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Abstract

We propose a new zero-knowledge undeniable signature scheme which is based

on the intractability of computing high-order even powers modulo a composite.

The new scheme has a number of desirable properties: (i) forgery of a signa-

ture (including existential forgery) is proven to be equivalent to factorisation, (ii)

perfect zero-knowledge, (iii) e�cient protocols for signature veri�cation and non-

signature denial: both measured by O(log k) (multiplications) where 1=k bounds

the probability of error. For a denial protocol, this performance is unprecedented.

Keywords Undeniable signatures, E�cient zero-knowledge protocols.

1 Introduction

Undeniable signatures pioneered by Chaum and van Antwerpen [2, 3] o�er good privacy

service for a signer. An undeniable signature is not self-authenticating, meaning: the

veri�cation of a signature can only be done by interacting with the signer. This property

can be very useful in some electronic commerce applications such as privacy preserving

auctions and contract signing.

The zero-knowledge undeniable signatures of Chaum works in a multiplicative group

modulo a prime number [3]. Gennaro et al extended this notion to working in a group

1



modulo a composite number [4]. The latter is called the RSA-based undeniable sig-

natures. Both share a number of attractive virtues: practical e�ciency, perfect zero-

knowledge and the weakest possible assumption on the prover (signer) that (s)he may

be computationally unbounded.

Nevertheless, we can identify that in two aspects the previous work is inadequate.

First, missing of the exact security against signature forgery. None of the previous

work could have related the di�culty of signature forgery to a standard intractability

assumption.

Second, comparatively poor performance of denial protocols. Any undeniable signa-

ture scheme has to be equipped with a denial protocol which allows an alleged signer

to deny an invalid signature (let us call an alleged signer with respect to an invalid

signature non-signer and non-signature, respectively). Denial protocols in the previous

undeniable signature schemes [3, 4] used Chaum's idea of showing inequality between

the discrete logarithms of two elements, one is related to a non-signature, and the other,

to a piece of information in the non-signer's key certi�cate. Unlike the case of showing

equality of discrete logarithms (used by the signature veri�cation protocols), Chaum's

idea for demonstrating discrete logarithm inequality is by testing a non-signer's ability

to perform brute-force search of a number hidden in a challenge (a real signer will not be

able to do so even computationally unbounded). In order to make the brute-force search

a feasible job the space to be searched is rendered to a small size and consequently, the

search protocol has a no-small error probability. In order to obtain a desirably low

probability for a correct denial of a non-signature, the search protocol is re-run for a de-

sirable number of times. What makes the matter worse is that the search protocol in its

basic version (e.g., as speci�ed in [4]) is not zero-knowledge which spoils the perfect per-

fect zero-knowledgeness of a zero-knowledge undeniable signature scheme. However, it

can be modi�ed to being zero-knowledge by using cryptographic commitment schemes

(Chaum did so in [3]). The use of a commitment scheme multiplies more rounds of

interactions and adds a non-trivial computational load.

Denial protocols are regarded as the bottleneck for the previous undeniable signature

schemes.

1.1 Our Work

We propose a new undeniable signature scheme based on the intractability of comput-

ing high-order even powers modulo a composite. Our scheme augments the virtues of

undeniable signatures that we have listed earlier with two items:

i) Exact security against forging: proven to be equivalent to factorisation, and

ii) A new denial protocol with improved e�ciency: measured by O(log k) (multipli-

cations) where 1=k bounds the probability of error.
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Like the RSA-based undeniable signature scheme of Gennaro et al [4], our scheme

works in the multiplicative group modulo an RSA modulus. For a message M < n

encoded as a quadratic residue, its undeniable signature is a 2u-th root of M modulo n;

namely, let (S;M) be a signature pair, they are related as follows

M � S2u(mod n): (1)

Clearly, u = 1 provides a special case of Rabin's signature scheme [5] which can be

veri�ed publicly (i.e., is self-authenticating). We shall use u su�ciently large to render

an infeasibility for self-authentication. We outline below how this is done.

