repetition. [BIN97]
 At last, we give a 3-round non-black-box rZK arguments system with resettable
soundness for NP in the preprocessing model in which a trusted third party is
assumed. Our construction for such protocol is quite simple. Note that although
the preprocessing model is quite imposing but it is still quite reasonable as
indicated in [CGGM00]. For example, in many e-commerce setting a trusted third
party is often assumed.
 The critical tools used in this paper are: verifiable pseudorandom functions, zap
and complexity leveraging. To our knowledge, our protocols are also the second
application of verifiable pseudorandom functions. The first application is the 3-
round rZK arguments with one-time soundness for NP in the public-key model as
indicated by Micali and Reyzin [MR01a].

Keywords rZK, arguments, PRF, VRF, zap, complexity leveraging

1 This research is supported by a grant of the City University of Hong Kong (7001023).
2 Department of Computer Science, City University of Hong Kong, Hong Kong. Email:
CSYLZHAO@cityu.edu.hk
3 Department of computer science, Fudan university, Shanghai, P. R. China.

 1

1 Introduction

 The bare public-key (BPK) model was introduced by Canetti, Goldreich, Goldwasser
and Micali in the context of resettable zero-knowledge (rZK) [CGGM00]. By the BPK
model we mean a model in which all user are assumed to have deposited a public-key in
a file that is accessible by all users at all times. The only assumption about this file is that
it guarantees that entries in it were deposited before any interaction among the users takes
place. No further assumption is made about this file, and so in particular an adversary
may deposit many (possibly invalid) public-keys in it (and, in particular, without even
knowing corresponding secret keys or whether such exist). The BPK model is very
simple and in fact it is a weak version of the frequently used public-key infrastructure
(PKI) model, which underlies any public-key cryptosystem or digital signature scheme.
Despite its apparent simplicity, the BPK model is quite powerful. While rZK protocols
exist both in the standard and in the BPK model, only in the later case can they be
constant-round, at least in a black-box sense. For more details regarding this model, the
reader are referred to [CGGM00] and [MR01a].
 Micali and Reyzin[MR01, R01] first noted and clarified the soundness of protocols in
BPK model. In the BPK model, the verifier has a secret key SK, corresponding to its
public key PK. Thus, a malicious prover could potentially gain some knowledge about
SK from an interaction with the verifier, and this gained knowledge might help him to
convince the verifier of a false theorem in a subsequent interaction. In [MR01, R01] four
notions of soundness in the public-key model were presented, each of which implies the
previous one:
 1. one-time soundness, when a potential malicious prover is allowed a single
interaction with the verifier per theorem statement.
 2. Sequential soundness, when a potential malicious prover is allowed multiple but
sequential interactions with the verifier.
 3. concurrent soundness, when a potential malicious prover is allowed multiple
interleaved interaction with the same verifier.
 4. resettable soundness, when a potential malicious prover is allowed to reset the
verifier with the same random tape and interact with it concurrently.
 The above four notions are not only meaningful, but also distinct. That is, for each
soundness notion there exists a protocol which satisfies this soundness condition but not
satisfy the next one [MR01, R01].
 In [MR01a] Micali and Reyzin have proven that any (resettable or not) auxiliary-input
ZK protocol (satisfying one-time or stronger soundness) in the BPK model for a language
outside of BPP requires at least three rounds. Note that black-box ZK implies auxiliary-
input ZK but the opposite direction is not known to be held.[GO94]. Regarding one-time
soundness, In [MR01a] Micali and Reyzin also gave a 3-round (optimal according to
above result) rZK arguments with one-time soundness for NP in the BPK model under
the existence of verifiable pseudorandom functions.
 Canetti et al.[CGGM00] first gave a 5-round rZK arguments for NP in the BPK model
under the stronger DLP assumption. Their protocol is sequentially sound although they
did not explicitly state this. By ``stronger” we mean the intractability assumption of DLP

 2

refers to sub-exponential size circuits rather merely to super-polynomial ones. The round
complexity above is further reduced to 4-round by Micali and Reyzin[MR01] using the
same assumption as above. It is an interesting open problem whether 3-round rZK
protocol with sequential soundness for NP in the BPK model. That is:
 Open problem 1: [MR01a] Does there exist a 3-round rZK protocol with sequential
soundness for NP in the BPK model?
 In [R01} Reyzin also proved that any (resettable or not) black-box ZK protocol
satisfying concurrent soundness in the BPK model for a language L outside of BPP
requires at least four rounds. Up to now no such protocols have been constructed in the
BPK model. In a restricted version of BPK model in which each public key is allowed to
use at most a-priori bounded polynomial times (the UPK model) Micali and Reyzin gave
a 3-round black-box rZK arguments with concurrent soundness for NP in the UPK model
[R01b].
 Regarding the resettable soundness, Reyzin [R01] also proved that there is no
(resettable or not) black-box ZK protocols satisfying resettable soundness in the BPK
model for a langusge outside of BPP. Furthermore, Barak et al. [BGGL01] showed that
any language which has a black-box ZK arguments with resettable soundness is in BPP.
It means that to get rZK protocols with resettable soundness for NP one needs to either
get a non-black-box one or enhance the BPK model in some reasonable fashion. For non-
black-box ZK protocols, in [BGGL01] Barak et al. first gave a constant-round resettably-
sound non-black-box ZK arguments of knowledge for NP in the standard model
assuming the existence of collision-free hash function. But the protocol there is not
resettable zero-knowledge and even not concurrent zero-knowledge as well. An
interesting important open problem is whether it is possible to simultaneously protect
both the prover and the verifier from resetting attack. That is:
 Open problem 2: [BGGL01] do language outside of BPP have rZK arguments with
resettable soundness?

2. New Notions of Soundness in the BPK Model

 In this section, we introduce some new soundness notions in the BPK model and
formally define it.
 The new soundness notion is ``weak soundness”. Roughly speaking, weak soundness
means a potential malicious prover is infeasible to convince the verifier of a false
statement even he is allowed to interact with the verifier a-priori bounded polynomial
times per theorem statement. To get formal definition of weak soundness in BPK model
we first give the formal description of BPK model. The following presentation mainly
follows [MR01b].

2.1 The Player
 Let

• A public file F be a polynomial-size collection of records (id, PKid), where id is a
string identifying a verifier, and PKid is its (alleged) public key.

• An (honest) prover P (for a language L) be an interactive deterministic
polynomial-time TM that is given as inputs (1) a security parameter 1n, (2) a n-bit

 3

string x∈L, (3) an auxiliary input y, (4) a public file F, (5) a verifier identity id,
and (6) a random type w.

• An (honest) verifier V be an interactive deterministic polynomial-time TM that
works in two stages. In stage one (the key-generation stage), on input a security
parameter 1n and random tape r, V outputs a public key PK and the corresponding
secret key SK. In stage two (the verification stage), on input SK, an n-bit string x
and a random tape , V performs an interactive protocol with a prover, and
outputs ``accept x” or ``reject x”.

ρ

 Completeness for a pair (P, V) is defined the usual way. Consider the following
procedure for (P, V), a string x∈L of length n and a string y.
 Procedure: Normal-Interaction

1. Run the key-generation stage of V on input 1n and a random string r to obtain PK,
SK.

2. Pick any id, and let F be a public file that contains the record (id, PKid).
3. Pick string w and at random and run P on input 1ρ n, x, y, id, PKid, w, and the

verification stage of V on inputs SKid, x, , letting them interact. ρ
Definition 2.1 A pair (P, V) is complete for an NP-language L if for all n-bit strings
x∈L and their NP-witness y, the probability that in an execution of Normal-Interaction
V outputs ``accept” differs from 1 by a quantity negligible in n.

2.2 The Various Cheating Provers and Soundness
 There are three types of malicious provers. Let

• A s-sequential malicious prover P* for a positive polynomial s be a probabilistic
polynomial-time TM that, on first input 1n, runs in at most s(n) stages, so that

1. In stage 1, P* receives a public key PK and outputs a string x1 of length n.
2. In every even stage, P* starts in the final configuration of the previous

stage and performs a single interactive protocol: it outputs outgoing
message and receives incoming message (the machine with which it
performs the interactive protocol will be specified below, in the definition
of sequential soundness). It can choose to abort an even stage at any point
and move on to the next stage by outputting a special message.

