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1 Introduction

Today we can have more confidence in the strength of our cryptographic algorithms than in the
security of the systems that implement them. Thus, in practice, the greatest threat to the security
we may hope to obtain from some cryptographic scheme may simply be that an intruder breaks into
our system and steals some information that will compromise the scheme, such as an underlying
key.

Once the key is exposed, future uses of it are compromised: the best hope is that the intrusion
is detected and we change keys. However key loss carries another danger. Namely, the security of
past uses of the key are compromised. For example data might have been encrypted under this
key some time back, and the ciphertexts might be in the hands of the adversary. Now that the
adversary obtains the decryption key, it can decrypt the old ciphertexts.

The goal of forward security is to protect against this kind of threat. One endeavors to make
sure that security of past uses of a key, in whatever context, is not compromised by loss of some
underlying information at the present time.

The focus of this paper is forward-security in the symmetric setting, where parties share a key.
We provide a comprehensive treatment including security definitions and practical proven-secure
constructions, for the main primitives in this area, namely pseudorandom bit generators, message
authentication schemes and symmetric encryption schemes.

Of these, however, we claim the first (namely a forward-secure pseudorandom bit generator)
is the most important. Not only is it useful in its own right, but once we have this, the other
primitives can be easily and generically built. We thus start with this.

Forward security in pseudorandom bit generation. Random values need to be generated
in many cryptographic implementations. For example, session-key exchange protocols may need
to generate random session keys. Signature schemes such as DSS require generation of a random
value with each signature. Encryption schemes, both in the symmetric and asymmetric settings, are
usually probabilistic. In any of these settings, if the random value in question is exposed, even some
time after the cryptographic operation using it took place, security is compromised. In particular,
data encrypted under the session key will be exposed once the key is exposed. In DSS, exposure
of the random value yields the secret signing key to an attacker. In most probabilistic encryption
schemes, exposure of the randomness used by the encryption algorithm leads to exposure of the
plaintext or at least loss of partial information about the plaintext.

Often, random values are generated from some seed via a pseudorandom bit generator. With
the threats of exposure discussed above, it is possible this seed will get exposed over time. At this
point, all the past pseudorandom values fall into the hands of the adversary.

To prevent this, we want a generator that is forward secure. This generator will be stateful. At
each invocation it produces some output bits as a function of the current state, updates the state,
and then deletes the old state. An adversary breaking in at any point in time gets only the current
state. The generator is designed so that it is infeasible to recover any previous state or previous
output block from the current state. So if the output blocks were used for encryption as above, an
adversary breaking in would still be unable to decrypt ciphertexts created earlier.

Our formal notion of forward security for generators, given in Section 2.2, actually requires
something stronger: the sequence of output blocks generated prior to the break-in must be indis-
tinguishable from a random, independent sequence of blocks even if the adversary holds the current
state of the generator. This is a strengthening of the notion of security for standard (i.e. not forward
secure) generators that was given by [13, 27].

Construction 2.2 is a way to transform any standard (stateless, not forward secure) pseudoran-
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dom bit generator into a forward-secure pseudorandom bit generator. The construction is quite
simple and cheap. Furthermore we prove in Theorem 2.3 that if the original generator is secure in
the sense of [13, 27] then our constructed one is forward-secure in the strong sense we define. We
also suggest, via Construction 2.4, a design of forward-secure pseudorandom bit generators based
on pseudorandom functions (PRFs). An attractive feature of this design illustrated by Theorem 2.5
is that the PRF need be secure against only a very small number of queries and yet we can generate
many pseudorandom blocks. The PRF can be instantiated via a block cipher or a hash function in
practice, as discussed in Section 2.5.

A natural question is whether existing constructs of stateful generators in the literature are
forward-secure. One such construct is the alleged-RC4 stream cipher. But we show in Section 2.3
that it is not forward secure because its state update process is easily reversible.

In Section 2.6 we look at number-theoretic constructions like those of [13, 12]. These are not
presented as stateful generators, but from the underlying construction one can define an appropriate
state and then use the results of the works in question to show that the generators are forward
secure. In fact this extends to any generator using the iterated one-way permutation based paradigm
of pseudorandom bit generation that was introduced in [13].

These number-theoretic constructions are however slower than the ones discussed above. Our
suggested construction of a forward-secure pseudorandom bit generator is the one of Construction 2.2
instantiated with a block cipher, or the one of Construction 2.2 instantiated with a standard pseu-
dorandom bit generator.

As indicated above, forward-secure pseudorandom bit generators can be useful as stand-alone
tools for generating the random bits needed by other cryptographic primitives, both symmetric
and asymmetric. Now we show that they are also important as building blocks in the design of
forward-secure primitives for other problems in symmetric cryptography.

Forward-secure message authentication. Exposure of a key being used for message authen-
tication not only compromises future uses of the key but makes data previously authenticated under
this untrustworthy, just as for digital signatures [3, 8]. To remedy this, we can use a forward-secure
message authentication scheme. Such a scheme is stateful and key-evolving. The operation of the
scheme is divided into stages i = 1, 2, . . . , n and in each stage the parties use the current key Ki

for creation and verification of authentication tags. At the end of the stage, Ki is updated to Ki+1

and Ki is deleted. An attacker breaking in gets the current key. The desired security property is
that given the current key Ki it is still not possible to forge MACs relative to any of the previous
keys K1, . . . ,Ki−1.

Section 3.2 provides strong, formal definitions of security capturing this. Construction 3.1 then
shows how to build a forward-secure message authentication scheme given any standard message
authentication scheme (in practice this could be any popular one like a CBC-MAC, HMAC [5]
or UMAC [11]) and a forward secure pseudorandom bit generator (in practice this could be any
of the secure ones mentioned above). One simply applies the forward-secure generator to update
the message-authentication key between stages. Theorem 3.2 proves the forward-security of this
construction based on the assumed security of the base primitives.

Secure audit logs. Forward security is relevant in settings like the usage of message authen-
tication for secure audit logs, as discussed in [26]. An attacker breaking into a machine currently
can modify log entries relating to the past, erasing for example a record of the attacker’s previous
(unsuccessful) attempts at break-in. To prevent this we use a forward-secure message authentica-
tion scheme to tag log entries as they are made by the system. Sequence and other information is
included to prevent re-ordering and deletion. A description of such a secure audit log system is in
Section 4.
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The parties can agree on some convention as to how frequent the key updates should be. For
example, maybe once every minute. The frequency reflects their feelings about the likelihood of
break-ins: if fast, automated break-ins are considered more likely the updates should be more
frequent. Our unoptimized implementation can update keys at a rate of once every 100mS without
noticeably increasing system load.

Forward secure symmetric encryption. The technique used to construct a forward-secure
message authentication scheme, based on a standard message authentication and a forward-secure
pseudorandom bit generator, is quite general. In particular, the same technique can be used to
construct a forward-secure symmetric encryption scheme based on a standard symmetric encryption
scheme (in practice this could be any common block-cipher mode of operation, such as CBC with
random IV) and a forward-secure pseudorandom bit generator (in practice this could be any of
the secure ones mentioned above.) Here the adversary breaking in at some point in time gets the
current key but still remains incapable of decrypting data encrypted under the key of any previous
stage. Definitions, the construction, and provable-security results can be found in Section 5. The
construction preserves both security under chosen-plaintext and chosen-ciphertext attack in the
sense that, if the given standard symmetric encryption scheme is secure in one of these senses then
so is the constructed forward-secure scheme.