First, we note that without the factorisation of n, validating (1) can be done in

u squarings modulo n. Secondly, because each squaring can only be performed on

the result of the previous squaring, it is not known how to speedup these u squarings

via parallelisation of multiple processors. Parallelisation of each squaring step cannot

achieve a great deal of speedup since a squaring step only needs a trivial computational

resource and so any non-trivial scale of parallelisation of a squaring step is likely to be

penalised by communication delays among the processors. Thus, we believe that for u >

100, validating (1) without the signer's help is an intractable task. (The intractability

and non-parallelisability have been used as the security basis for the \Time-Lock Puzzle"

of Rivest et al [6].) Thirdly, we shall see that knowing the factorisation of n, creating

pair (S;M) satisfying (1) can be e�ciently done either from M or from S.

Thus, pairs that are related in (1) with a large u can indeed provide an undeniable

signature service, provided we can devise secure and e�cient zero-knowledge protocols

for verifying a valid signature and for denying an invalid one. These will be the topic of

this paper.

Finally, we should notice that, when necessary, it is easy for the signer to convert

undeniable signature pair (S;M) into a Rabin signature pair (S2u�1(modn); M) and

thereby turn an undeniable signature into a self-authenticating signature. In fact, it is

this close relationship between our undeniable signature scheme and the Rabin signature

scheme that enables us to claim the feature of forging equivalent to factorisation (to be

analysed in x6).

1.2 Organisation

In the next section we agree on notations to be used in the paper. In Section 3 we

construct a protocol for certi�cate establishment. In Section 4 we construct a protocol

for proving/verifying a valid pair of undeniable signature. In Section 5 we construct a

protocol for denying a non-signature. In Section 6 we discuss the security issues.

3



2 Notation

Throughout the paper we use the following notation. Zn denotes the ring of integers

modulo n. Z�

n
denotes the multiplicative group of integers modulo n. �(n) denotes

Euler's phi function of n, which is the order, i.e., the number of elements, of the group

Z�

n
. For an element a 2 Z�

n
, Ordern(a) denotes the multiplicative order modulo n of a,

which is the least index i satisfying ai � 1(modn); hai denotes the subgroup generated

by a;
�
x

n

�
denotes the Jacobi symbol of x mod n. We denote by J+(n) the subset of Z

�

n

containing the elements of the positive Jacobi symbol. For integers a, b, we denote by

gcd(a; b) the greatest common divisor of a and b, by lcm(a; b) the least common multiple

of a and b, by a k b the concatenation of the binary bits of a and b, and by jaj the binary
length of a. For a real number r, we denote by brc the 
oor of r, i.e., r round down to

the nearest integer. For an event E, we denote by Pr[E] the probability for E to occur.

3 Key Generation and Certi�cate Establishment

Let Alice be a user. In order to use the scheme, she should �rst construct her RSA

modulus n with a safe-prime structure. This requires n = pq, p0 = (p�1)=2, q0 = (q�1)=2
where p, q, p0 and q0 are all distinct primes of roughly equal size. She should prove in

zero-knowledge to a key certi�cation authority (CA) such a structure of n. This can be

achieved via using, e.g., the protocol of Camenisch and Michels [1].

Alice should generate the primes p0, q0 such that Order2p0q0(2) is su�ciently large

(e.g., Order2p0q0(2) > 2150). We will need this property in x6.2.
Let w 2 Z�

n
satisfy

gcd(w � 1; n) = 1; (2)�
w

n

�
= �1: (3)

It is elementary to show that w satisfying (2) and (3) has the full order 2p0q0. The

following lemma observes a property of w.

Lemma 1 Let n be an RSA modulus of a safe-prime structure and w 2 Z�

n
of the full

order. Then for any x 2 Z�

n
, either x 2 hwi or �x 2 hwi.

Proof It is easy to check �1 62 hwi. So hwi and the coset (�1)hwi both have the half

the size of Z�

n
, yielding Z�

n
= hwi [ (�1)hwi. Any x 2 Z�

n
is either in hwi or in (�1)hwi.