3. In every odd stage i>1, P*starts in the final configuration of the previous
stage and outputsa string xi of length n.

• A s-concurrent malicious prover P*, for a positive polynomial s, be a
probabilistic polynomial-time TM that, on inputs 1n and PK, performs at most s(n)
interactive protocols as follows:

1. If P* is already running i-1 interactive protocols 1 i-1<s(n), it can output
a special message ``Start x

≤
i”, where xi is a string of length n.

2. At any point it can output a message for any of its (at most s(n)) interactive
protocols (the protocol is unambiguously identified in the outgoing
message). It then immediately receives the party’s response and continues.

• A s-resetting malicious prover P*, for a positive polynomial s, be a probabilistic
polynomial-time TM that, on inputs 1n and PK, gets access to s(n) oracles for the
verifier (to be precisely specified below, in the definition of resettable soundness).

 Now we define our new soundness notions along with the 4 soundness notions
presented by Micali and Reyzin.

 4

 Procedure: Sequential-Attack

1. Run the key-generation stage of V on input 1n and a random string r to obtain PK,
SK.

2. Run the first stage of P* on inputs 1n and PK to obtain an n-bit string x1.
3. For i ranging from 1 to s(n)/2:

3.1. Selects a random string . iρ
3.2. Runs the 2i-th stage of P*, letting it interact with the verification stage of V

with input SK, xi, . iρ
3.3. Run the (2i+1)-th stage of P* to obtain an n-bit string xi.

 Definition 2.2 [MR01a] (P, V) satisfies one-time soundness for a language L if for all
positive polynomials s, for all s-sequential malicious prover P*, the probability that in an
execution of Sequential-Attack, there exists i such that 1≤ i ≤ s(n), xi∉L, xj x≠ i for all j<i
(that is xi appears once and only once)and V outputs ``accept xi” is negligible in n.
 Sequential soundness differs from one-time soundness only in that the malicious P* is
allowed to have xi=xj, for j<i.
 Definition 2.3 [MR01a] (P, V) satisfies sequential soundness for a language L if for
all positive polynomials s, for all s-sequential malicious prover P*, the probability that in
an execution of Sequential-Attack, there exists i such that 1 i ≤ s(n), x≤ i∉L, and V outputs
``accept xi” is negligible in n.
 Now we give the first new notion: weak sequential soundness. Informally, weak
sequential soundness requires that for each common input x, and for any polynomial s, a
s-sequential prover can select and use the same x at most a-priori bounded polynomial
times in an Sequential Attack.
 Definition 2.4 (P, V) satisfies weak sequential soundness for a language L if there
exists a-priori bounded polynomial m such that for all positive polynomials s, for all s-
sequential malicious prover P*, the probability that in an execution of Sequential-Attack,
there exists i such that 1 i ≤ s(n), x≤ i∉L and xi appears at most m(n) times, V outputs
``accept xi” is negligible in n.
 The difference between weak sequential soundness and sequential soundness lies in
that in the definition of sequential soundness each input may appear any polynomial
times but in the definition of weak sequential soundness each input is restricted to appear
a a-priori bounded polynomial times. Obliviously, the weak sequential soundness just lies
in between one time soundness and sequential soundness. In this paper we will give a 3-
round rZK arguments with weak sequential soundness for NP in the BPK model,
furthermore our protocol also satisfies more stronger soundness, weak concurrent
soundness (to be defined below).
 Procedure: Concurrent-Attack

1. Run the key-generation stage of V on input 1n and a random string r to obtain PK,
SK.

2. Run P* on inputs 1n and PK.
3. Whenever P* outputs ``Start xi”, select a fresh random string and let the i-th

machine with which P
iρ

* interacts be the verification stage of V on inputs SK, xi, . iρ

 5

 Definition 2.5 [MR01a] (P, V) satisfies concurrent soundness for a language L if for
all positive polynomials s, for all s-concurrent malicious prover P*, the probability that in
an execution of Concurrent-Attack, V ever outputs ``accept x” for x∉L is negligible in n.
 Similarly, we get the definition of weak concurrent soundness in the BPK model.
 Definition 2.6 (P, V) satisfies weak concurrent soundness for a language L if there
exists a-priori bounded polynomial m and for all positive polynomials s, for all s-
concurrent malicious prover P*, the probability that in an execution of Concurrent-Attack,
V ever outputs ``accept x” for x∉L and x appeares at most m(n) times, is negligible in n.
 Procedure: Resetting-Attack

1. Run the key-generation stage of V on input 1n and a random string r to obtain
PK, SK.

2. Run P* on input 1n and PK.
3. Generate s(n) random strings , for 1 i ≤ s(n). iρ ≤
4. Let P* interacts with oracles for the second stage of the verifier, the i-th oracle

having input SK, . iρ
 Definition 2.7 [MR01a] (P, V) satisfies resettable soundness for a language L if for all
positive polynomials s, for all s-resetting malicious prover P*, the probability that in an
execution of Resetting-Attack, P* ever receives ``accept x” for x∉L from any of the
oracle is negligible in n.
 Similarly, we get the definition of weak resettable soundness in the BPK model.
 Definition 2.8 (P, V) satisfies weak resettable soundness for a language L if there
exists a-priori bounded polynomial m and for all positive polynomials s, for all s-resetting
malicious prover P*, the probability that in an execution of Resetting-Attack, P* ever
receives ``accept x” for x∉L from any of the oracle, and x have been queried at most
m(n) times, is negligible in n.
 In this paper we will give a 3-round rZK arguments with weal resettable soundness.
Thus we can get some progress towards establishing the open problem 2.
 The relationships among all these notions of soundness are presented in the section 4.
 Some comments on our new soundness notions are in place. In the subsequent we
denote by weak soundness model the BPK model with weak soundness. By ``weak” we
mean for each commom input selected by a malicious prover, the malicious prover is
restricted to interact with the verifier V at most a-priori bounded polynomial times using
the same common input.

 Comment. Weak soundness model versus UPK model:
 Note that in UPK model each PKid is restricted to be used at most a-priori bounded
polynomial times. This corresponds to in the definitions for soundness notions in BPK
model in [MR01a] (that is in definitions 2.2, 2.3, 2.5, 2.7 above) the polynomial s is a-
priori bounded polynomial. However, in weak soundness model we do not restrict the
number of interactions between the malicious prover and the verifier Vid. In weak
soundness model we allow the malicious prover to interact with Vid for any polynomial
times just as in the original definitions in [MR01a] but for each theorem statement
(common input) we restricted the malicious prover to interact with Vid at most a-priori
polynomial times using the same common input. Obviously, if each PKid is restricted to
be used at most a-priori polynomial times then for each theorem statement (common
input) the malicious prover also can interact with Vid with PKid at most a-priori

 6

polynomial times. This means that weak soundness model just lies in between BPK
model and UPK model. That is, weak soundness model is stronger than BPK model but
weaker than UPK model. Any protocol which satisfies weak soundness also satisfies the
corresponding soundness in the UPK model. However, a protocol in the UPK model may
not satisfy the corresponding weak soundness. Indeed, although the Micali and Reyzin’s
3-round rZK protocol in [MR01b] satisfies concurrent soundness in the UPK model but it
indeed does not satisfy even weak sequential soundness. The reason is that the concurrent
soundness of Micali and Reyzin’s protocol is relied on the verifier’s cmax (which is a-
priori bounded polynomial) random strings in his public-key. If the malicious prover can
learn all these verifier’s random strings then he can easily convince the verifier of a false
statement. A malicious prover can learn all these random string by just select cmax
different inputs on the fly and interact sequentially with the verifier cmax times (each
time uses a different input, that is each input is uses once and only once). After all these
cmax sequential interactions the malicious prover can convince Vid of a false statement
with probability 1. It obviously does not satisfy the weak sequential soundness.