Extensions. The paradigm of using a forward-secure pseudorandom bit generator to evolve the
key of some standard symmetric primitive is very general, and can also be used to convert standard
primitives to forward-secure versions in the case of other primitives like PRFs or authenticated
encryption schemes [9]. We do not detail these extensions in this paper since they are quite simple.

Related work. Forward security seems to have first received explicit attention in the context of
session key exchange protocols [21, 18], where it is now a common requirement. Forward-security
for digital signatures was introduced in [3, 8] and has since then received much attention, and
forward-security for asymmetric encryption was considered in [24]. Ours seems to be the first
systematic treatment of forward-security in the symmetric setting, but it reflects existing work,
practice and design. Forward-secure pseudorandom bit generation has been used in [4, 22]. In
practice it is common to design pseudorandom bit generators that on each iteration produce a new
seed and delete the old one. Our work can be seen as analyzing, justifying and guiding such existing
practice.

The threat of key compromise has been addressed by other means. One is via distribution
of the key across multiple machines. Specific approaches include threshold cryptography [17] and
proactive secret sharing [23]. (In particular a proactive, distributed pseudorandom bit generator
has been designed by [14, 15].) But distribution is costly. It might be a good option for (say) the
secret signing key of a certification authority since the latter has the resources to invest in multiple
machines. But it is hardly an option for an average user. Forward-security in contrast is possible
in a single-machine environment.

Another, less cryptographic mechanism is embodied in systems such as the those incorporating
FIPS 140-1 certified modules [25]. These protect against key compromise by the use of physical
security and tamper detection to guarantee key erasure. Forward security is a method for providing
many of the same security properties via software means.

Besides providing forward-security, Key-evolving constructs such as those used here can enable
more cryptographic operations to be securely implemented with a single key [1]. Other notions of
security for pseudorandom bit generators have been considered in [16], and it would be fruitful to
augment these with forward security.
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2 Forward-secure pseudorandom bit generators

We recall the standard notion of pseudorandom bit generators. We then specify how forward secure
generators operate and provide a formal notion of security for them. Then we explore constructions.

2.1 Standard Pseudorandom bit generators

A standard pseudorandom bit generator [13, 27] is a function G: {0, 1}s → {0, 1}b+s that takes
input a s-bit seed and returns a string that is longer than the seed by b bits. We adapt the notion
of security of [13, 27] to a concrete security setting [7, 6]. Let D be a distinguishing algorithm that
given a b + s bit string x ‖ y returns a bit. Consider the following experiments:

Experiment Expprg-1
G (D)

y
$← {0, 1}s ; x ‖ y ← G(y)

g
$← D(x ‖ y)

Return g

Experiment Expprg-0
G (D)

x ‖ y
$← {0, 1}b+s

g
$← D(x ‖ y)

Return g

We let

Advprg
G (D) = Pr[Expprg-1

G (D) = 1 ]− Pr[Expprg-0
G (D) = 1 ]

Advprg
G (t) = max

D
{Advprg

G (D)} .

The first term is the prg-advantage of D in attacking G. The second term is the prg-advantage of
G, defined as the maximum, over all adversaries D that have time-complexity at most t, of the
prg-advantage of D in attacking G. This is the maximum likelihood of the security of the generator
being compromised by an attack that is restricted to time t. We adopt the convention that the
time-complexity is the total worst-case execution time of the first experiment above plus the size
of the code of the adversary, all measured in some fixed model of computation. (In particular the
time-complexity includes the time for computation of G in the experiment as well as the running
time of D.) As usual under the concrete security framework [7, 6], there is no formal notion of G
being “secure,” but informally it means that G’s prg-advantage is “small” for “practical” values of
t. All formal results will be in stated in concrete security terms.

2.2 Forward-secure pseudorandom bit generators

Unlike the standard pseudorandom bit generators discussed above, a forward-secure one is a stateful
object, and thus we begin by discussing stateful generators.

Stateful generators. A stateful generator GEN = (GEN.key,GEN.next, b, n) is specified by a
pair of algorithms and a pair of positive integers. The (probabilistic) key generation algorithm
GEN.key takes no inputs and outputs an initial state (also called seed). The (deterministic) next
step algorithm, given the current state, returns a pair consisting of an output block, which is
a b-bit string, and the next state. We can get a sequence Out1,Out2, . . . ,Outn of b-bit output
blocks by first picking a seed St0

$← GEN.key and then iterating (Outi,St i)← GEN.next(St i−1) for
i = 1, . . . , nas depicted in Figure 1. The integer n is the maximum number of output blocks the
generator may be used to produce.

We can imagine the generation process as application controlled. Whenever the application
needs another block of pseudorandom bits it makes a request, at which point the generator is run
upon the current state to produce the needed bits, and the new state is saved.
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GEN.next

-

?

GEN.next

-

?

-St0 St1 St2 Stn−1

GEN.next

-

?

Stn -

Out1 Out2 Outn

Figure 1: Operation of a forward-secure pseudorandom bit generator: A sequence
Out1, . . . ,Outn of pseudorandom blocks is produced starting from an initial seed St0.

We think of St i−1 as being the “key” or “seed” at time i. Forward security will require that
this key is erased as soon as the next one has been generated, so that someone breaking into the
machine gets only the current key.

Forward security. As we have seen above, a standard pseudorandom generator is said to be
secure if its output (on a hidden, random seed) is computationally indistinguishable from a random
string of the same length [13, 27]. For forward security of a stateful generator, more is required.
The adversary may at some point break into the machine where the state is being maintained and
obtain the current state. At that point, the adversary can certainly compute the future output of
the generator. However, we require that the bits generated in the past still be secure, in the sense
of being computationally indistinguishable from random bits. (This implies in particular that it is
computationally infeasible to recover the previous state from the current state).

We allow the adversary to choose, dynamically, when it wants to break in, as a function of the
output blocks seen so far. Thus, the adversary is first run in a “find” stage where it is fed output
blocks, one at a time, until it says it wants to break in, and at that time is returned the current
state. Now, in a “guess” stage, it must decide whether the output blocks it had been fed were really
outputs of the generator, or were independent random bits. We capture this below by considering
two experiments, the “real” experiment (in which the output blocks come from the generator) and
the “random” experiment (in which the output blocks are random strings). Notice that in both
cases, the state advances properly with respect the operation of the generator.

We use the following notation for the adversary. A(find,Out , h) denotes A in the find stage,
taking an output block Out and current history h and returning a pair (d, h) where h is an updated
history and d ∈ {find, guess}. This stage continues until d = guess or all n output blocks have been
generated. (In the latter case the adversary is given the final state in the guess stage.)