The latter case means �x 2 hwi. 2

3.1 A Building Block Protocol

Let Alice and CA have agreed on n (based on CA's satisfaction on Alice's proof that

n has a safe-prime structure). Figure 1 speci�es a perfect zero-knowledge protocol for
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SQ(w; x; y; n)

Input Common: n: an RSA modulus with a safe-prime structure;

w 2 Z�

n
: an element of the full-order 2p0q0 = �(n)=2 (so w 6� �1 (mod n);

x; y 2 J+(n): x 6� �y (mod n);

Alice: z: x � �wz(mod n), y � �wz
2

(mod n);

1. CA chooses at random r < n, s < n and computes

C
def
= wrxs(mod n), R

def
= xrys(mod n);

He only sends C to Alice;

2. Alice chooses at random t < n and sends to CA:

R1
def
= Ct(mod n), R2

def
= Czwt(mod n);

3. CA sends to Alice: r; s;

4. Alice aborts proof if C 6� wrxs(mod n), otherwise sends to CA: t;

5. CA accepts if R1 � Ct(mod n), R2=w
t � R (mod n), or rejects otherwise.

Figure 1: A Perfect Zero-knowledge Protocol for Squaring Discrete Logarithm

Alice to prove that for w; x; y 2 Z�

n
with n of a safe-prime structure, w of the full order,

and x; y 2 J+(n), they satisfy (note, � below means either + or �, but not both)

9z : x � �wz(mod n); y � �wz
2

(mod n): (4)

Alice should of course have constructed w; x; y to satisfy (4). She sends w; x; y to CA.

CA (has veri�ed n of a safe-prime structure) should �rst check (2) and (3) on w for its

full-order status (which also shows w 6� �1 (mod n)); he should also check x; y 2 J+(n).

Theorem 1 Let w; x; y; n be as speci�ed in the common input in Protocol SQ. The

protocol has the following properties:

Completeness There exists z 2 Zn and x; y 2 Z�

n
satisfying (4); for these values CA

will always accept Alice's proof;

Soundness If (4) does not hold for the common input, then Alice, even computation-

ally unbounded, cannot convince CA to accept her proof with probability greater than
2p0+2q0�1

2p0q0
.
1

Zero-knowledge CA, even dishonest, gains no information about Alice's private input.

1The safe-prime structure of n implies p0 � q
0 � pn and hence this probability value is approximately

1=
p
n.
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Proof

Completeness For any z 2 Zn, let x = wz( mod n), y = wz2( mod n) (both in the plus

case). It is evident from inspection of the protocol that CA will always accept Alice's

proof.

Soundness Suppose that (4) does not hold whereas CA has accepted Alice's proof.

The �rst congruence of (4) holds as a result of Lemma 1. So it is the second congru-

ence that does not hold. Let � 2 Z�

n
satisfy

y � �wz2(mod n) with Ordern(�) > 2: (5)

By asserting Ordern(�) > 2 we exclude the cases for � being any square root of 1, which

consists of either �1, or the other two roots which will render y 62 J+(n).

We only need to consider the case x � �wz(modn). The other case x � wz(mod

n) is completely analogous (and easier).

Since CA accepts the proof, he sees the following two congruences

C � wrxs(mod n); (6)

R � R2=w
t � xrys (mod n): (7)

Examining (6), we see that C � wr(�x)s 2 hwi if s is even, or �C � wr(�x)s 2 hwi if
s is odd. So for either cases of s, we are allowed to re-write (6) into the following linear

congruence with r and s as unknowns

logw�C � r + sz (mod 2p0q0):

For every case of s = 1; 2; � � � ; 2p0q0, this linear congruence has a value for r. This

means that for any �xed C, (6) has exactly 2p0q0 pairs of solutions. Each of these pairs

will yield an R from (7). Below we argue that for any two solution pairs from (6),

which we denote by (r; s) and (r0; s0), if gcd(s � s0; 2p0q0) � 2 then they must yield

R 6� R0 (mod n). Suppose on the contrary

wrxs � C � wr
0

xs
0

(mod n); i.e., wr�r
0 � xs

0�s(mod n); (8)

it also holds

xrys � R � R0 � xr
0

ys
0

(mod n); i.e., xr�r
0 � ys

0�s(mod n): (9)

Using (8) and (5) with noticing x � �wz, we can transform (9) into

(�1)[r�r
0+z(s0�s)]w[z2(s0�s)] � xr�r

0 � ys
0�s � �s

0�sw[z2(s0�s)](mod n);

which yields

�s
0�s � (�1)[r�r

0+z(s0�s)] � �1 (mod n); i.e., �2(s
0�s) � 1 (mod n): (10)
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Recall that Ordern(�) > 2 which implies Ordern(�) being a multiple of p
0 or q0 or both.