 3. Preliminaries
 Let us quickly recall the notions, the definitions and the constructions that we utilize in
this paper.
 Definition 3.1 (Pseudorandom Function PRF) [GGM86] In this paper we will use a
stronger version of PRF in which the pseudorandomness is guaranteed against sub-
exponential size adversaries rather polynomial size ones.
 A function PRF: {0, 1}n {0, 1}× * {0, 1}→ n is a pseudorandom function if >0
such that for all sufficiently large n and all -gate adversaries ADV, the following
differences negligible in n:

∃ α
αn2

−=← • 1:}1,0{[),(PRFKeyPRFnR ADVPRFKeyPROB

]1:)}1,0({[)(}1,0{}1,0{ *

=← •× FnR ADVFPROB
n

 The value α is the pseudorandomness constant.
 Such a PRF can be constructed assuming the security of RSA with large prime
exponents against subexponentially-strong adversaries.
 Definition 3.2 [BDMP91, BFM88] Non-Interactive Zero-Knowledge (NIZK): Let NIP
and NIV be two probabilistic polynomial-time algorithms, and let NIσ Len be a positive
polynomial. We say that (NIP, NIV) is a NIZK arguments system for an NP-language L
if

1. Completeness. x∈L of lenth n, σ of length NIσ Len(n), and NP-witness y for x, ∀
1]),,(:),,([==Π←Π YESxNIVyxNIPPROB R σσ

2. Soundness. ∀ x∈L of length n,
]),,(..:}1,0{[)(YESxNIVtsPROB nLenNIR =ΠΠ∃← σσ σ

 is negligible in n.
3. Zero-Knowledgeness. 0 and a probabilistic polynomial-time simulator NIS

such that, ∀ sufficient large n, x∈L of length n and NP-witness y for x, the
following two distributions are indistinguishable by any 2 -gate adversary:

>∃α
∀

αn

)],(:)(),[('''' Π←Π σσ xNISR
 and

 7

)],(:),,(;}1,0{[)(Π←Π← σσσ σ yxNIPPROB RnLenNIR .
 The value α is the NIZK constant.

 Non-interactive zero-knowledge proof system for NP can be constructed based on any
one-way permutation. [FLS99, KP98] We note that one-way permutations can be
constructed under RSA assumption [GB01]. Recent advances in NIZK can be found in
[SCOPS01].

3.1 The Malicious Verifier and Resettable Zero-Knowledge in the Public-Key
Model
 We first define the malicious verifier and the simulator.

o A (s, t)-resetting malicious verifier V*, for any two positive polynomials s and t,
be a TM that runs in two stages so that, on the first input 1n,

1. In stage 1, V* receives s(n) distinct4 values x1,…, xs(n) ∈ L of length n
each, and outputs an arbitrary public file F and a list of s(n) identities id1,
…, ids(n).

2. In stage 2, V* starts in the final configuration of stage 1, is given oracle
access to s(n)3 provers, and then outputs its ``view”of the interactions: its
random string and the messages received from the provers.

3. The total number of steps of V* in both stages is at most t(n).
o A black-box simulator M be a expected polynomial-time probabilistic algorithm

that is given oracle access to an (s, t)-resetting V* on the s(n) distinct values x1,…,
xs(n)∈ L.

 Definition 3.3 (P, V) is black-box resettable zero-knowledge for an NP-language L if
for every pair of positive polynomials (s, t), for every (s, t)-resetting verifier V*, there
exists a black-box simulator such that the following probability distributions are
indistinguishable (in time polynomial in n): Let each distribution be indexed by a
sequence of common distinct inputs

*V
M

x = x1,…, xs(n) L of length n each and their
corresponding NP-witness aux(

∈
x)=y1,…, ys(n):

1. (Distribution 1) The output of V* obtained from the experiment of choosing w1, …,
ws(n) uniformly at random, running the first stage of V*to obtain F, and then letting
V* interact in its second stage with the following s(n)3 instances of P: P(xi, yi, F,
idk, wj) for 1 ≤ i, j, k ≤ s(n).

2. (Distribution 2) The output of on inputs x*V
M 1, …, xs(n).

 (P, V) is said to be resettable witness indistinguishable (rWI) for an NP-language L
if for every pair of positive polynomials (s, t), for every (s, t)-resetting verifier V*, two
distribution ensembles of type 1 above, which are indexed by the same x but possibly
different sequence of prover’s NP-witnesses: aux(1)(x)= y(1)

1,…, y(1)
s(n) and aux(2)(x)=

y(2)
1,…, y(2)

s(n), are computational indistinguishable.
 In [CGGM00] Canetti et al. first gave a 4-round rWI for NP. The round complexity is
drastically reduced by Dwork and Naor. In [DN00] they presened a 2-round rWI for NP
based on NIZK for NP. Furthermore, more interestingly, their protocol also satisfies
resettable soundness.

4 As noted by Goldreich, if the s(n) common inputs are not distinct then all known rZK protocols are not
even rWI.[CGGM00]

 8

 Dwork and Naor’s 2-round rWI:
 The prover P has a private random string s which determines a pseudorandom function
fs. On security parameter 1n, let p be a positive polynomial and x be the common input
and y is the corresponding NP-witness:
 Step 1. The verifier V randomly selects (once and fixed for all) p(n) random strings
RV= r1, …, rp(n) and sends them to prover P.
 Step 2. Let fs(x, y, RV)=(r, RP). For each i, 1 ≤ i p(n), P uses R≤ P as the randomness to
compute a NIZK proof with respect to common random string r ⊕ riΠ i. At last, P sends
r along with all these p(n) NIZK proofs to the verifier.
 The following formal definition is almost verbatim from [CGGM00].
 Definition 3.4 (perfect-binding bit commitment): A perfect-binding bit commitment
is a probabilistic polynomial-time algorithm, denoted C, satisfying:
 Computational secrecy: For every v, u of equal poly(n)-length, the random variables
C(1n, v) and C(1n, u) are computationally indistinguishable by circuits. That is, for every
two polynomials p, q, all sufficiently large n’s and all v, u ∈ {0,1}p(n) and every
distinguishing circuit D of size q(n),

()
)(

1]1)),1((Pr[]1),1(Pr[
nq

uCDvCD nn <=−=

 Perfect binding: For every v, u of equal poly(n)-length, the random variables C(1n, v)
and C(1n, u) have disjoint support. That is, for every v, u and m, if and

 are both positive then u=v.
]),1(Pr[mvC n =

]),1(Pr[muC n =
 The way such a commitment scheme is used should be clear: To commit to a string v,
under security parameter n, the sender invokes C(1n, v) and sends the result as its
commitment. The randomness used by C during this computation, is to be recorded and
can latter be used as a decommitment.
 A one-round commitment scheme as above can be constructed based on any one-way
permutation. And since one-way permutation can be constructed under RSA assumption
[GB01], so the above one-round commitment also can be constructed based on RSA
assumption.
 In this paper, we will also need another type bit commitment scheme: trapdoor
commitment schemes:
 Definition 3.5 A trapdoor commitment scheme (TC) is a quintuple of probabilistic
polynomial-time algorithms: TCGen, TCCom, TCVer, TCKeyVer and TCFake, such that
 1. Completeness. n, v, ∀ ∀

1]),,,()1,(
:),(),();1(),[(

===

←←

YESdvcTCPKTCVerTCPKTCKeyVer
vTCPKTCComdcTCGenTCSKTCPKPROB

n

RnR

 2. Computational Soundness. 0 such that for all sufficiently large n and for all
-gate adversaries ADV

>∃α
αn2

αn

nRnR

vvYESdvcTCPKTCVerYESdvcTCPKTCVer

TCPKADVddvvcTCGenTCSKTCPKPROB
−<≠∧=∧=

←←

2]),,,(),,,(

:),1(),,,,();1(),[(

212211

2121

 9

 We call α the soundness constant.
 3. Perfect Secrecy. TCPK such that TCKeyVer(TCPK, 1∀ n)=YES and ∀ v1, v2 of
length of equal length, the following two probability distributions are identical:

]:),(),[(1111 cvTCPKTCComdc R← and
]:),(),[(21222 cvTCPKTCComdc R←

 4. Trapdoorness. (TCPK, TCSK) {TCGen(1∀ ∈ n)}, v∀ 1,v2 of equal length the
following two probability distributions are identical:

)],(:),,,,,();,(),[(2211211
′←′← dcvdvcTCSKTCPKTCFakedvTCPKTCComdc RR

and [()],(:),(), 222 dcvTCPKTCComdc R←
 The above trapdoor bit commitment can be constructed under the strong DLP
assumption as follows:
 Strong DLP assumption: For every α , for every sufficiently large n, and every
circuit C of size at most

0>
αn2

αnx xpggpCPROB −<= 2])mod,,([
where the probability is taken uniformly over all n-bit long safe prime p, elements g of
order q=(p-1)/2, and . *

qZx ∈

3.2 Verifiable Random Functions
 The following presentation is mainly followed from [MR01].
 A family of verifiable function (VRFs), as proposed in [MRV99], is essentially a
pseudorandom function family with the additional property that the correct value of a
function on an input can not only be computed by the owner of the seed, but also proven
to be the unique correct value. The proof can be verified by anyone who knows the public
key corresponding to the seed.
 More precisely, a VRF is a quadruple of functions: (VRFGen, VRFEval VRFProve,
VRFVer). The function VRFGen generates a key pair (VRFSK, VRFPK). The function
VRFEval(VRFSK, x) computes the pseudorandom output v. The function
VRFProve(VRFSK, x) computes pfx, the proof that v is correct. This proof can be verified
by anyone who knows the VRFPK by using VRFVer(VRFPK, x, v, pfx). Moreover, no
matter how maliciously VRFPK is constructed, for each x, there exists at most one v for
which a valid proof pfx exists. The pseudorandomness requirement states that, for all the
points for which no proof has been provided, the function VRFEval(VRFSK,) remains
indistinguishable from random function even by subexponential-size circuits. The
following formal definition is almost verbatim from [MRV99].