Experiment Expfsprg-1
GEN (A)

St0
$← GEN.key

i← 0 ; h← ε
Repeat

i← i + 1
(Out i,St i)← GEN.next(St i−1)
(d, h) $← A(find,Out i, h)

Until (d = guess) or (i = n)
g

$← A(guess,St i, h)
Return g

Experiment Expfsprg-0
GEN (A)

St0
$← GEN.key

i← 0 ; h← ε
Repeat

i← i + 1
(Out i,St i)← GEN.next(St i−1)
Out i

$← {0, 1}b
(d, h) $← A(find,Out i, h)

Until (d = guess) or (i = n)
g

$← A(guess,St i, h)
Return g
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We let

Advfsprg
GEN (A) = Pr[Expfsprg-1

GEN (A) = 1 ]− Pr[Expfsprg-0
GEN (A) = 1 ]

Advfsprg
GEN (t) = max

D
{Advfsprg

GEN (A)} .

The first term is the fsprg-advantage of A in attacking GEN. The second term is the fsprg-advantage
of GEN, defined as the maximum, over all adversaries A that have time-complexity at most t, of
the fsprg-advantage of A in attacking GEN. This is the maximum likelihood of the security of the
generator being compromised by an attack that is restricted to time t. We adopt the convention that
the time-complexity is the total worst-case execution time of the first experiment above plus the
size of the code of the adversary, all measured in some fixed model of computation. (In particular
the time-complexity includes the time for computations of GEN.key,GEN.next in the experiment
as well as the running time of D.) As usual under the concrete security framework [7, 6], there
is no formal notion of GEN being “secure,” but informally it means that GEN’s fsprg-advantage is
“small” for “practical” values of t. All formal results will be in stated in concrete security terms.

Remark 2.1 Let GEN = (GEN.key,GEN.next, b, n) be a stateful generator whose key-generation
algorithm produces random strings of length s bits. Then GEN has a natural associated standard
pseudorandom bit generator G: {0, 1}s → {0, 1}bn defined as follows. For any St0 ∈ {0, 1}s and
i = 1, . . . , n we let (Outi,St i) ← GEN.next(St i−1), and then let G(St0) = Out1 ‖ · · · ‖Outn. Note
that if GEN is a forward-secure stateful pseudorandom bit generator then G is a secure standard
pseudorandom bit generator. In this sense, forward-security implies standard security.

2.3 Alleged-RC4 is not forward-secure

Some stream ciphers like alleged-RC4 (numerous descriptions can be found on the web, for example
[2]) are stateful generators. At each invocation, alleged-RC4 uses an existing table and two table
indices to return some pseudorandom bits, and then updates its table and indices, so the table and
the indices function as the generator state. It is natural to ask whether this stateful generator has
the forward security property. It turns out that it does not. We present an attack demonstrating
this.

Below we express alleged-RC4 in our stateful generator notation. Here, the state variable St is
the tuple (s, x, y), where s is a 256-element table viewed as a map of 8 bits to 8 bits, and x and y
are inputs to this map, each 8 bits long.

Algorithm ARC4.next((s, x, y))
x← x + 1 mod 256
y ← y + s[x] mod 256
Swap s[x], s[y]
Return (s [s[x] + s[y] mod 256] , (s, x, y))

Algorithm AntiRC4((s, x, y))
z ← s [s[x] + s[y] mod 256]
Swap s[x], s[y]
y ← y − s[x] mod 256
x← x− 1 mod 256
Return (z, (s, x, y))

We note that the state updates are reversible. Above we also describe Anti-RC4, which, given
the current state, will run alleged-RC4 backwards, recovering the previous state of the generator
as well as the corresponding alleged-RC4 output. Here z is the output of the previous state, and
(s, x, y) in the output of AntiRC4 is the previous state. This shows that alleged-RC4 is not forward
secure. Actually it is a much stronger attack than required by our forward security definition, since
it recovers the previous states rather than just distinguishing the output of alleged-RC4 from a
sequence of random bits.
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2.4 A construction based on standard generators

There are many existing pseudorandom bit generators which stretch a short seed into a longer
pseudorandom sequence. These generators are not (necessarily) stateful, let alone forward secure.
We show how to build out of such a generator a new, stateful generator, which has the forward
security property as long as the original generator was secure in the standard sense.

Construction 2.2 Let G: {0, 1}s → {0, 1}b+s be a standard pseudorandom bit generator, and let
n ≥ 1 be an integer. We associate to G,n a stateful generator GEN = (GEN.key,GEN.next, b, n)
whose constituent algorithms are as follows:

Algorithm GEN.key

St0
$← {0, 1}s

Return St0

Algorithm GEN.next(St)
r ← G(St)
Return ([r]1..b, [r]b+1..b+s)

The state of this stateful generator is a s-bit string. We are denoting by [r]i..j the substring of r
consisting of the bits in positions i through j.

The following theorem says that this stateful generator is forward secure as long as the given stan-
dard generator G met the standard notion of security of pseudorandom generators of Section 2.1.
The proof is in Appendix A.

Theorem 2.3 Let G: {0, 1}s → {0, 1}b+s be a standard pseudorandom bit generator, let n ≥ 1
be an integer, and let GEN be the stateful generator associated to G,n by Construction 2.2. Then

Advfsprg
GEN (t) ≤ 2n ·Advprg

G (t′) ,

where t′ = t + O(n · (b + s)).

2.5 A construction based on PRFs

We specify a construction of a forward-secure pseudorandom bit generator based on a pseudorandom
function (PRF). A special case of practical interest is when we instantiate the PRF via a block
cipher. We will see that this turns out to be good for cost and security, and is the preferred
construction we suggest. Let us first recall some background about PRFs and their security.

PRFs. A PRF is a map F : {0, 1}s × {0, 1}l → {0, 1}L, where s is the key-length, l is the input
length and L is the output length. For each key S ∈ {0, 1}s we let FS denote the function F (S, ·).
Let Func[l → L] denote the set of all functions with domain {0, 1}l and range {0, 1}L. We now
recall the measure of the security of F from [7], which in turn is a quantified version of the original
notion of [19]. Let D be a distinguishing algorithm, having access to an oracle for a function
f : {0, 1}l → {0, 1}L and returning a bit. Let

Advprf
F (D) = Pr[Df = 1 : S

$← {0, 1}s ; f ← FS ]− Pr[Df = 1 : f
$← Func[l→ L] ]

Advprf
F (q, t) = max

D
{Advprf

F (D)} .

The maximum is over all adversaries D that have time-complexity (as per the usual convention, this
is the total worst-case execution time of the experiment underlying the first term in the difference
above, plus the size of the code of D) at most t and make at most q oracle queries.

Construction. A PRF can be easily transformed into a standard pseudorandom bit generator,
and we can then apply our previous construction. Here are the details.
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Construction 2.4 Let F : {0, 1}s × {0, 1}` → {0, 1}L be a PRF, and let b, n ≥ 1 be integers such
that d(b + s)/Le ≤ 2l. For any s-bit S we let G(S) denote the first b + s bits of the sequence
F (S, 0) ‖F (S, 1) ‖ F (S, 2) ‖ · · ·. (Here we are using S as the key to the PRF, and the integer
inputs to the PRF are interpreted as l-bit strings in some natural way.) This defines a standard
pseudorandom bit generator G: {0, 1}s → {0, 1}b+s. The stateful generator associated to F, b, n is
defined as the stateful generator associated by Construction 2.2 to G,n.

The above construction of GEN is quite efficient, using only d(b + s)/Le applications of F to
implement one step of the forward secure generator (which yields one b-bit output block and an
updated state).