However, gcd(s0� s; 2p0q0) � 2, i.e., gcd(2(s0� s); 2p0q0) = 2, so 2(s0� s) cannot be such

a multiple. Consequently (10) cannot hold and we reach a contradiction.

For any s � 2p0q0, it's routine to check that there are 2p0+2q0�2 cases of s0 satisfying

gcd(2(s0�s); 2p0q0) > 2. Thus, if (4) does not hold, amongst 2p0q0 possible R's matching

the challenge C, there are in total 2p0 + 2q0 � 1 of them (matching s and the other

2p0 + 2q0 � 2 s0s) that may collide to CA's �xing of R in Step 1. Even computationally

unbounded, Alice will have at best 2p0+2q0�1

2p0q0
probability to have responded correctly.

Zero-Knowledge If the protocol ever proceeds to Step 5, i.e., CA causes Alice to

disclose any of her knowledge, CA has already known the response R in Step 1. So no

knowledge whatsoever has been disclosed to CA. 2

3.2 Proof of Correct Construction of w2u(mod n)

De�ne

w(u)
def

= w2u(mod n): (11)

With the factorisation of n, Alice can construct w(u) in O(logn) multiplications via the

following two steps:

v
def
= 2u(mod �(n)); (12)

w(u)
def
= wv(mod n): (13)

For u � 1, we can express 2u as

2u =

(
2[2�(u=2)] = [2(u=2)]2 if u is even

2[2�(u�1)=2+1] = [2(u�1)=2]2 � 2 if u is odd

Copying this expression to the exponent position of w2u(mod n), we can express

w
2u(mod n) �

8<
: w

[2(u=2)]2 if u is even

(w[2(u�1)=2])2 if u is odd
(14)

In (14) we see that the exponent 2u can be expressed as the square of another power of

2 with u being halved in the latter. This observation suggests that repeatedly using SQ,

we can demonstrate, in blog2 uc steps, that the discrete logarithm of an element is of

the form 2u. This observation translates precisely into the protocol speci�ed in Figure 2

which will terminate within log2 u steps and prove the correct structure of

w(u+ 1) � w2u+1(mod n):

We shall call this protocol Certi�cate Establishment Protocol since the correctly estab-

lished pair (w;w(u+ 1)) will form a signature reference pair to be placed in Alice's key
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Cert Est(w; u; w(u); n)

Abort and reject if any checking by CA fails, or accept upon termination.
Alice CA

f
def
= w(u); f

?2 J+(n); w
?

6� �f (mod n)
While u > 1 do0
BBBBBBBBBBBBBBBBBBBB@

y
def
= f ;

if u is odd: y
def
= w(u� 1);

x
def
= w(bu=2c);

Sends x; y to CA; Receives x; y from Alice;

x; y
?2 J+(n);

if u is odd: y2
?� f (mod n);

SQ(w; x; y; n);

f
def
= x;

u
def
= bu=2c;

When u = 1:

f
?� w2(mod n);

Figure 2: Certi�cate Establishment Protocol

certi�cate. The protocol is presented in three columns: the actions in the left column

are performed by Alice, those in the right column, by CA, and those in the middle, by

the both parties.

A run of Cert Est(w; u; w(u); n) will terminate within blog2 uc loops, and this is the

completeness property. The perfect-zero-knowledge property follows that of SQ. We

only have to show the soundness property.