•

 Definition 3.6: Let VRFGen, VRFEval, VRFProve, and VRFVer be polynomial-time
algorithms (the first and the last are probabilistic, and the middle two are deterministic).
Let a: and b: be any two functions that are computable in time
poly(n) and bounded by a polynomial in n (except when a takes on the value {).

*}1,0{∪→ NN NN →
*}1,0

 We say that (VRFGen, VRFEval, VRFProve, VRFVer) is a verifiable pseudorandom
function (VRF) with input a(n), and output length b(n) if the following properties hold:

1. The following two conditions hold with probability 1 over the choice of

:

)(2 nΩ−−

)1(),(n
r

VRFGenVRFSKVRFPK ←

 10

(a) (Domain-Range correctness):
)()(}1,0{),(,}1,0{ nbna xVRFSKVRFEvalx ∈∈∀ .

(b) (Complete Probability): ∀ , if v=VRFEval(VRFSK, x) and
pf=VRFProve(VRFSK, x), then

)(}1,0{ nax ∈

)(21]),,,([Pr nYESpfvxVRFPKVRFVerob Ω−−>=
 (this probability is over the coin tosses of VRFVer).

2. (Unique Probability) For every VRFPK, x, v1, v2, pf1, pf2 such that v , the
following holds for either i=1 or i=2:

21 v≠

)(2]),,,([Pr n
ii YESpfvxVRFPKVRFVerob Ω−<=

(this probability is over the coin tosses of VRFVer).
3. (Residual Pseudorandomness): Let α be a constant. Let T=(T0> E, TJ) be any pair

of algorithms such that TE(,) and T•

/1

•

n2

J(,) run for a total of at most steps
when their first input is 1

• •
αn2

n. Then the probability that T succeeds in the following
experiment is at most 1 :

α

2/ +
(a) Run VRFGen(1n) to obtain (VRFPK, VRFSK).
(b) Run T to obtain the pair (x, state).),1(),(Pr),,(VRFPKnVRFSKoveVRFVRFSKVRFEval

E
••

(c) Choose r . }1,0{←R

• if r=0, let v=VRFEval(VRFSK, x)
• if r=1, choose)(}1,0{ nbRv ←

(d) Run T to obtain guess.),,,1(),(Pr),,(statevVRFPKnVRFSKoveVRFVRFSKVRFEval
J

••

(e) T=(TE, TJ) succeeds if , guess = r, and x was not asked by either
T

)(}1,0{ nax ∈
E or TJ as a query to VRFEval(VRFSK,) or VRFProve(VRFSK, •). •

 We call α the pseudorandomness constant.
 The above verifiable pseudorandom functions can be constructed assuming the security
of RSA with large prime exponents against subexponentially-strong adversaries. We refer
the reader to [MRV99] for details of the construction.

4 Relations among the soundness notions
 In the section we clarify the relations among all the soundness notions presented in
section 2.
 In [MR01a] Micali and Reyzin have proved the following theorems.
 Theorem 4.1[MR01a] If one-way function exist, there is a compiler-type algorithm
that, for any language L, and any interactive arguments system for L satisfying one-time
soundness, produces another interactive arguments system for the same language L that
satisfies one-time soundness but not (weak) sequential soundness.
 Note that in their proof [MR01a] the malicious prover in the compiled protocol can
convince the honest verifier of a false statement if he can invoke the verifier Vid using the
same common input twice. It means the compiled arguments system does not satisfy
weak soundness. Thus, we get:
 Theorem 4.2 If one-way function exist, there is a compiler-type algorithm that, for any
language L, and any interactive arguments system for L satisfying one-time soundness,

 11

produces another interactive arguments system for the same language L that satisfies one-
time soundness but not weak sequential soundness.
 Theorem 4.3 [MR01a] If one-way functions exist, there is a compiler-type algorithm
that, for any language L, and any interactive arguments system for L satisfying sequential
soundness, produces another interactive arguments system for the same language L that
satisfies sequential soundness but not (weak) concurrent soundness.
 Theorem 4.4 [MR01a] There exists a compiler-type algorithm that, for any language
L, and any interactive proof (or arguments) system for L satisfying concurrent soundness,
produces another interactive proof (respectively, arguments) system for the same
language L that satisfies concurrent soundness but not (weak) resettable soundness.
 We stress that in Micali and Reyzin’s original proofs they did not explicitly claim the
corresponding weak soundness of their compiled protocols. But the compiled protocols in
their proof indeed do not satisfy the corresponding weak soundness notions.
 The main result of this section is the following theorem:
 Theorem 4.5 Assuming the security of RSA with large exponents against
subexponentially-strong adversaries, there is a compiler-type algorithm that, for any
language L, and any interactive arguments system for L satisfying weak (sequential,
concurrent, resettable) soundness, produces another interactive arguments system for the
same language L that satisfies weak sequential soundness but not sequential soundness.
 Proof. This proof uses ``complexity leveraging” [CGGM00, MR01a].
 Let be the following constant: for all sufficiently large n, the length of the NP-
witness y for x∈L of length n is upper bounded by n . We set ε . For a language
L∈NP we construct an arguments system for L on security parameter n while using a
PRF with a (larger) security parameter k= n . This ensures that one can enumerate all
potential NP-witnesses y, in time 2 , which is less than the time it would take to break
the pseudorandomness of PRF because 2 .

γ
γ αγ />

ε

2 < k

γn

γn α

 Let F be a pseudorandom function as defined in definition 3.1: we denote by Fs(x) the
output of F with seed s on input x. Note that such functions exist assuming the security of
RSA with large exponents against subexponentially-strong adversaries. Let m be the a-
priori bounded polynomial guaranteed in the definition of weak (sequential, concurrent,
resettable) soundness, we require that: xxmxFs •+=)1)(()(and we denote by

Fs(x)=R1,… 1)(+xmR , where for each i, 1 i ≤≤ 1)(+xm , xRi = .
 Let x denote the theorem that the prover is trying to prove to the verifier and suppose
x =n. Given any interactive arguments system (P, V) for a language L in NP satisfying

weak (sequential, concurrent, resettable) soundness, we produce another interactive
arguments system (for the same language L that satisfies weak sequential
soundness but not sequential soundness.

),VP ′′

 Add to Key Gen: Generate randomly a n-bit seed s; add s to the key SKid.
 Add P step: Set , and sends () to the verifier. 0... 1)(21 ==== +nmβββ 1)(1... +nmββ

 Add V step: If Fs(x)= , accept and stop. Else randomly selects i in {1, 2, …,
m(n)+1} and sends R

1)(1... +nmββ

i to prover.

 12

 Note that a sequential malicious prover can get V to accept with overwhelming
probability after sequential (mn+1)

′
2 interactions with the honest verifier V on the same

common input x.
′

 However, if the malicious prover is restricted to use the same common input x at most
a-priori bounded polynomial, specifically, m(n), times in his (sequential, concurrent,
resettable) interactions with the honest verifier then we will prove in below that it is
infeasible for the malicious prover to get the honest verifier accept an x and x∉ L.
 First, we assume the F used byV is a truly random function. It can be easily seen that
the malicious prover is infeasible to convince the honest verifier of a false statement if for
each common input x, x is used by the malicious prover at most m(n) times in his
interactions with the honest verifier. We stress that we do not restrict the way with
which the malicious prover interacts with the honest verifier. That is: the malicious
prover can (sequentially, concurrently, resettably) interact with the honest verifier and the
only restriction is that the interactions are ``weak”.