Security. An attractive feature of the PRF based construction is that the security requirements
on the PRF are low in the sense that it need only resist attacks involving a small number of queries,
much fewer than the number of output blocks the generator can generate. This is illustrated by
the following theorem.

Theorem 2.5 Let F : {0, 1}s × {0, 1}l → {0, 1}L be a PRF, let b, n ≥ 1 be integers with d(b +
s)/Le ≤ 2l, and let GEN be the stateful generator associated to F, b, n as per Construction 2.4.
Then

Advfsprg
GEN (t) ≤ 2n ·Advprf

F (q, t′) ,

where q = d(b + s)/Le and t′ = t + O(n · (b + s)).

Proof of Theorem 2.5: Let G be the standard pseudorandom bit generator associated to F, b
as per Construction 2.4. Then

Advfsprg
GEN (t) ≤ n ·Advprg

G (t′) ≤ n ·Advprf
F (q, t′)

where the first inequality is by Theorem 2.3 and the second is standard.

AES based instantiation. Let F = AES. In that case, s = l = L = 128. Let us choose
b = 128 and let n ≥ 1 be an integer. Let GEN be the stateful generator associated to F, b, n as per
Construction 2.4. Each iteration of GEN returns b = 128 output bits and requires d(b + s)/Le = 2
AES computations under the same key, which is quite cheap.

Regarding security, note that Advprf
F (2, t′) can be expected to be very small, on the order of

t′/2s. This is because exhaustive key-search is likely to be the best attack when the attacker has
access to only two input-output pairs of the cipher under the key being attacked. (Cryptanalytic
attacks typically need many more examples, and so do birthday attacks.) Thus, Theorem 2.5 tells
us that the probability of an attacker, having time-complexity t and attacking up to n output
blocks, being able to compromise the forward-security of our AES-based stateful generator, is at
most around 2n · t/2s, meaning we can safely produce up to 264 output blocks.

Hash-function based instantiations. Let H be the cryptographic hash function SHA-1, and
let F : {0, 1}80 × {0, 1}160 → {0, 1}160 be defined by FS(x) = H(S ‖ x) for all 80-bit S and 160
bit x. We could regard F as a PRF with s = 80 and l = L = 160. Setting b = 80, we could
apply Construction 2.4 to get a forward-secure pseudorandom bit generator GEN that outputs 80
pseudorandom bits per stage while using only a single application of the hash function per stage.

Alternatively, and perhaps better for security although more costly, let H be HMAC-SHA-1
[5] and let F : {0, 1}160 × {0, 1}160 → {0, 1}b+160 be defined by letting FS(x) be the first b + 160
bits of the sequence HS(1) ‖HS(2) ‖ · · ·. We could apply Construction 2.4 to get a forward-secure
pseudorandom bit generator GEN that outputs b pseudorandom bits per stage while using d1 +
b/160e applications of H per stage.
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2.6 Number-theoretic constructions

It turns out that existing number-theory based pseudorandom bit generators such as the Blum-
Micali [13] and Blum-Blum-Shub [12] generators can be modified so that they are forward secure.
More generally, this is true of any generator using the paradigm introduced by [13] in which the
seed is an input to an injective one-way function, and the output bits are obtained by iteration of
the function, dropping one hard-core bit into the output at each iteration.

To exemplify this let us look more closely at the Blum-Blum-Shub generator. It is based on
repeated squaring of an initial value x modulo a composite N . We specify the stateful version
below.

Construction 2.6 Let n ≥ 1 be an integer. The constituent algorithms of the stateful BBS
generator GEN = (GEN.key,GEN.next, 1, n) are as follows:

Algorithm GEN.key
Pick primes p, q ≡ 3 (mod 4)
N ← pq ; x

$← Z∗
N

Return (N,x2 mod N)

Algorithm GEN.next((N,x))
Return (Parity(x), (N,x2 mod N))

The key-generation algorithm pick at random primes p, q both congruent to three modulo 4 and
having about the same bit-length. The state of this stateful generator is a pair (N,x) where x is
a quadratic residue in Z∗

N . Parity(x) is 0 if x is even and 1 if x is odd. The length of an output
block is one bit.

Note that in the original generator of [12] one might elect to keep the factorization of N as part
of the seed, and use it in computing the outputs of the generator. This is useful for performance
reasons: doing the squaring modulo the primes and then using Chinese Remainders is significantly
faster than doing the squaring modulo N directly. However this is not an option with the forward
secure version. Had the factorization been part of the state, forward security would have been
compromised: computing square roots modulo primes is easy. As it is we can only have the
modulus in the state.

Forward security of the modified BBS generator can be easily proven, assuming the hardness
of factoring numbers N of the form above, based on the results of [12].

3 Forward-secure message authentication

We recall the standard notion of message authentication schemes and their security. We then
introduce key-evolving message authentication schemes and a formal notion of forward-security for
them. Next we show how a standard message authentication scheme can be transformed into a
forward-secure one by using a forward-secure pseudorandom but generator.

3.1 Message authentication schemes

The definitions here follow [7]. A message authentication scheme mas = (mas.key,mas.tag,mas.vf)
is specified by its key-generation, tagging and verifying algorithms. We say it has key-length b if
the strings (keys) output by mas.key are always of length b bits. Let f be a forging algorithm that
has access to an oracle. Consider the following experiment:
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Experiment Expma
mas(f)

k
$← mas.key ; (M, τ) $← fmas.tag(k,·)(find)

If mas.vf(k,M, τ) = 1 and A did not query M to its oracle
then return 1 else return 0

We let

Advma
mas(f) = Pr[Expma

mas(f) = 1 ]
Advma

mas(q, t) = max
f
{Advma

mas(f)} .

The first term is the ma-advantage of f in attacking mas. The second term is the ma-advantage
of mas. The maximum is over all adversaries f that have time-complexity at most t and make
at most q oracle queries. As above we adopt the convention that the time-complexity is the total
worst-case execution time of the experiment above plus the size of the code of the adversary.

3.2 Forward-secure message authentication schemes

The definitions here are modeled on those for digital signatures [8].

Key-evolving message authentication schemes. A key-evolving message authentication
scheme MAS = (MAS.key,MAS.tag,MAS.vf,MAS.update, n) consists of four algorithms and an
integer n ≥ 1. Randomized algorithm MAS.key is run to obtain the initial key (state) K0. The
operation of the scheme is then divided into stages i = 1, 2, . . . , n, and in stage i the parties use a
key denoted Ki. The key at any stage is obtained from the key at the previous stage via the deter-
ministic update algorithm: Ki ← MAS.update(Ki−1). (After the update, Ki−1 should be deleted
so that it is no longer available to an attacker who might break in.) Within stage i, the parties can
generate a tag (MAC) for message M via 〈τ, i〉 ← MAS.tag(Ki,M). (Notice that the stage number
i is always a part of the tag. This is in order to tell the verifier which key to use for verification.
Also notice that in order to put i in the tag, its value must be obtainable from Ki, and indeed we
will always make sure Ki contains i.) In stage i, a verifier possessing Ki can generate a decision
d ∈ {0, 1} to reject or accept a candidate message-tag (M, 〈τ, i〉)) via the deterministic verification
algorithm: d← MAS.vf(Ki,M, τ).

