地下化爆与粘滑实验变形样品的微观对比研究*

 $姚大全^1$ 褚玉成² 李学政² 李 杰¹

(¹安徽省地震局 合肥 230031) (²西安 69 号信箱 11 号分箱 西安 710024)

摘要 借助于两种变形产物的定向微观对比观测、鉴别高速变形微观特征标志。对比结果表明:石英冲击微页理、 继形玻璃、切砾微断裂、撞击楔入、放射状破裂、碎砾随机排列和锯齿状破裂等变形形迹是典型高速变形微观标志。 从而为天然古地震震源体的识别提供了客观依据。与此同时,一定程度修正和完善了笔者前期认识。 关键词 地下化爆,粘滑实验,微观标志,震源体 分类号 TV223.1

1 引 言

地下化爆和粘滑岩石破裂实验均为高速变形事 件,它们在变形物质中均会留下特有的印记。粘滑高 速变形产生破坏性地震已被野外和室内研究成果所 证实^[1~4]。显然,过去发生过粘滑事件的准确识别, 对于地震的长期预报和工程场地地震安全性评价均 有着十分重要的意义。

笔者自 90 年代以来, 致力于天然和实验变形产 物中的微观滑移方式标志的对比研究。采用由已知 推未知,由实验推天然,由宏观验证微观的研究思 路。通过在郯庐、则木河、大青山、红河等研究程度 较高的活动断裂带上原态采集天然样品、制备定向 薄片,进行微观观测,并与相应温压条件下岩石破裂 实验过程中产生的粘滑或稳滑变形产物微观特征进 行对比,陆续提出一些断裂滑动特性的微观识别标 志^[5~9]。

然而,自然状态的复杂性和实验条件的简单化 构成了一对矛盾,主要体现在实验室样品尺度、样品 赋存状态等与天然样品存在很大差异,因而两者对 比所得结果也将带有一定程度的不确定性。相比较 而言,地下化学爆炸对周围介质的作用属瞬间高速 变形过程,其状态与震源体相似,而地下化爆又是在 天然状态下发生,且化爆爆心及周围介质组成及温 压环境皆为已知。

实际上,地下化爆相当于人工地震,从震源机制

角度出发,由于介质的不均匀性,化爆尽管是点源起 爆,仍具有天然地震源特征、且与天然地震相比,它 的"震中位置、发震时间与震级"都是完全确定 的^[10]。显然,归纳出化爆后物质结构形态随爆心距 的增加而变化的规律,然后以其作标尺,与类似环境 条件下天然和实验变形产物进行微观对比,则会大 大完善微观粘滑标志,使研究结果更加客观可信。

文[11]就地下化爆石灰岩的冲击变质与实验变 形等方面进行过有益的探索,对本文思路的形成有 启发。这里介绍的即为化爆样品与粘滑实验样品对 比研究的初步成果。

化爆样品研究过程和显微变形特征 2

化爆样品直接取自地下化爆现场,变形介质主 要是花岗岩类。样品自爆心向周围近乎均匀采集,原 态制备薄片。为对比起见,爆前样品也磨制一些薄 片,对其进行显微观测,发现岩石基本上呈等粒结 构,一般无变形。

爆后样片显微观测发现自爆心向外见不同程度 变形,变形强度向外逐渐减弱,近化爆空腔壁附近, 击波应力很高,加上高温,矿物都具有脆-塑和塑性 变形,石英甚至变成继形玻璃(thetomorphic glass); 稍向外石英中发现冲击微页理(shock lamellae), 云母 类等较柔性矿物中主要显示膝折、扭曲等脆-塑性变 形。以下简要介绍其显微变形特征。应说明的是, 因笔者尚缺乏 7 kb围压下的粘滑实验样品,考虑