′

 Now, we deal with the real case in which the honest verifier uses a pseudorandom
function rather truly random function. The subtle problem is that in our contest during the
interactions between the malicious prover and the honest verifier the malicious prover
selects many common inputs on the fly. The problem is how to distinguish x∈L or x∉L
for each common input selected by the malicious prover on the fly. In [BGGL01] to
overcome this problem they required their protocol to be also an arguments of
knowledge. What saves us here is the ``complexity leveraging”. That is for each common
input selected by the malicious prover on the fly we just enumerate all his NP-witnesses
in time and decides whether x∈L or not.

γn2
 Now we claim that the malicious prover is also infeasible to convince the honest
verifier of a false statement in his ``weak” interactions with the honest verifier even the
function F used by the honest verifier is a pseudorandom function. Otherwise, suppose
the malicious prover can convince the honest verifier of a false statement with non-
negligible probability in his ``weak” interaction when F is a pseudorandom function.
Then we can construct a distinguisher with size lesser than and distinguish F from a
truly random function with non-negligible probability as follows: The distinguisher runs
the malicious prover while oracle access to the honest verifier to simulate the real
interactions between the malicious prover and the honest verifier. For each common input
x selected by the malicious prover on the fly the simulator decides x∈L or not in time

. If during the simulation the distinguisher find that the honest verifier accepts an
x∉L then he says the oracle is using a pseudorandom function. Note that the size of this
distinguisher is at most poly(n)• which violate the pseodorandomness of the
PRF F. �

αk2

γn2

γn2 <
αk2

 Denote by ``A < B” if there exists a compiler-type algorithm that, for any language L,
and any interactive arguments system for L satisfying soundness notion A, produces
another interactive arguments system for the same language L that satisfies soundness
notion A but not soundness notion B. Then the relations among all the 7 soundness
notions in BPK model can be presented as follows:
 One-time soundness < weak sequential soundness < sequential soundness <weak
concurrent sondness <weak resettable soundness< sequential soundness < concurrent
soundness <resettable soundness.

 13

 Note that there is a cycle in the above chain.

5 3-round (optimal) black-box rZK arguments with weak resettable soundness for

NP in the BPK model
 In this section, we first present a 3-round black-box rZK arguments with weak
concurrent soundness, and then transform it into the one satisfying weak resettable
soundness. Before present the constructions in detail, we first give a comment on the
reasons why our protocol can get simultaneous resettability.
 Comment: In [BGGL01] Barak et al. have proven that any language which has a
black-box ZK arguments with resettable soundness is in BPP. It seems that our results
contradict their results. What saves us here is just the weak soundness. In [BGGL01]
their proof relies on two key observations. One is that a resetting malicious prover can
emulate the actions of the black-box simulator. Thus, in case x∈L, the resetting malicious
prover causes the verifier to accept x with high probability. Another is that by the
resettable soundness condition the resetting malicious prover is infeasible to cause the
verifier to accept x∉L. We stress that these two observations do not work in our weak
resettable soundness setting. First, in the setting of weak soundness the resetting
malicious prover may has no ability to emulate the black-box simulator, otherwise it may
violate the weak soundness condition. Actually, in our protocol a malicious resetting
prover indeed can not emulate the black-box simulator unless it uses a common input
more than m(n) times which violates the weak soundness condition, where m is the priori
bounded polynomial guaranteed in the definition of weak soundness. Second, a resetting
malicious prover indeed can convince the verifier of a false statement if there is no the
weak soundness restriction. What we require is just that if for each x∉L x is not used by a
resetting malicious prover more than a a-priori bounded polynomial times then this
resetting malicious prover is infeasible to cause the verifier accept x. In a nutshell, the
observations in [BGGL01] do not work here in our weak soundness setting.
 There are three crucial tools in our construction: verifiable pseudorandom functions,
Dwork and Naor’s 2-round rWI and ``complexity leveraging”.

5.1 3-round rZK arguments system with weak concurrent soundness for NP in the
BPK model
 We use the ``complexity leveraging” as in [MR01a]. Let α be the pseudorandomness
constant for VRF (that is the output of VRFEval is indistinguishable from randm for
circuit of size , where k is the security parameter of VRF). Let γ be the following
constant: for all sufficiently large n, the length of the NP-witness y for x∈L of length n is
upper bounded by n . Let γ be the following constant: for all sufficiently large n, the
length of the NIZK proof for a statement with length poly(n) is upper bounded by

. We then set γ =max{γ , } and ε . We use a VRF with a larger security
parameter k= . This ensures that one can enumerate all potential NP-witness y, or all
potential NIZK proof , in time , which is less than the time it would take to break
the residual pseudorandomness of VRF (because .

αk2

ε

1

1γ
2

1

Π x′
γ /2γn 2γ α>

n
Π

γn2
γn2 <

αk2)

 14

 Protocol 5.1
 Let x be the common input with length n and m be the priori bounded polynomial as
guaranteed in the definition of weak soundness. That is x is not allowed to be used by a
malicious prover more than m(n) times during his interactions with the honest verifier Vid.
We need a verifiable pseudorandom function F with input length n and output length
2m(n) n• 2. We denote by
VRFEval(VRFSK, x)=)(221)(2

2
2

2
1

2
)(2

1
2

1
1

1 ,...,,,...,,...,,,,...,, nm
nnn

nmnm RRRRRRRRR
 the output of VRF on input x of length n, where for each i, 1 ≤ i n and each j,
1 ≤ j 2m(n),

≤
≤ nR j

i = .
 For a security parameter n, V generates a key pair for the VRF with security parameter
k. V then randomly selects p(n) strings () used as the first round message
in a 2-round Dwork and Naor’s rWI protocol. VRFSK is V’s secret key (SK

)(21
,...,

npVVV RRR

id), and
VRFPK along with the p(n) random strings is V’s public key (PKid).
 Public file: A collection F of recoreds (id, PKid), where
PKid=(VRFPK, ()).

)(21
,...,

npVVV RRR
 Common input: An element x∈L.
 P private input: The NP-witness y for x∈L; V’s id and the file F; a random string w
which determines a PRF fw.
 V private input: A secret key SK.
 P step one:

1. Using the string w as a seed for PRF, generates RP and 2m(n) n strings with
length n each: , from the
inputs x, y and PK

•
2

n
)(21)(2

2
2

2
1

2
)(2

1
2

1
1

1 ,...,,,...,,...,,,,...,, nm
nn

nmnm sssssssss
id.

2. Selects 2m(n) n arbitrary strings with length 2m(n) n•
2, t

≤

• 2 each:
. Let C={C)(221)(2

2
2

2
1)(2

1
2

1
1

1 ,...,,,...,,...,,,...,, nm
nnn

nmnm tttttttt
)(j

i
s tC

j
i ≤ ≤

(i, j), where C(i, j)
= 1 ≤ i n, 1 j 2m(n)}, where C is the one-round perfect binding

commitment scheme. P then sends (Rp, C) to V.
 V step one: Note that SKid=VRFSK.

1. Computes
R=VRFEval(SKid, x)=

, and
pf

)(221)(2
2

2
2

1
2

)(2
1

2
1

1
1 ,...,,,...,,...,,,,...,, nm

nnn
nmnm RRRRRRRRR

j
iR ≤ ≤x=VRFProve(SKid, x). We call each , 1 i≤n, 1 j≤ 2m(n), a block of the

pair (x, id).
2. Randomly selects (j1, j2, …jn), where for each k, 1 ≤ k n, j≤

≤
k is uniformly

distributed over {1, 2, …, 2m(n)}. For each k, 1 k n, computes V≤ k=
VRFEval(SKid,) and pfkj

kR k=VRFProve(SKid,). V then sends ((jkj
kR 1, j2, …, jn),

(V1, …, Vn), (pf1, …, pfn)) to the prover P.
 P step two:
 1. Verify that R is correct by invoking VRFVer(VRFPK, x, R, pfx). If not, abort.
 2. For each k, 1 ≤ k n, verify that V≤ k is correct by invoking
 VRFVer(VRFPK, , Vkj

kR k, pfk). If not , abort.

 15

3. Construct another statement for the Dwork and Naor’s rWI protocol: =``there
exists a NP-witness y such that (x, y)∈ R(x) OR for each i, 1 i ≤ n, there exists an
j∈{1, 2, …, 2m(n)}, such that =V

x′
≤

j
it i.”