Theorem 2 Let n = (2p0 + 1)(2q0 + 1) be an RSA modulus of a safe-prime struc-

ture, w 2 Z�

n
be of the full order 2p0q0, and u > 1. Upon acceptance termination

of Cert Est(w; u; w(u); n), relation w(u) � w2u(modn) holds with probability greater

than

1� blog2 uc(2p0 + 2q0 � 1)

2p0q0
:

Proof Denote by SQ(w; x1; y1; n) and by SQ(w; x2; y2; n) any two consecutive accep-

tance calls of SQ in Cert Est (so y1 = w(u) in the �rst call, and x2 = w2 in the last

call, of SQ in Cert Est, respectively). When u > 1, such two calls prove that there

exists z:

x2 � �wz(mod n); y2 � �wz2(mod n); (15)
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and either

x1 = y2 � �wz2(mod n); y1 � �wz4(mod n); (16)

or

x1 = y22 � w2z2(mod n); y1 � �w4z4(mod n): (17)

Upon u = 1, CA further sees that x2 = w2. By induction, the exponents z (resp. z2, z4,

2z2, 4z4) in all cases of �wz (resp. �wz2 , � � �) in (15), (16) or (17) contain a single factor:
2, and the minus symbol disappears from (15), (16) and (17) since the even exponents

imply all cases of x and y to be quadratic residues. So we can write w(u) = w2t(mod n)

for some natural number t.

Further note that each all of SQ causes an e�ect of having 2t square-rooted in the

integers which is equivalent to having t halved in the integers. Thus, exactly blog2 tc
calls (and no more) of SQ can be made. But CA has counted blog2 uc calls of SQ,

therefore t = u.

Each acceptance call of SQ has the correctness probability of 1� 2p0+2q0�1

2p0q0
. So after

blog2 uc acceptance calls of SQ, the probability for Cert Est to be correct is

(1� 2p0 + 2q0 � 1

2p0q0
)blog2 uc > 1� blog2 uc(2p0 + 2q0 � 1)

2p0q0
. 2

3.3 Certi�cate Issuance

For u > 2100, upon acceptance of Cert Est(w; u; w(u); n), CA shall issue a certi�cate

for Alice. Denote by

Cert(Alice; w; w(u); n)

the certi�cate, which is signed by CA. Anybody, upon seeing Cert(Alice; w; w(u); n)

and trusting CA, understands that the pair w;w(u) forms a reference pair of Alice's

undeniable signature.

3.4 Performance

It is obvious that by preparing all the intermediate values in advance, Cert Est can be

run in parallel to save the blog2 uc rounds of interactions. The number of bits to be

exchanged is measured by O((blog2 uc)(log2 n)).
In each run of SQ, Alice (resp. CA) performs four (resp. six) exponentiation(s)

mod n. So in Cert Est(w; u; w(u); n) Alice (resp. CA) will perform b4 log2 uc (resp.

6blog2 uc) exponentiations mod n. These translate toO(blog2 uc(log2 n)3) bit operations.
This performance is suitable for practical use.
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4 Signature Creation and Veri�cation

4.1 Signature Creation

Denote by M̂ a properly randomized message M such that M̂ is a quadratic residue

modulo n. For example, let h() be a cryptographicly secure hash function and r be

a random number of the size jnj � jhj, then the following is an acceptable message

randomisation scheme

M̂
def
= h(M; r) k r:

With our modulus n, it is expected that, within every four trial of random r, M̂ will be

a quadratic residue modulo n. With the speci�cation of the hash function h, it is easy

to verify the relation between M and M̂ .

Let

v
def
=

 
4p0q0 + 4

8

!u

(mod �(n)): (18)

Then for any M̂ , it is routine to check that

S(M̂)
def
= M̂v

p
1 (mod n) (19)

is a 2u-th root of M̂ (here
p
1 denotes any square root of 1 modulo n). It is clear that

while S(M̂)2, the 2u�1-th root of M̂ , is unique, the existence of four square roots of 1

for our modulus (a Blum integer) renders four possible S(M̂) for each M̂ . In the sequel

we stipulate that Alice uses (18) and (19) to compute S(M̂) from M̂ in which the use

of one of four square roots of 1 is decided by coin 
ipping.

For message M , the pair (S(M̂); M̂) constitutes Alice's undeniable signature.