¹⁹⁹⁸年1月12日收到初稿, 1998年6月3日收到修改稿。

^{*} 地震科学联合基金资助项目(9507421)。

作者 姚大全 简介: 男, 1956 年生, 硕士, 1982 年毕业于合肥工业大学地质系地质专业, 现任研究员, 主要从事活动构造、工程地震方面的研究 工作。

到对比, 故化爆样品仅取相对应的低压部分。

以花岗闪长岩为例,按离爆心方向排列各样品, 依次对其进行观测,并将结果统一列表(见表 1),样 品取自距爆心 29.16~46.51 m 的距离范围,击波峰 压区间自 10~4.7 kb(据爆前三轴实验与爆后相应观 测数据推算),该距离区间温度已接近常温(32℃~ 27℃)。变形形貌随着爆心距增加大致作有规律的变 化。

表 1 化爆冲击花岗闪长岩薄片中微观变形特征(离爆心方向) Table 1 Microscopic deformation characters in thin section of granodiorite under chemical explosion shock(a way from the center of explosion)

样号	距爆心 距离/ m	参考击波 峰压/ kb	微观变形特征	裂隙指数 / n •mm ^{- 1}
Gc01	29.16	10.0	平行破裂,锯齿状破裂,垂 直向张裂。	6.19
Gc02	32.44	9.4	平行破裂 , 锯齿状破裂 , 垂 直向张裂。	4.59
Gc03	33.05	9.1	揉皱,破裂,平行破裂,切 砾微断裂错移锯齿状破裂。	4.32
Gc05	33.71	8.8	屏裂(撞击及放射状破裂), 平行破裂, 脆韧性变形等, 定向流动构造。	5.17
Gc06	34.37	8.5	屏裂,张裂脉,平行破裂。	3.81
Gc07	35.22	7.9	脆韧性过渡变形,扭折,破 裂。	3.41
Gc09	36.12	7.4	云母膝折和弯曲,放射状 破裂。	3.78
Gc010	38.05	6.8	放射状破裂,扭裂。	2.93
Gc012	39.12	6.4	碎裂,碎砾随机排列,碎斑 中见平行脉。	3.56
Gc013	40.02	6.0	云母强烈揉皱,膝折、切砾 微断裂。	5.53
Gc014	40.63	5.9	揉皱,破裂,切砾微断裂。	3.44
Gc015	41.19	5.8	s 形扭折,揉皱,破裂,雁 列状平行破裂。	3.25
Gc016	41.77	5.7	云母扭折膝折,蜈蚣形破 裂。	3.03
Gc017	43.24	5.4	膝折 扭折 破裂。	3.04
Gc018	46.51	4.7	蜈蚣形破裂。	2.79

* $kb = 10^2 MPa_{\circ}$

在近爆心处,因压力较高,变形强烈,现象丰富,多见扭曲和破裂共存,单位距离裂隙密度(即裂隙指数)高。视域内,既可见不规则破裂、屏裂和切砾微断裂等发生在刚性矿物中的高速变形遗迹(图1),也可见到云母类矿物中显示的膝折、强烈扭曲等变形现象;向外,变形强度稍低,以脆塑性过渡变形和脆性变形为主要特征,如膝折带和扭折带过渡为切砾微破裂,碎砾随机排列,发育蜈蚣形破裂等(图2)。裂隙指数大致呈逐步降低的趋势;再向外,变形程度更弱,裂隙指数更低。