4. Generate and send the second round message of Dwork and Naor’s 2-round rWI on
the statement using y as the witness. The randomness used by P is got by
applying his PRF on the transcript so far. That is P sends {NIZK(,),
1 ≤ i ≤ p(n)}) to the verifier V

x′
x′

iVP RR ⊕

 V step two: If all these p(n) NIZK proofs above are acceptable then accept, otherwise
reject.
 Comment: Indeed, our construction above is similar to the one in [RK99, CGGM00,
KP01] for non-constant concurrent ZK protocols and rZK protocols for NP. In the
protocol presented in [RK99, CGGM00, KP01] it is required that in the first round the
verifier sends a message which determines his subsequent actions. The idea there is to let
the verifier use a bit commitment scheme with perfect secrecy. However, we do not need
this determining first message here since the verifier’s action is determined by the VRF
he used.
 Theorem 5.1 Assuming the security of RSA with large exponents against
subexponentially-strong adversaries, the above protocol is 3-round (optimal) black-box
rZK arguments with weak concurrent soundness for NP.
 Proof. (Sketch)
 1. Completeness.
 The completeness of the above protocol is easily followed from the completeness of
the underlying Dwork and Naor’s 2-round rWI protocol.
 2. Resettable zero-knowledge.
 The rZK property can be shown in a way similar to (and simpler than) the way is
shown in [CGGM00].
 Specifically, for any (s, t)-resetting malicious verifier V*, and suppose the outputs of
the stage one of V* are: s(n) distinct values x1, x2, …, xs(n)∈L of length n each, the public
file F and a list of s(n) identities id1, id2, …, ids(n). Intuitively, if for each block Bk of pair
(xi, idj), 1 i, j ≤ n, 1 k 2m(n) n, the simulator can learn the output of VRFEval on B≤ ≤ ≤ •

ns(

k,
then it is easy for the simulator to generate a transcript which is computational
indistinguishable from the real interaction between P and V*. Since for an (s, t)-resetting
verifier V*, there are at most blocks, the simulator works as follows
while oracle accessing to the V

nnm ••)(2)2

*:
 The simulator works in phases. In each phase he uses a
independent random-type to try to simulate the real interaction between P and V

1)(2)(2 +•• nnmns
*. In each

phase he either succeeds in getting a simulated transcript which is indistinguishable from
the real interaction between P and V* or learns the output of VRFEval for a new block.
 3. Weak soundness
 We first note that a computational power unbounded prover can easily convince the
verifier of a false statement since he can get the corresponding VRFSK if his
computational power is unbounded. Hence the above protocol constitutes a arguments
system rather proof system.
 We also note that the above protocol does not satisfy the sequential soundness in the
BPK model. Since for a specific input x∉L, and the specific Vid, a malicious prover P*

 16

can convince the Vid with overwhelming probability after interacting with Vid
sequentially expected times. However in below we will prove that our
protocol does satisfy the weak concurrent soundness and so also satisfies concurrent
soundness in the UPK model.

2))(2(nnm •

≤

1

x′

1+ij
B

 To deal with the soundness of the above protocol we stress that we must be very
careful since our protocol works in a somewhat ``parallel repetition” fashion (although it
is not a complete parallel repetition). The reason is that our protocol is an arguments
system and Bellare et al. have proven that in a 3-round arguments system if the verifier
has secret information regarding historical transcripts then parallel repetition can not
reduce the error probability in general. [BIN97] Note that in our protocol the verifier
indeed has secret information, the SK. To our knowledge, our protocol is the first
arguments system whose error probability is reduced by an ``parallel repetition”.
 The following proof uses a standard reduction technique. That is if the above protocol
does not satisfy the weak concurrent soundness then we will construct a machine T=(TJ,
TE) to break the residual pseudorandomness of the VRF.
 Suppose the above protocol does not satisfy the weak concurrent soundness then in a
concurrent attack executed by a s-concurrent malicious prover P* with an honest verifier
with id, there exists an i, 1 i ≤ s(n) such that V accepts xi, xi∉L and xi is used at most
m(n) times by P*. Now TE fist guesses this ``i” then simulates the concurrent multiple
interactions between P* and V while running P*. Note that TE has oracle access to
VRFEval(VRFSK,) and VRFProve(VRFSK,) and in V’s first step of protocol 5.1, for
each k, 1 ≤ k n, j

• •
≤ k is uniformly distributed over {1, 2, …, 2m(n)}. Also note that as the

Micali and Reyzin’s protocol in [MR01b] TE does not need to rewind the P*. So, TE can
simulates the multiple concurrent interactions between P* and V. When it is the time to
simulate the i-th interaction TE first determines whether xi∉L or not by just enumerating
all the NP-witnesses of xi. If xi∉L then TE runs P* to get the P*’s message in the P step
one. Then TE randomly selects (j1, j2, …jn) from {1, 2, …, 2m(n)}just as the honest
verifier in V step one. Denoted by the corresponding n blocks of the pair (x

njj BB ,...,
1

ij
B

i,
id) selected by TE. Since xi has been used at most m(n) times and for each k, 1 ≤ k n, j≤ k is
uniformly distributed over {1, 2, …, 2m(n)}, then with probability at least 1-2-n TE will
select a new block from all the 2m(n)n blocks of the pair (xi, id). Denote by the new
block selected by T

ij
B

E. Now TE outputs (, state), where state is TE’s historical view.
 Now, TJ receives v, and TJ’s job is to find whether v is a random string or
VRFEval(VRFSK,). T

ij
B

B

nj
B

J then first constructs the new statements with respect to
(VRFEval(VRFSK,), …, VRFEval(VRFSK,), VRFEval(VRFSK,), v,
VRFEval(VRFSK,)). The key observation is that if v is random then most likely there
are no NIZK proofs for with respect to (VRFEval(VRFSK,), …, VRFEval(VRFSK,

), VRFEval(VRFSK,), v, VRFEval(VRFSK,)) since x

x′

j 1−ij
B

1+ij
B

1j
B

n1−ij
B

ij
B

jB i∉L and v is
completely unpredictable by the malicious prover P*. Otherwise, v=VRFEval(VRFSK,

) then according to our assumption with non-negligible probability there exist
acceptable NIZK proofs such that all the p(n) NIZK proofs are all acceptable in the
second round of Dwork and Naor’s rWI protocol. Note that we can enumerate all the

 17

p(n) NIZK proofs in time . Then we check the fractions of acceptable NIZK
proofs in all the NIZK proofs and if this fraction is negligible then we decide that v is a
truly random string and if this fraction is non-negligible then we decide that v=
VRFEval(VRFSK,). Note that < which violates the residual
pseudorandomness of VRF.

γnnp 2)(•

ij
B

γnnp 2)(•
αn2

 According to Reyzin’s result [R01] the round complexity of our protocol is indeed
optimal. �

5.2 3-round black-box rZK arguments with weak resettable soundness for NP
 We transform the 3-round rZK arguments with weak concurrent soundness for NP
(protocol 5.1) into one achieving simultaneous resettability. Since we have claimed that
weak soundness model is stronger than the UPK model it means that the transformed
protocol also remains resettable soundness in the UPK model. Note that in protocol 5.1
the only fresh randomness used by V is to select randomly (j1, j2, …, jn) from {1, 2, …,
2m(n)} in V step one. The idea is just let the verifier use a PRF and apply the PRF on (x,
id, PKid, SKid, and the message sent by P* in P step one of the current session) to generate
the (j1, j2, …jn). Suppose a random string s is the seed determines a PRF fs then the
verifier in the transformed protocol also adds s to his secret key SK. All the security
parameter remains the same as protocol 5.1. And we use the PRF with security parameter
and pseudorandomness constant just as the ones of the VRF. That is, for each common
input x selected by a malicious prover we can determine x∈L or not, in time 2 , which
is less than the time it would take to break the pseudorandomness of the PRF (because

). Denote by Protocol 5.2 the transformed protocol.

γn

γn2 <
αk2

 Theorem 5.2. Assuming the security of RSA with large exponents against
subexponentially-strong adversaries, protocol 5.2 is a 3-round (optimal) black-box rZK
arguments with weak resettable soundness for NP.
 Proof. (Sketch)
 1. Completeness and resettable zero-knowledge
 Since zero-knowledge refers to malicious verifier so we do not restrict a malicious
verifier to generate (j1, j2, …, jn) using a PRF. So the proof for rZK remains the same as
the proof for protocol 5.1.
 2. Weak resettable soundness
 Suppose protocol 5.2 does not satisfy weak resettable soundness. Then in a resetting
attack executed by a s-resetting malicious prover P*, there exists an i, 1 i s(n) such that
V accepts x

≤ ≤
i, xi∉L and xi is used at most m(n) times by P*.