The parties can agree on some convention as to how frequent the key updates should be. For
example, maybe once a day. The frequency reflects their feelings about the likelihood of break-ins:
if break-ins are considered more likely the updates should be more frequent. But it also gives a
means of extending the lifetime of the message authentication scheme via re-keying. After a certain
number of message have been tagged under Ki−1, it might be advisable to change keys.

Forward-security. The scheme must withstand forgery relative to past keys even if the adversary
has broken in and obtained the current key. We allow an adaptive chosen-message attack under
which the adversary can first obtain valid MACs of messages of its choice under whatever key the
users happen to be using in the current stage, and then based on this decide when to break in. At
the point it breaks in, it is returned the current key and then it wins if it can forge a new message
relative to any previous key. Let us now describe and explain the experiment associated to an
adversary algorithm F :
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Experiment Expfsma
MAS(F )

K0
$← MAS.key ; i← 0 ; h← ε

Repeat
i← i + 1 ; Ki ← MAS.update(Ki−1)
(d, h) $← FMAS.tag(Ki,·)(find, h)

Until (d = forge) or (i = n)
(M, 〈τ, j〉) $← F (forge,Ki, h)
If all the following are true then return 1 else return 0
– MAS.vf(Kj ,M, τ) = 1
– 1 ≤ j < i
– M was not queried of MAS.tag(Kj , ·)

Above, the forger F runs first in a find stage where it gets an oracle for the tagging algorithm under
the current key. At the conclusion of a stage it may decide to output d = forge thereby saying
it is ready to break-in. At that point it is given Ki. Run in its forge stage it now returns a pair
(M, 〈τ, j〉), and wins if τ is a valid tag for message M under Kj . Of course it only wins if j < i
and also if it had never asked previously for the tag of M under Kj . The input h is a history used
by F to maintain information across its own invocations; it might, for example, choose to record
the outcome of its oracle queries here for use in the next stage. We let

Advfsma
MAS(F ) = Pr[Expfsma

MAS(F ) = 1 ]
Advfsma

MAS(q, t) = max
F
{Advfsma

MAS(F )} .

The first term is the fsma-advantage of F in attacking MAS. The second term is the fsma-advantage
of MAS. The maximum is over all adversaries F that have time-complexity at most t and make
at most q queries in each stage. (So the total number of queries made can reach qn.) This is
the maximum likelihood of the forward security of the message authentication scheme MAS being
compromised by an adversary using the indicated resources. As above we adopt the convention
that the time-complexity is the total worst-case execution time of the experiment above plus the
size of the code of the adversary.

3.3 A general construction

We show how a forward secure message authentication scheme can be designed given any secure
standard message authentication scheme and forward-secure pseudorandom bit generator. The base
key K0 for the key-evolving message authentication scheme is a seed (initial state) of the generator.
The key for stage i will be a triple Ki = (i, ki,St i) consisting of the value i indicating the stage
for which this is the key, an actual key ki to be used with the standard message authentication
scheme, and state information Sti for the generator, based on which the next key will be generated
by iteration of the generator. This is detailed below.

Construction 3.1 Let mas = (mas.key,mas.tag,mas.vf) be a standard message authentication
scheme with key-length b. Let GEN = (GEN.key,GEN.next, b, n) be a forward secure pseudorandom
bit generator with block-length b. We associate to mas,GEN the key-evolving message authentica-
tion scheme MAS = (MAS.key,MAS.tag,MAS.vf,MAS.update, n) whose constituent algorithms are
as follows:
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Algorithm MAS.key

St0
$← GEN.key

Return (0, ε,St 0)

Algorithm MAS.tag((i, k,St ),M)
τ ← mas.tag(k,M)
Return 〈τ, i〉

Algorithm MAS.vf((i, k,St ),M, 〈τ, j〉)
If j 6= i then return 0
d← mas.vf(k,M, τ)
Return d

Algorithm MAS.update((i, k,St ))
(k,St)← GEN.next(St)
Return (i + 1, k,St)

Above ε denotes the empty string. Recall that GEN.next returns a pair consisting of a pseudorandom
output block (here b bits long) and an updated state; the above is saying the pseudorandom block
becomes the effective new key for the underlying standard message authentication scheme.

Security. We claim that the key-evolving message authentication scheme we constructed above
is forward secure as long as the underlying message authentication scheme is secure in the standard
sense and the stateful generator is forward secure. The proof of the following is in Appendix B.

Theorem 3.2 Let mas = (mas.key,mas.tag,mas.vf) be a standard message authentication scheme
with key-length b, and GEN = (GEN.key,GEN.next, b, n) a forward secure pseudorandom bit gener-
ator with block-length b. Let MAS be the key-evolving message authentication scheme associated
to mas,GEN as per Construction 3.1. Then

Advfsma
MAS(q, t) ≤ Advfsprg

GEN (t1) + n ·Advma
mas(q, t2) ,

where t1 = t2 = 2t + O(n + b).

Notice that the forward secure scheme can authenticate up to qn messages (q per stage) even though
the base scheme could only handle q. This is an added advantage of key-evolving constructions
already highlighted in [1].

4 Forward-secure audit logs

Computer audit logs contain descriptions of noteworthy events — crashes of system programs,
system resource exhaustion, failed login attempts, etc. The ability to know about the occurrences of
these events is critical for intrusion post-mortem analysis, since it enables the system administrator
to determine the extent of the damage and possibly the method(s) of attack. The first target of
an experienced attacker will be the audit log system: the attacker wishes to erase traces of the
compromise, to elude detection as well as to keep the method of attack secret.

Standard audit log protection techniques typically involve writing the audit log data to some
form of append-only media such as continuous-feed printers, CD-R, or DVD-R drives, or sending
the log data to remote machines. In the former case, there is some form of dedicated hardware
providing append-only storage semantics, preventing attackers from modifying the audit log entries.
In the latter case, the hope is that with distributed logging the probability that the attackers can
break into all the machines unnoticed is far lower than that of breaking into a single machine. In
this case, the log data must be distributed to dedicated logging machines (i.e., one which provides
no other network services, etc) rather than another “normal” machine. Otherwise common-mode
failures, e.g., a bug in the system software common to all the machines, would drastically increase
the chances of an attacker evading detection.

In our application of forward-secure message authentication schemes to audit logs, we use cryp-
tographic means to try to provide the same append-only semantics as dedicated logging hardware.
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Unlike real append-only media, however, it is impossible to prevent data destruction, and the best
that can be achieved is tamper-detection: the audit log is not tamper proof since entries can be
modified or destroyed, but modifications cannot occur undetected.

In our scheme, we modify logging services such as Unix’s system log daemon (syslogd) to write
a tag along with the log message to verify its integrity. As with standard syslogd, any program
may request a log entry be made; syslogd serializes the log entries into the appropriate log file(s).
The log file(s) are later sent to a separate, secure machine for analysis and verification, perhaps
periodically or because intrusion was detected and the system administrator wishes to review the
logs to determine the severity of the breach. This log verifier / analysis host need not be network
connected, and needs to communicate with the logging service only during a set-up phase and when
the log file(s) are actually transferred.