Gc04, 化爆, 9kb,(+),10^{*}6

图 1 错移石英颗粒的切砾微断裂 Fig. 1 Gravel-cutting microfracture of dislocated quartz gravel

Gc04, 化爆, 9kb,(+),10^{*}6

图 2 蜈蚣形破裂 Fig. 2 Centipede-shape crack

3 实验样品研究过程和显微变形特征

考虑到化爆样品温度衰减快, 稍离爆心温度很 快降低到接近常温, 故岩石破裂实验主要在室温变 围压的状态下进行。实验采用 Griggs 型固体介质三 轴实验装置, 在伺服控制的系统下进行。数据采集 与处理均由计算机完成, 应变速率为 10⁻⁴/s, 用 Pb 作传压介质, 压力进行摩擦校正。作为实验介质的 石英岩和花岗闪长岩分别采自河北迁安和北京周口 店, 岩样加工成高 20 mm, 直径 10 mm 的圆柱体。 样品在室温下自然干燥, 实验装样方式和实验方法 见文[12]的相关描述。每件样品均达到粘滑(高速变 形)事件发生, 并维持相应一段时间。部分实验资料 见文[13]。 将实验后的样品原态保存,用环氧树脂加三乙 醇氨配制的固化液滴注微破裂带,再在恒温状态下 均匀原态固结实验后的变形物质,最后平行于样品 长轴和垂直于破裂面走向切制定向薄片。按不同岩 类和不同围压分类,并进行对比微观观测。

3.1 石英岩类样品观测结果

围压自低到高排列共有 4 个试样: Q_e12 样品 (2.5 kb)显示碎砾随机排列,横向锯齿状追踪张裂 (图 3); Q_e11 样品(3.0 kb)中,除碎砾随机排列外, 尚可见切砾微断裂; Q_e16 样品(3.5 kb)显示撞击楔 入及放射状破裂等典型粘滑标志; Q_e17 样品(4.0 kb)中可见 2 次切砾变形等多次高速变形特征。

Q_e12,粘滑实验,2.5 kb,(+),10 ^{*}6

图 3 锯齿状破裂 Fig. 3 Saw-teeth crack

3.2 花岗闪长岩类样品观测结果

G₀₃, G₂₃, G₄₁和 G₆₂均为 5 kb 围压下发 生粘滑的样片,镜下可见丰富的高速变形标志,如 切砾微断裂(图 4)、撞击放射状破裂和碎砾随机排列 等现象。G₀₅ 围压均增至 6 kb,可见切砾微断裂断 错张破裂面等 2 次变形标志,放射状破裂和碎砾随 机排列现象;G₂₄和 G₈₇ 围压至 7 kb,显示强烈的 高速变形现象,尤其是具有塑性的云母被切砾微断 裂平直错开。错动面方向与云母解理纹斜交,沿断 面无拖曳现象,更是粘滑典型表征。

4 化爆与实验样品观测结果分析

化爆样品由外围向爆心与实验样品自低围压到 高围压的环境条件类似,化爆与粘滑同属瞬间高速 变形事件,因而具有一定的可比性。实际情况正是 如此,近乎相似的围压区间内出现的微观变形形态 有一定的相似性。如在化爆样片中随着压力增加变 形变化趋势可概括为:变形不明显 膝折、扭曲、切 砾、蜈蚣形破裂和碎砾随机排列 膝折、扭曲、不规 则破裂、切砾和屏裂(撞击及放射状破裂) 石英中 出现冲击微页理 石英中产生继形玻璃;在实验样 片中,这种变化趋势可概括为:变形不明显 碎砾 随机排列和锯齿状破裂 放射状破裂、撞击楔入及 多次高速变形遗迹 切砾微断裂、放射状破裂、撞 击楔入及塑性矿物被错移。可见,两者变化趋势较 为一致,即随着压力升高,微观变形标志趋于多样 化,变形程度随之增高。与此同时,证实了石英冲击 微页理、继形玻璃、切砾微断裂、撞击楔入现象、放 射状破裂、碎砾随机排列的锯齿状破裂等是典型的 高速变形标志,可作为粘滑标志指示物。事实上,石 英冲击微页理、继形玻璃、方解石重结晶和云母扭 折带均在陨击物及化爆冲击物中频频发现,并已被 确认为冲击变质微观标志^[11,14~16]。

Ge62,粘滑实验,5kb,(+),10^{*}4

图 4 切砾微断裂引起的斜长石双晶纹平直错移 Fig. 4 Plagioclase twins dislocated straight by a gravel-cutting micrfracture