 We first assume the verifier uses a truly random function rather a pseudorandom one.
 Lemma 5.1 Protocol 5.2 satisfies weak resettable soundness assuming V uses a truly
random function.
 We distinguish two cases in a resetting attach executed by s-resetting malicious prover
P*.
 Case 1. For each pair (x, id), P* never repeats the same P step one messages in a
resetting attack.
 In case 1, since we assume V uses a truly random function and P* never repeats the
same P step one message for each pair (x, id), then the output of the truly random
function is also truly random and independent since each time the PRF applies to a new

 18

point. That is, in case 1 if V uses a truly random function then protocol 5.2 coincides with
protocol 5.1. It means that if the s-resetting malicious prover can convince the honest
verifier of a false statement with non-negligible probability in a resetting attack against
protocol 5.2 then he can also do this in a concurrent attack against protocol 5.1, which
contradicts the result that protocol 5.1 is weak concurrent sound.
 Case 2. For each pair (x, id), P* may repeat the same P step one messages in a
resetting attack.
 In case 2 we argue that repeating P step one message multiple times does not add
power to the malicious prover. The reason is that the bit commitment scheme used by the
prover is perfect binding. Suppose, if for an x∉L P* can not convince the verifier when
his P step one message first appears then it also can not convince V afterwards since
otherwise it means P* can decommit to in two different ways with respect to the same P
step one message, which violates the perfect binding of the underlying commitment
scheme. Note that according to the perfect binding of the bit commitment even a
computational power unbounded sender can not decommit in two different ways to the
same commitment.�
 Now we return to deal with the real case in which V uses a pseudorandom function
rather a truly random one. The proof is quite similar to the proof presented in proof for
theorem 4.5. That is, if protocol 5.2 does not satisfy weak resettable soundness when V
uses a pseudorandom function then we can construct a distinguisher with size lesser than

, where k is the security parameter for PRF. The construction for such a distinguisher
is indeed the same as the construction given in proof for theorem 4.5. And the key point
is also that for each x

αk2

i selected by the malicious prover P* on the fly during a resetting
attack the distinguisher can decide xi∉L or not using time much lesser than the time to
break the pseudorandomness of the PRF.�

6 3-round Non-Black-box rZK arguments with resettable soundness in the
preprocessing model
 As indicated by Reyzin, one can not hope to construct black-box rZK protocol with
resettable soundness in the BPK model. So, to achieve simultaneous resettability, one
needs to enhance the BPK model in some reasonable fashion. In previous sections we
have dealt with the weak soundness model which lies in between BPK model and UPK
model and we do achieve simultaneous resettability under this model.
 There is another more imposing model: preprocessing model [CGGM00]. In general,
the preprocessing model postulates that before any interaction among users takes place,
the user have to interact with a trusted system manager which issues them certificates in
case it did not detect cheating at this stage. In other words, in the preprocessing model
each user is guaranteed to know the secret key corresponding to the public-key he
registered. As discussed in [CGGM00] although the preprocessing model is a more
imposing model it is still quite reasonable in practice. For example, in many e-commerce
setting a trusted third party is often assumed.
 The organization of this section is just as the one of section 5. That is we first give a 3-
round rZK arguments for NP in the preprocessing model and then transform it into the
one achieving simultaneous resettability.

 19

6.1 Warm-up: A 3-round non-black-box rZK arguments for NP in the
preprocessing model

 We use a trapdoor commitment scheme with security parameter K and soundness
constant α .
 Protocol 6.1
 For a security parameter n, V generates a key pair (TCPK, TCSK) for the trapdoor
commitment scheme TC with security parameter k. V then randomly selects p(n) strings
() used as the first round message in a 2-round Dwork and Naor’s rWI
protocol, where p is a positive polynomial. TCSK is V’s secret key (SK), and TCPK along
with the p(n) random strings is V’s public key (PK).

)(21
,...,

npVVV RRR

 Public file: A collection F of records (id, PKid), where PKid=(TCPK,
()).

)(21
,...,

npVVV RRR
 Common input: An element x∈L.
 P private input: The NP-witness y for x∈L; V’s id and the file F; a random string w
which determines a PRF fw.
 V private input: A secret key SK=TCSK.
 P step one: Using the string w as a seed for PRF, P first generates (RP, s) from the
inputs x, y, PKid. P then selects an arbitrary string v and computes C=TCCom(PK, v)
suing s as the randomness. P sends (RP, C) to the verifier V.
 V step one: V just randomly selects a string t and sends t to P.
 P step two: P
 1. Constructs another statement for the Dwork and Naor’s rWI protocol: =``there
exists a NP-witness y such that (x, y)∈ R(x) OR v=t”.

x′

 2. Using y as the witness, Generates p(n) NIZK proofs on common input as the
second round message of Dwork and Naor’s 2-round rWI. The randomness used by P is
got by applying his PRF on the transcript so far. That is P sends {NIZK(,),
1 ≤ i ≤ p(n)}) to the verifier V.

x′

PRx′
iVR⊕

 V step two: If all the p(n) NIZK proofs above are acceptable then accept, otherwise
reject.
 The completeness of protocol 7.1 is just followed from the completeness of the
underlying NIZK proof systems.
 Theorem 6.1. Protocol 6.1 is non-black-box resettable zero-knowledge.
 Proof. (sketch) We first consider the simulation for a single session. The simulator S
selects an arbitrary string v and also selects two random strings: RP and s. S then
computes C=TCCom(PK, v) suing s as the randomness and sends (RP, C) to the verifier
V. After receiving t from V, S uses TCSK to decommit to C as t. That is to find such
that C=TCCom(TCPK, t) when the randomness is . This uses the trapdoor feature of
the commitment scheme TC and the hypothesis that the verifier (and so the simulator)
knows this trapdoor. S then constructs and uses as his witness to construct p(n)
NIZK proofs and send them to the verifier. Since TC is of perfect secrecy and Dwork and
Naor’s protocol is rWI we get that the simulated transcripts is computational
indistinguishable from a transcript in a real interaction.

s′
s′

sx′ ′

 Subsequent sessions are simulated in the same way assuming that the inputs of P in
current session is different than that in all previous sessions. Otherwise, we simulates P

 20

step one by copying the values used in the previous session and simulates P step two just
as above.
 We stress that the above simulation is not black-box. The reason is that the simulator
can not extracts the trapdoor TCSK by only oracle accessing to the verifier. �
 Theorem 6.2. For each common input x, x∉L, and for each verifier with PKid, any
malicious prover of size no more than is infeasible to cause the honest verifier V

αk2 id to
accept x in an execution of protocol 6.1.
 Proof. (sketch) The proof is quite simple. On one hand, protocol 6.1 is indeed a public-
coin one so the responses of V in V step one is completely unpredictable by the
malicious prover; On the other hand, since the size of the prover is no more than 2
then the probability for it cheats by giving two decommitment for a same C sent by him
in P step one is at most which is negligible; Also note that since x∉L there no
witness y such that (x, y)∈R(x). So, if for a common input x, x∉L, and for a verifier V
with PK

αk

αk−2

id, a malicious prover of size no more than can cause the honest verifier V to
accept x in an execution of protocol 6.1 with non-negligible probability then it will
violate the soundness condition of the underlying Dwork and Naor’s protocol.�

αk2

6.2 3-round non-black-box rZK arguments with resettable soundness for NP in the

preprocessing model
 We can transform protocol 6.1 into a 3-round non-black-box rZK arguments with
resettable soundness. Roughly, the idea is to make the verifier in protocol 6.1 to use a
PRF in generating the string t in V step one.
 Again, we will use the ``complexity leveraging” as in [MR01a]. Let γ be the
following constant: for all sufficiently large n, the length of the NP-witness y for x∈L of
length n is upper bounded by n . We set ε and use a PRF with a (larger) security
parameter k= . This ensures that one can enumerate all potential NP-witnesses y, in
time , which is less than the time it would take to break the pseudorandomness of
PRF because 2 .

γ αγ />
εn

γn

γn2
2 <

αk

 Protocol 6.2
 For a security parameter n, V generates a key pair (TCPK, TCSK) for the trapdoor
commitment scheme TC with security parameter k. V then randomly selects p(n) strings
() used as the first round message in a 2-round Dwork and Naor’s rWI
protocol. V also needs to randomly select a string z as the seed of PRF f

)(21
,...,

npVVV RRR

z. The pair
(TCSK, z) is V’s secret key (SK), and TCPK along with the p(n) random strings is V’s
public key (PK).
 Public file: A collection F of records (id, PKid), where PKid=(TCPK,
()).