4.2 Zero-knowledge Signature Veri�cation

Let Bob be a signature veri�er and let Alice have sent to Bob her alleged signature pair

(S(M̂); M̂) and her key certi�cate Cert(Alice; w; w(u); n). Figure 3 describes a perfect

zero-knowledge protocol run between Alice and Bob to establish

9z � 2u(mod �(n)) : w(u) � wz(mod n); M̂ � S(M̂)z(mod n): (20)

Comparing (20) with (4), we note that because Bob knows that Alice's private input is

even (CA has certi�ed so), all the minus cases in (4) disappear from (20). Therefore the

protocol Sig Verify in Figure 3 is essentially the same as SQ in Figure 1 except that

here there is no need to deal with the minus cases.

Theorem 3 Let w;w(u); S(M̂); M̂ ; n be as speci�ed in the common input in Protocol

Sig Verify. The protocol has the following properties:
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Sig Verify(w;w(u); S(M̂); M̂ ; n)

Input Common: n: an RSA modulus with a safe-prime structure;

w 2 Z�

n
: an element of the full-order 2p0q0 = �(n)=2 (so w 6� �1 (mod n);

w(u); S(M̂); M̂ 2 Z�
n
: w(u) is a quadratic residue;

Alice: z � 2u(mod�(n)): w(u) � wz(mod n); M̂ � S(M̂)z(mod n);

1. Bob chooses at random a < n, b < n and computes

C
def
= waS(M̂)b(mod n), R

def
= w(u)aM̂ b(mod n);

He only sends C to Alice;

2. Alice chooses at random t < n and sends to Bob:

R1
def
= Ct(mod n), R2

def
= Czwt(mod n);

3. Bob sends to Alice: a; b;

4. Alice aborts proof if C 6� waS(M̂)b(mod n), otherwise sends to CA: t;

5. CA accepts if R1 � Ct(mod n), R2=w
t � R (mod n), or rejects otherwise.

Figure 3: A Perfect Zero-knowledge Protocol for Signature Veri�cation

Completeness Bob will always accept Alice's proof;

Soundness If (20) does not hold for the common input, then Alice, even computation-

ally unbounded, cannot convince Bob to accept her proof with probability greater than
2p0+2q0�1

2p0q0
.

Zero-knowledge Bob, even dishonest, gains no information about Alice's private in-

put.

Due to the similarity between Sig Verify and SQ, the proof is essentially the same as

that for Theorem 1, with only minor di�erence in the soundness part. So we only need

to prove the soundness.

Proof of Soundness Suppose that (20) does not hold whereas Bob has accepted

Alice's proof.

The �rst congruence in (20) holds as is certi�ed by CA. So it is the second congruence

that does not hold. Let � 2 Z�
n
satisfy

M̂ � �S(M̂)z(mod n) with � 6� 1 (mod n): (21)

Since Bob accepts the proof, he sees the following two congruences

C � waS(M̂)b(mod n); (22)
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R � R2=w
t � w(u)aM̂ b (mod n): (23)

Examining (22), we see thatC � wa(�S(M̂))b 2 hwi if b is even, or�C � wr(�S(M̂))b 2
hwi if b is odd (because w is of the full order, either of the two cases holds due to

Lemma 1). So for either cases of b, we are allowed to re-write (22) into the following

linear congruence with a and b as unknowns

log
w
�C � a + bz0 (mod 2p0q0):

(Note that z0 has no relationship with z.) For every case of b = 1; 2; � � � ; 2p0q0, this
linear congruence has a value for a. This means that for any �xed C, (22) has exactly

2p0q0 pairs of solutions. Each of these pairs will yield an R from (23). Below we argue

that for any two solution pairs from (22), which we denote by (a; b) and (a0; b0), if

gcd(b� b0; 2p0q0) � 2 then they must yield R 6� R0 (mod n). Suppose on the contrary

waS(M̂)b � C � wa
0

S(M̂)b
0

(mod n); i.e., wa�a
0 � S(M̂)b

0

�b(mod n); (24)

it also holds

w(u)aM̂ b � R � R0 � w(u)a
0

M̂ b
0

(mod n); i.e., w(u)a�a
0 � M̂ b

0�b(mod n): (25)