Providing integrity for audit log data is very similar to providing integrity for messages, and
our threat model is very similar to that presented above for message authentication schemes. First,
the attackers first adaptively generate log entries, so that the log entries and corresponding tags are
available to them. This may occur if, for example, user accounts can read the system log files, or if
network logging is performed. Next, the attackers break into the system and obtains the system’s
current state information. Lastly, the attackers attempt to create an alternate history by forging
or altering previously generated log messages.

In addition to simply trying to forge log messages, the attackers may also try to undetectably
delete or reorder previously generated log messages, so in addition to simple message integrity we
require stream integrity, where in addition to the unforgeability of messages we require that the
log messages cannot be reordered or deleted undetectably. When logging with dedicated hardware,
reordering and deletion of log messages is naturally prevented. In our setup, the intruder is allowed
full read/write access to the complete state of the compromised machine, and thus may overwrite
previously generated, locally stored log entries.

We provide forward secure stream integrity by building our audit log scheme on top of forward
secure message authentication schemes. We initialize the logging service by using a forward secure
key agreement protocol, so that the logging service and the log verifier share an initial secret. This
initial secret is used to initialize the message authentication scheme.

When a client program requests that an audit log entry M be made, the logging service uses an
internally maintained counter j to include a sequence number with the message when generating
the tag. The recorded log entry is then the tuple 〈M,MAS.tag(0, j,M)〉. The sequence counter is
then incremented.

To update the logging system to a new stage, we first record a log entry 〈ε,MAS.tag(1, j)〉
prior to running MAS.update. This log entry serves to mark the end of the stage, so that the
actual number of entries made within the stage is known. After running MAS.update, the sequence
number is reset to zero.

Verifying the log entries requires knowledge of the initial secret. It does not, however, require
that the verifier know what stage the log system should be in: the attacker can only use MAS.update
to run forward, so even if the attacker deletes the end-of-stage markers, the attacker cannot obtain
the previous keys to make it appear that no roll-back had occurred. To detect such an attack it
suffices to have the logging service update to the next stage and log a new (random) message prior
to sending the log to the verifier. Only a logging service that has not been rolled back can do this
correctly.

The sequence numbers prevent log message reordering, and the end-of-stage log entry prevents
audit log truncation within previous stages. Since an attacker must break the forward-secure
message authentication scheme in order to generate bogus log messages or to reorder or delete
existing log messages generated in a previous stage, the security of the forward secure audit log
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is the same as that of the forward-secure message authentication scheme, with the proviso of the
slightly shorter messages and one fewer message per stage. (We are also restricted in the number
of log messages per stage by the sequence number’s encoding, since it is a fixed width field.) Secure
audit logs may also be built using forward secure signatures instead of forward secure message
authentication codes, but currently the cost of public key operations would make that prohibitive.

A similar solution is provided in [26]. There, instead of permitting several log entries to be made
per stage, rekeying is performed after each log entry is made, so no per-stage sequence numbers
are needed; the log entries are also encrypted. Our approach is a more modular design: whether
a forward secure encryption scheme should be used is an orthogonal log design decision. Further-
more, our design makes use of an arbitrary forward secure message authentication scheme, thereby
separating the underlying cryptographic problem from the application. By using the forward se-
cure message authentication scheme constructed above, our audit log design inherits its provable
security, while the construction of [26] has only heuristic security arguments.

5 Forward-secure encryption

We recall the standard notion of symmetric encryption schemes and their security. We then in-
troduce key-evolving symmetric encryption schemes and a formal notion of forward-security for
them. Next we show how a standard symmetric encryption scheme can be transformed into a
forward-secure one by using a forward-secure pseudorandom but generator. For simplicity we re-
strict attention to chosen-plaintext attacks, although the constructions and results extend to the
chosen-ciphertext attack case.

5.1 Symmetric encryption schemes

The definitions here follow [6]. A symmetric encryption scheme sym = (sym.key, sym.enc, sym.dec)
is specified by its key-generation, encryption and decryption algorithms. We say it has key-length b
if the strings (keys) output by sym.key are always of length b bits. Let B be an adversary algorithm
that has access to an oracle. Consider the following experiment:

Experiment Expind-cpa
sym (B)

k
$← sym.key

(m0,m1, h) $← Bsym.enc(k,·)(find)
c

$← {0, 1} ; C
$← sym.enc(k,mc)

g
$← Bsym.enc(k,·)(guess, C, h)

If g = c then return 1 else return 0

It is required that the messages m0,m1 produced by B in its find stage have equal length. We let

Advind-cpa
sym (B) = 2 · Pr[Expind-cpa

sym (B) = 1 ]− 1

Advind-cpa
sym (q, t) = max

B
{Advind-cpa

sym (B)} .

The first term is the ind-cpa-advantage of B in attacking mas. The second term is the ind-cpa-
advantage of sym. The maximum is over all adversaries B that have time-complexity at most t and
make at most q oracle queries. As above we adopt the convention that the time-complexity is the
total worst-case execution time of the experiment above plus the size of the code of the adversary.
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5.2 Forward-secure symmetric encryption schemes

Key-evolving symmetric encryption schemes. A key-evolving symmetric encryption scheme
SYM = (SYM.key,SYM.enc,SYM.dec,SYM.update, n) consists of four algorithms and an integer
n ≥ 1. Randomized algorithm SYM.key is run to obtain the initial key (state) K0. The operation
of the scheme is then divided into stages i = 1, 2, . . . , n, and in stage i the parties use a key denoted
Ki. The key at any stage is obtained from the key at the previous stage via the deterministic
update algorithm: Ki ← SYM.update(Ki−1). (After the update, Ki−1 should be deleted so that it
is no longer available to an attacker who might break in.) Within stage i, the parties can encrypt
a message M via 〈C, i〉 ← SYM.enc(Ki,M). (Notice that the stage number i is always part of the
ciphertext. This is in order to tell the decryptor which key to use for decryption. In order to put
i in the ciphertext, its value must be obtainable from Ki, and indeed we will always make sure Ki

contains i.) In stage i a decryptor possessing Ki can decrypt 〈C, i〉) via M ← SYM.dec(Ki, C).

Forward-security. Privacy of data encrypted under Kj must be maintained even if the adversary
is in possession of Ki for any i > j. To capture this, let us now describe and explain the experiment
associated to an adversary algorithm E:

Experiment Expfsind-cpa
SYM (E)

K0
$← SYM.key ; i← 0 ; h← ε

Repeat
i← i + 1 ; Ki ← SYM.update(Ki−1)
(d, (m0,m1, j), h) $← ESYM.enc(Ki,·)(find, h)

Until (d = guess) or (i = n)
c

$← {0, 1}
If j ≥ i then return c
Else

C
$← SYM.enc(Kj ,mc) ; g

$← E(guess,Ki, C, h)
If g = c then return 1 else return 0

Adversary E runs first in a find stage where it gets an oracle for the encryption algorithm under
the current key. At the conclusion of a stage it may decide to output d = guess thereby saying it
is ready to break-in. At that point it must also provide a pair m0,m1 of equal length messages,
together with an indication of the stage j at which it expects to compromise the privacy. One of the
messages, namely mc, is chosen at random and encrypted under Kj to yield a challenge ciphertext
C. E is then given the key Ki (from the break-in) and C, and wins if it guesses g. We let

Advfsind-cpa
SYM (E) = 2 · Pr[Expfsind-cpa

SYM (E) = 1 ]− 1

Advfsind-cpa
SYM (q, t) = max

E
{Advfsind-cpa

SYM (E)} .