)(21
,...,

npVVV RRR
 Common input: An element x∈L.
 P private input: The NP-witness y for x∈L; V’s id and the file F; a random string w.
 V private input: A secret key SK=(TCSK, z).
 P step one: Using the string w as a seed for PRF, P first generates a (RP, s) from the
inputs x, y, PKid. P then selects an arbitrary string v and computes C=TCCom(PK, v)
using s as the randomness. P sends (RP, C) to the verifier V.

 21

 V step one: V computes a string t by applying fz on (x, PKid, SKid, (RP, C)) and sends t
to P.
 P step two: P
 1. Constructs another statement for the Dwork and Naor’s rWI protocol: =``there
exists a NP-witness y such that (x, y)∈ R(x) OR v=t”.

x′

 2. Using y as the witness, Generates p(n) NIZK proofs on common input as the
second round message of Dwork and Naor’s 2-round rWI protocol. The randomness used
by P is got by applying his PRF on the transcript so far. That is P sends {NIZK(,

), 1 ≤ i p(n)}) to the verifier V.

x′

x′

iVP RR ⊕ ≤
 V step two: If all the p(n) NIZK proofs above are acceptable then accept, otherwise
reject.
 Theorem 6.3 Under the strong DLP assumption, protocol 6.2 is a 3-round non-black-
box rZK arguments with resettable soundness for NP in the preprocessing model.
 Proof. (sketch)
 1. Completeness:
 The completeness of the protocol 6.2 is just followed from the completeness of the
underlying NIZK proofs.
 2. Non-black-box resettable zero-knowledge:
 Since zero-knowledge refers to malicious verifier so we do not restrict a malicious
verifier to generate t using a PRF in V step one of protocol 6.1. So the proof for rZK
remains the same as proof for theorem 6,1.
 3. Resettable soundness:
 The proof for resettable soundness is quite similar to the one presented in [BGGL01].
The difference is that the protocol in [BGGL01] is an arguments of knowledge but the
protocol 6.2 is not. To overcome this gap we again use the ``complexity leveraging”.
 First, we consider an imaginary verifier (denoted WF) who uses a truly random
function F rather a pseudorandom one fz.
 Lemma 6.1. A malicious prover is infeasible to convince the imaginary verifier WF of
a false statement even in a resetting attack.
 Proof. (sketch)
 The proof uses reduction.
 We claim that for any polynomial-size s-resetting prover P* who convinces the verifier
WF to accept some common input x∉L with non-negligible probability ε , there exists a
polynomial-size cheating prover of protocol 6.1 that convince the verifier V with
some PK

P′ ′
id of protocol 6.1 to accept the same x with probability at least ε which is

also non-negligible, where m is a bound on the number of messages sent by the prover P
2/ m

*
in an execution of resetting attack, which contradicts the theorem 6.2.
 The new cheating prover proceeds as follows: It uniformly selects iP′ 1, i2 ∈{1, …,
m}, and invokes (the resetting prover) P* while emulating an imaginary verifier WF as
follows. If the prefix of the current session transcript is identical to a corresponding
prefix of a previous session, then answers by copying the same answer it has given in
the previous session. If P

P′
* sends a message in P step one forms a new transcript prefix,

then answers according to the following two cases: P′
 1. The index of the current message of P* does not equal any of the 2 integers i1, i2
selected above. In this case, provides PP′ * with a uniformly selected string.

 22

 2. Otherwise (i.e. the index of the current message of P* equals to one of the two
integers i1, i2), suppose the common input selected by P* in the current session is x and
the verifier in current session has public-key PKid , then also make this common input
x as the common input for protocol 6.1 and forwards the current message of (P

P′
*) to

with PKV ′ id of protocol 6.1 and feeds P* with the message it obtains from V . ′
 Clearly, for any possible choice of the integers i1, i2, the distribution of messages seen
by P* when emulates an imaginary verifier is identical to the distribution that sees
when actually interacting with such an imaginary verifier. The reason being that in both
cases different prefixes of session transcripts are answered with uniformly and
independently distributed strings, while session transcripts with identical prefixes are
answered with the same string.

P′ P′

 Towards the analysis, we call a message sent by P* in P step one of protocol 7.2 novel
if it forms a new transcript prefix. The UrMessage (prefix Ur means ``the most ancient
version of”) of a non-novel message is the corresponding message that appears in the first
session having a transcript-prefix that is identical to the current session transcript-prefix.
The UrMessage of a novel message is just the message itself. Using this terminology,
note that the new prover succeeds in cheating V in an execution of protocol 6.1 if the
chosen integers i

P′ ′
1, i2 equal the indices (within the sequence of all message sent by P*) of

the two UrMessages that corresponds to the two messages sent in a session in which P*
convinced the imaginary verifier of a common input x∉L. Since with probability non-
negligible probability ε such a convincing session exists, succeeds provided it has
guessed its message indices (i.e. 2 indicessout of m).�

P′

 We return to deal with the real case in which an honest verifier of protocol 7.2 uses
pseudorandom functions rather truly random ones. We claim that a s-resetting malicious
prover is infeasible to convince the honest verifier of a false statement in an execution of
resetting attack. Otherwise, we can construct a distinguisher with size
poly(n)• 2 just as the one constructed in proof of theorem 4.5 and the
distinguisher can distinguish a pseudorandom function from a truly random one with non-
negligible probability, which violates the pseudorandomness condition of the PRF we
used. �

γn2 <
αk

 Acknowledgement: The author is indebted to Reyzin for his many valuable
clarifications and illuminations. The author is also grateful to Lindell for some helpful
clarifications.

References

[BDMP91] M. Blum, A. D. Santis, S. Micali and G. Persiano. Noninteractive Zero-
Knowledge. SIAM Journal on Computing, 20 (6):1084-1118, 1991.
[BFM88] M. Blum, P. Feldman and S. Micali. Noninteractive Zero-Knowledge and it’s
Applications. In STOC’88.
[BGGL01] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound
Zero-Knowledge and Its Applications. In FOCS 2001.
Available: http://www.wisdom.weizmann.ac.il/~oded

 23

http://www.wisdom.weizmann.ac.il/~oded

[BIN97] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the
Error in Computationally Sound Protocols. In FOCS 1997.
[CGGM00] Ran Canetti, O.Goldreich, S.Goldwasser and S.Micali. Resettable Zero-
Knowledge. In STOC’00. . Available from: http://www.wisdom.weizmann.ac.il/~oded/
[DN00] C.Dwork and M. Naor. Zaps and Their Applications. In FOCS 2000.
[FLS99] U. Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge
Proofs under General Assumptions. SIAM Journal on Computing, 29(1): 1-28,1999.
[G00] O. Goldreich. Foundation of Cryptography-Fragments of a Book. 2000, Cambridge
Publication.
[GB01] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. 2001, Available
from: http://www-cse.ucsd.edu/users/mihir/
[GGM86] O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random
Functions. Journal of ACM, 33(4): 792-807, 1986.
[GO94] O.Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Journal of Cryptology, 7(1):1-32, 1994.
[KP98] An Efficient Non-Interactive Zero-Knowledge Proof System for NP with General
Assumptions. J. Cryptology, 1998.
[KP01] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds. In STOC’01.
[MR01a] S. Micali and L. Reyzin. Soundness in the Public-Key Model. In Crypto’01.
Available from: http://www.cs.bu.edu/~reyzin/
[MR01b] S. Micali and L. Reyzin. Min-Round Resettable Zero-Knowledge in the Public-
Key Model. In EuroCrypt’01. Available from: http://www.cs.bu.edu/~reyzin/
[MRV99]: S. Micali, M. Rabin and S. Vadhan. Verifiable Random Functions. In FOCS’99,
pp 120-130.
[R01] L. Reyzin. Zero-Knowledge in the Public-Key Model. Ph.D. thesis, MIT, 2001.
Available from: http://www.cs.bu.edu/~reyzin/
[RK99] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. In EuroCrypt’99. 415-431.
[SCOPS01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe
Persiano and Amit Sahai. Robust Non-interactive Zero Knowledge. In Cryoto 2001.

 24

http://www.wisdom.weizmann.ac.il/~oded/
http://www-cse.ucsd.edu/users/mihir/
http://www.cs.bu.edu/~reyzin/
http://www.cs.bu.edu/~reyzin/
http://www.cs.bu.edu/~reyzin/

	Relations among the soundness notions
	Protocol 6.1
	Protocol 6.2
	References