Exponentiating both sides of the second congruence in (24) with z and noticing (21)

and wz � w(u) (mod n) (blessed by CA), we have

w(u)a�a
0 � (

M̂

�
)b

0�b(mod n)

or

�b
0�bw(u)a�a

0 � M̂ b
0�b(mod n)

Comparing this with the second congruence in (25), we derive

�b
0�b � 1 (mod n): (26)

Note that gcd(b0 � b; 2p0q0) � 2. So (26) holds for all odd cases of b0 � b which is

not a multiple of p0 or q0. In Z�

n
, only 1 has this property. So � = 1 and we reach a

contradiction to (21).

For any b � 2p0q0, it's routine to check that there are 2p0+2q0�2 cases of b0 satisfying

gcd(b0 � b); 2p0q0) > 2. Thus, if the second congruence in (20) does not hold, amongst

2p0q0 possible R's matching the challenge C, there are in total 2p0 + 2q0 � 1 of them

(matching b and the other 2p0 + 2q0 � 2 b0s) that may collide to CA's �xing of R in

Step 1. Even computationally unbounded, Alice will have at best 2p0+2q0�1

2p0q0
probability

to have responded correctly. 2
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Denial(w;w(u); S(M̂); M̂ ; n)

Input Common: n: an RSA modulus with a safe-prime structure;

w 2 Z�

n
: an element of the full-order 2p0q0 = �(n)=2 (so w 6� �1 (mod n);

w(u); S(M̂); M̂ 2 Z�

n
: w(u) is a quadratic residue;

Alice: z � 2u(mod�(n)): w(u) � wz(mod n);

1. Alice picks at random e satisfying gcd(e; �(n)) = 1;

she computes T
def
= (S(M̂)e)2

u

(mod n) and sends to Judge: e, T ;

2. Alice and Judge run Sig Verify(w;w(u); S(M̂)e; T; n);

3. Judge accepts the allegation if the run returns rejection;

Otherwise, Judge tests T
?

6� M̂ e(mod n);

Judge dismisses (or accepts) the allegation if the inequality (equality) holds;

Figure 4: A Perfect Zero-knowledge Protocol for Non-Signature Denial

4.3 Performance

In signature creation, let Alice have pre-computed v and
p
1 (see (18) and (19) for

how to create signature by Alice); then creation of a signature takes one exponentiation

modulo n and two instances of coin 
ipping. This amount of work is similar to signing

an RSA signature.

In a run of Sig Verify, Alice (resp. Bob) performs four (resp. six) exponentiations.

This is the same as Alice (resp. Bob) creating four (resp. six) RSA signatures. These

translate to 4 log2 n (resp. 6 log2 n) multiplications, or O(log2 n)
3) bit operations.

Sig Verify is an extremely e�cient protocol.

5 Zero-knowledge Denial of Non-signature

We now describe our new denial protocol.

Let Alice be alleged to have created the undeniable signature pair (S(M̂); M̂) but in

fact this is a non-signature, i.e.,

M̂ 6� S(M̂)2
u

(mod n): (27)

An arbitrator (Judge) wants Alice to demonstrate this inequality. Figure 4 speci�es a

protocol for Alice to do so.

13



Theorem 4 Let w;w(u); S(M̂); M̂ ; n be as speci�ed in the common input in Protocol

Denial. The protocol has the following properties:

Completeness If Judge does not cause an abortion of Sig Verify (i.e., by behav-

ing dishonestly), then Judge will always reach a decision, and in the case of M̂ 6�
S(M̂)2

u

(mod n), the decision will always be dismiss;

Soundness If M̂ � S(M̂)2
u

(mod n), then Alice cannot persuade Judge to dismiss the

allegation with probability greater than
2p0+2q0�1

2p0q0
.

Zero-knowledge Judge, even dishonest, gains no information about Alice's private

input.

Proof

Completeness If Judge does not cause Alice to abort the run of Sig Verify, it is trivial

from the inspection of the protocol that he will always reach a decision.