The first term is the fsind-cpa-advantage of E in attacking SYM. The second term is the fsind-cpa-
advantage of SYM. The maximum is over all adversaries E that have time-complexity at most t
and make at most q queries in each stage. (So the total number of queries made can reach qn.) This
is the maximum likelihood of the forward security of the symmetric encryption scheme SYM being
compromised by an adversary using the indicated resources. As above we adopt the convention
that the time-complexity is the total worst-case execution time of the experiment above plus the
size of the code of the adversary.
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5.3 A general construction

We show how a forward secure message authentication scheme can be designed given any secure
standard message authentication scheme and forward-secure pseudorandom bit generator, following
the same paradigm used in the case of message authentication. The base key K0 for the key-evolving
symmetric encryption scheme is a seed (initial state) of the generator. The key for stage i will be
a triple Ki = (i, ki,St i) consisting of the value i indicating the stage for which this is the key, an
actual key ki to be used with the standard symmetric encryption scheme, and state information
St i for the generator, based on which the next key will be generated by iteration of the generator.
This is detailed below.

Construction 5.1 Let sym = (sym.key, sym.enc, sym.dec) be a standard symmetric encryption
scheme with key-length b. Let GEN = (GEN.key,GEN.next, b, n) be a forward secure pseudorandom
bit generator with block-length b. We associate to sym,GEN the key-evolving message symmetric
encryption scheme SYM = (SYM.key,SYM.enc,SYM.dec,SYM.update, n) whose constituent algo-
rithms are as follows:

Algorithm SYM.key

St0
$← GEN.key

Return (0, ε,St 0)

Algorithm SYM.enc((i, k,St ),M)
C

$← sym.enc(k,M)
Return 〈C, i〉

Algorithm SYM.dec((i, k,St ), 〈C, j〉)
If j 6= i then return ⊥
M ← sym.dec(k,C)
Return M

Algorithm SYM.update((i, k,St ))
(k,St)← GEN.next(St)
Return (i + 1, k,St)

Recall that GEN.next returns a pair consisting of a pseudorandom output block (here b bits long)
and an updated state; the above is saying the pseudorandom block becomes the effective new key
for the underlying standard symmetric encryption scheme.

Security. We claim that the key-evolving symmetric encryption scheme we constructed above is
forward secure as long as the underlying symmetric encryption scheme is secure in the standard
sense and the generator is forward secure. The proof of the following is similar to the proof of
Theorem 3.2 and hence is omitted.

Theorem 5.2 Let sym = (sym.key, sym.enc, sym.dec) be a standard symmetric encryption scheme
with key size b, and GEN = (GEN.key,GEN.next, b, n) a forward-secure pseudorandom bit generator
with block-length b. Let SYM be the key-evolving symmetric encryption scheme associated to
sym,GEN as per Construction 5.1. Then

Advfsind-cpa
SYM (q, t) ≤ Advfsprg

GEN (t1) + n ·Advind-cpa
sym (q, t2) ,

where t1 = t2 = 2t + O(n + b).
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A Proof of Theorem 2.3

Let A be an adversary attacking the forward security of GEN and having time-complexity at most
t. We want to upper bound Advfsprg

GEN (A). We begin by defining the following sequence of hybrid
experiments:

Experiment Exph-(1,j)
GEN (A) (0 ≤ j ≤ n)

St $← {0, 1}s ; i← 0 ; h← ε
Repeat

i← i + 1
If i ≤ j then Out i

$← {0, 1}b else (Out i,St)← GEN.next(St)
(d, h) $← A(find,Out i, h)

Until (d = guess) or (i = n)
g

$← A(guess,St , h)
Return g

For j = 0, . . . , n we let

P1,j = Pr[Exph-(1,j)
GEN (A) = 1 ] .

Note that the experiments Expfsprg-1
GEN (A) and Exph-(1,0)

GEN (A) are equivalent. This means that

P1,0 = Pr[Expfsprg-1
GEN (A) = 1 ] .

Note however that the experiments Expfsprg-0
GEN (A) and Exph-(1,n)

GEN (A) also not equivalent. The
reason is that in the former, the adversary, although receiving random blocks Out1,Out2, . . . ,, does
receive the true state of the pseudorandom generator when it breaks in, while in the latter, the
state it receives upon breaking in is a random string. We could modify the hybrid experiment to
rectify this, but then the hybrid does not seem amenable to an analysis based on the security of
the generator G. Instead we introduce another hybrid sequence which begins where Exph-(1,n)

GEN (A)
left off, and bridges the gap to Expfsprg-0

GEN (A):
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Experiment Exph-(2,j)
GEN (A) (0 ≤ j ≤ n)

St $← {0, 1}s ; i← 0 ; h← ε
Repeat

i← i + 1
If i ≤ j then (Out i,St)← GEN.next(St)
Out i

$← {0, 1}b
(d, h) $← A(find,Out i, h)

Until (d = guess) or (i = n)
g

$← A(guess,St , h)
Return g

For j = 0, . . . , n we let

P2,j = Pr[Exph-(2,j)
GEN (A) = 1 ] .

Note that the experiments Exph-(2,0)
GEN (A) and Exph-(1,n)

GEN (A) are identical. This means that P2,0 =
P1,n. Also the experiments Expfsprg-0

GEN (A) and Exph-(2,n)
GEN (A) are identical, so

P2,n = Pr[Expfsprg-0
GEN (A) = 1 ] .

Putting all this together we have

Advfsprg
GEN (A) = Pr[Expfsprg-1

GEN (A) = 1 ]− Pr[Expfsprg-0
GEN (A) = 1 ]

= P1,0 − P2,n

= [P1,0 − P1,n ] + [P2,0 − P2,n ] . (1)

We now claim that

P1,0 − P1,n ≤ n ·Advprg
G (t′) (2)

P2,0 − P2,n ≤ n ·Advprg
G (t′) . (3)

Combining Equations (1), (2) and (3) we have

Advfsprg
GEN (A) ≤ 2n ·Advprg

G (t′) .

Since A was an arbitrary adversary with time-complexity at most t, we obtain the conclusion of
the theorem. It remains to justify Equations (2) and (3). We will do this using the security of G.
To justify the first of these bounds consider the following distinguisher D1.

Algorithm D1(x ‖ y) (|x| = b and |y| = s)
j

$← {1, . . . , n} ; i← 0 ; h← ε
Repeat

i← i + 1
If i < j then Out i

$← {0, 1}b
If i = j then (Out i,St)← (x, y)
If i > j then (Out i,St)← GEN.next(St)
(d, h)← A(find,Out i, h)

Until (d = guess) or (i = n)
g ← A(guess,St , h)
Return g
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Suppose we run experiment Expprg-0
G (D1). We notice that it amounts to running Exph-(1,j)

GEN (A)
where j is the value chosen at random by D1 in its first step. Similarly if we run experiment
Expprg-1

G (D1) we notice that it amounts to running Exph-(1,j−1)
GEN (A) where j is the value chosen at

random by D1 in its first step. So

Pr[Expprg-1
G (D1) = 1 ] = 1

n

∑n
j=1P1,j−1

Pr[Expprg-0
G (D1) = 1 ] = 1

n

∑n
j=1P1,j

.

Subtract the second sum from the first and exploit the collapse to get
P1,0 − P1,n

n
= 1

n

∑n
j=1P1,j−1 − 1

n

∑n
j=1P1,j = Advprg

G (D1) .

Note that the running time of D1 is at most the quantity t′ in the theorem statement, whence we
get Equation (2). Now consider distinguisher D2 defined below.

Algorithm D2(x ‖ y) (|x| = b and |y| = s)
j

$← {1, . . . , n} ; i← 0 ; h← ε
Repeat

i← i + 1
If i = 1 then (Out i,St)← (x, y)
If 1 < i ≤ j then (Out i,St)← GEN.next(St)
Out i

$← {0, 1}b
(d, h) $← A(find,Out i, h)

Until (d = guess) or (i = n)
g

$← A(guess,St , h)
Return 1− g

Suppose we run experiment Expprg-1
G (D2). We notice that it amounts to running Exph-(2,j)

GEN (A)
where j is the value chosen at random by D2 in its first step, and then flipping the value of the
answer bit. Similarly if we run experiment Expprg-0

G (D2) we notice that it amounts to running
Exph-(2,j−1)

GEN (A) where j is the value chosen at random by D2 in its first step, and then flipping the
answer bit. So

Pr[Expprg-1
G (D2) = 1 ] = 1

n

∑n
j=1(1− P2,j)

Pr[Expprg-0
G (D2) = 1 ] = 1

n

∑n
j=1(1− P2,j−1) .

Subtract the second sum from the first and exploit the collapse to get
P2,0 − P2,n

n
= 1

n

∑n
j=1(1− P2,j) − 1

n

∑n
j=1(1− P2,j−1) = Advprg

G (D2) .

Note that the time-complexity of D2 is at most the quantity t′ in the theorem statement, whence
we get Equation (3). This concludes the proof of the theorem.

B Proof of Theorem 3.2

Let F be a forger attacking the forward security of the MAS scheme and having time-complexity at
most t. We want to upper bound Advfsma

MAS(F ). To do this we specify an adversary A attacking the
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forward security of the generator GEN, and a forger f attacking the mas scheme, and then bound
the fsma-advantage of F in terms of the ma-advantage of f and the fsprg-advantage of A.

The adversary A. A will receive a sequence of blocks, one by one, and must tell whether they are
outputs of the generator or truly random, with an option to break-in and get the current state at
some point. It will run a simulation of the experiment Expfsma

MAS(F ) by letting the blocks it receives
play the role of the keys ki that are used by mas in the MAS scheme. A will test whether or not F
succeeds on the given sequence of blocks. If so, it bets that the block sequence was pseudorandom,
and if not, it bets that the block sequence was random. In adopting the latter opinion, it is assuming
that forgery is hard on a random block sequence, which we bear out later by providing a forger
which breaks the given (standard) message authentication scheme mas otherwise. The algorithm
A is below, and explanations follow.

Algorithm A(find,Out , h)
if h = ε then h← ε ‖ ε ‖ ε ‖ 0
Parse h as hF ‖hO ‖ hT ‖ i
hO ← hO ‖Out ; i← i + 1
(d, hF )← F 〈mas.tag(Out ,·),i〉(find, hF )
Append to hT the transcript of

oracle queries of F
If d = forge then d← guess
h← hF ‖ hO ‖ hT ‖ i
Return (d, h)

Algorithm A(guess,St , h)
Parse h as hF ‖ hO ‖ hT ‖ i
Parse hO as Out1 ‖ · · · ‖Out i

K ← (i,Out i,St)
(M, 〈τ, j〉)← F (forge,K, hF )
If mas.vf(Out j ,M, τ) = 1 and 1 ≤ j < i and

M was not queried of mas.tag(Outj, ·)
then return 1 else return 0

In the find stage, A receives the current output block Out and runs F in the latter’s find stage.
The notation F 〈mas.tag(Out ,·),i〉(find, hF ) means that F is given the oracle that on input M returns
〈mas.tag(Out ,M), i〉. (A can simulate this oracle since it knows Out .) Thus A is simulating the
tagging oracle MAS.tagKi

that F gets at this stage in the right way given the definition of MAS.
Here hF denotes F ’s history string, which A maintains. In addition A maintains other histories: h0

records the sequence Out1 ‖Out2 · · · of output blocks; hT records the transcripts of oracle queries
made by F so that later, in the guess stage, it is possible for A to determine whether or not M
was ever queried; and i records the current stage. When F breaks in, A does the same, and from
the state St of the generator it gets thereby, returns to F the information the latter would have
obtained had it broken in, namely the key K. Then A lets F try to forge, and tests whether or not
the forgery is valid and new. If so, it returns one, else zero.

Notice that the experiments Expfsprg-1
GEN (A) and Expfsma

MAS(F ) are identical. So

Pr[Expfsprg-1
GEN (A) = 1 ] = Pr[Expfsma

MAS(F ) = 1 ] . (4)

The forger f . We design a forging algorithm f attacking the given scheme mas. It gets an oracle
for mas.tag(k, ·) and eventually outputs a pair (M, τ). It runs F , but on a sequence of random,
independent keys rather than keys obtained via the generator. It begins by making a guess l at the
stage j at which F forges, and runs F so that the role of kl is played by k. To do that, it answers
oracle queries made by F in the l-th stage using mas.tag(k, ·). If j 6= l then f cannot hope to win
and aborts. Also if F requests key Kl at break-in time then f , not knowing kl = k, will be unable
to oblige and again aborts. Barring that it gets a valid forgery with respect to k.

Algorithm fmas.tag(k,·)

l ← {1, . . . , n} ; St0 ← GEN.key ; i← 0 ; h← ε
Repeat
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i← i + 1 ; (Out i,St i)← GEN.next(St i−1) ; ki ← {0, 1}k ; Ki ← (i, ki,St i)
If i = l

Then (d, h)← F 〈mas.tag(k,·),i〉(find, h)
Else (d, h)← F 〈mas.tag(ki,·),i〉(find, h)

Until (d = forge) or (i = n)
If i = l then abort
Else

(M, τ, j)← F (forge,Ki, h)
If j = l then return (M, τ) else abort

Notice that Advma
mas(f) = Pr[Expfsprg-0

GEN (A) = 1 ]/n. That is

Pr[Expfsprg-0
GEN (A) = 1 ] = n ·Advma

mas(f) . (5)

Now combining Equations (4) and (5) we get

Advfsma
MAS(F ) = Pr[Expfsprg-1

GEN (A) = 1 ]

= Advfsprg
GEN (A) + Pr[Expfsprg-0

GEN (A) = 1 ]

= Advfsprg
GEN (A) + n ·Advma

mas(f) .

Now observe that the time-complexity of A is at most t1 and that of f is at most t2. It follows that

Advfsma
MAS(t, q) ≤ Advfsprg

GEN (t1) + n ·Advma
mas(q, t2) ,

as desired.
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