The completeness property of Sig Verify means that for T � (S(M̂)e)2
u

(modn),

Judge will always accept Sig Verify(w;w(u); S(M̂)e; T; n). Then, since for any e, M̂ e 6�
(S(M̂)2

u

)e(mod n) implies M̂ 6� S(M̂)2
u

(mod n), Judge's decision will be dismiss.

Soundness Suppose M̂ � S(M̂)2
u

(modn). Then for any e of Alice's choice, it will

always hold

M̂ e � (S(M̂)2
u

)e � (S(M̂)e)2
u

(mod n):

So in order to persuade Judge to reach a dismiss decision, Alice's only strategy is to

let Judge accept Sig Verify(w;w(u); S(M̂)e; T; n) for some T 6� (S(M̂)e)2
u

(mod n). By

the soundness property of Sig Verify, this can only be possible with the probability not

exceeding 2p0+2q0�1

2p0q0
.

Zero-knowledge Identical to that Sig Verify. 2

Discussions

� Because of Alice's random choice of e, the mapping from S(M̂) to S(M̂)e is a ran-

dom permutation; therefore Alice cannot be forced to create a (possibly adaptive

chosen) pair of signature on any sensible message.

� This idea of zero-knowledge denial of non-signature cannot be applied to Chaum's

undeniable signature scheme [3] since that scheme works in a prime �eld which

allows public extraction of the e-th root of a �eld element (i.e., the random per-

mutation using a non-secret e breaks down). Nevertheless, it is evident that our

idea can be applied to the RSA-based undeniable signature scheme of Gennaro et

al [4].

5.1 Performance

Evidently, the performance of this denial protocol is the same as that of Sig Verify.

14



6 Security Analysis

The soundness properties reasoned in Theorem 3 and Theorem 4 show the binding of a

signature to a signer and the free of wrong allegation for a non-signer. In this section

we argue two other security properties.

6.1 Unforgeability of Signatures

Theorem 5 Any algorithm which can create a valid signature modulo n in polynomial

time can factor n in polynomial time.

Proof Let A be such an algorithm (maybe probabilistic). On input (M̂; n), A will

output S in a polynomial time satisfying

S2u(mod n) � M̂ (mod n):

Then run A(M̂2; n), the output satis�es

S 02u�1(mod n) � M̂ (mod n):

Clearly, S4 � S 02(modn). With n being a Blum integer, the probability for S2 �
S 0(modn) is only 0.25, and when S2 6� S 0(modn) we know that the probability for

S2=S 0(modn) to be a non-trivial square root of 1 is 0.5. Repeating this procedure a

small number of times, a non-trivial square root of 1 will be found which su�ces for

factoring n. 2

6.2 Indistinguishability of Signatures

One known way to decide whether S is a 2u-th root of a quadratic residue message M̂ ,

modulo n, is to go through u squarings modulo n starting from S. Recall that we have

stipulated that u > 2100, and Order2p0q0(2) > 2150. So no cycle can be met within the

u squarings, namely, the no-less-than 2100 squarings cannot be shortcut in the repeated

squaring method. (Note that Ordern(S) should be at least p0q0 or else we will have

gcd(S � 1; n) > 1.) Clearly, this method is intractable (the intractability is even in the

sense of resisting massive parallelisation as we have discussed in x1.1).
Considering that factorisation of n is even more intractable than performing u squar-

ings (considering n > 21024), we know that any method to ful�ll the decision in time less

than u squarings will likely to constitute a grand breakthrough.

7 Conclusion

We have devised a new zero-knowledge undeniable signature scheme which, while keep-

ing all virtues of the previous undeniable signature schemes, has two important ad-

vantages over them: proven unforgeability equivalent to factorisation and a greatly
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improved e�ciency for zero-knowledge non-signature denial. An additional advantage

is the ease of converting an undeniable signature into a Rabin signature which becomes

self-authenticating.

A limitation that our scheme share with the previous RSA-based undeniable signa-

ture scheme is the need of using a modulus of a non-standard form. To devise a scheme

which can use a standard RSA modulus should be a further work.
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