另一方面, 化爆样品与实验样品在变形形态上 尚存在若干不一致之处, 主要表现为: 就化爆样品 而言, 一是脆、塑性变形现象共存, 二是变形起动应 力较高。究其原因, 可能与样品尺度及围限条件有 关。如在4kb应力条件下的化爆样品中变形已不显 著, 但在实验中却是变形较为强烈的应力区段。对 此, 我们认为, 化爆处于天然状态下, 某点击波峰压 达4kb后, 将迅速向外传递衰减(击波传播速度达到 5 m/ms), 因作用时间极为短暂。故此处样品承受应 力能力相对高一些, 不易留下碎裂等不连续变形; 而在实验室状态下, 石质样品受钢套围限, 应力集 中作用于体积很小的样品中, 所以同应力作用下变 形较化爆状态下明显, 也易于留下碎裂错移等不连 续变形标志。同样,由于这方面原因,在其它条件相 似情况下,化爆样品中易于形成脆、塑性共存的组 合变形标志,而实验样品中则以脆性变形为主。

应强调指出的是, 化爆样品存在矿物的塑性变 形现象, 未变形的零前样品在化爆高速冲击下出现 冲击页理、膝折、扭折等标志, 表明在粘滑等高速变 形事件中确实存在塑变现象, 这是对文[7~9]工作 结果的重大修正和完善。

致谢 在岩石破裂实验过程中,得到张 流、林传 勇先生的精心指导,两位先生还无偿借用部分实验 样品薄片;在笔者多年的潜心探索中,一直得到丁 国瑜、马 瑾、邓起东和张培震先生的热情鼓励和 指教。在此一并表示衷心感谢!

参考文献

- Byerlee J D, Mjachkin V, Summers R, et al. Structures developed in fault gouge during stable sliding and stick-slip. Tectonophysics, 1978, 44(2): 161~171
- 2 Sibson R H. Continental fault structure and the shallow earthquake source. J. Geol. Soc. London, 1983, 140(4): 741 ~ 767
- 3 何永年,杨主恩.古地震微观标志的研究及其意义.中国地震, 1985,1(3):76~81
- 4 杨主恩.断层岩与地震的关系.见:国家地震局地质研究所编. 地震地质论文集.天津:天津科学技术出版社,1986,99~122

- 5 姚大全,汤有标.柔性断层错动产物的微观研究方法初探.地震 研究,1992,15(1):63~69
- 6 姚大全,汤有标,李 杰等.活动断裂带上粘滑和蠕滑标志及其研究意义.地球物理学进展,1993,8(4):140~148
- 7 姚大全,汤有标.活动层断错产物定向微观与地震标志的研究. 见:中国地震学会地震地质专业委员会编.中国活动断层研究. 北京:地震出版社,1994,274~280
- 8 姚大全,汤有标,李 杰等. 郑庐断裂带变形产物中的微观粘滑 与蠕滑标志. 地震地质,1995,17(2):177~184
- 9 Yao Daquan, Tang Youbiao, Li Jie, et al. Microscopic indicators of stick-slip and creep-slip in deformation piedmont active fault. Earthquake Research in China, 1996, 10(1): 55 ~ 63
- 10 詹志佳,高金田,胡荣盛等.地下核爆炸后的地磁观测及其结果.地震学报,1992,14(3):353~355
- 11 褚玉成,谢先德,蔡华昌等.地下核爆炸石灰岩的冲击变质与实验研究.地球化学,1985,(4):304~312
- 12 张 流,冯锦江,李 彪. 岩体失稳过程中的震荡现象及断层的 多向错动形迹。地震地质,1992,14(1):1~9
- 13 林传勇,张 流.实验变形石英岩的显微构造研究.见:国家地 震局地质研究所编.实验变形岩石的显微构造与形貌特征. 1990,4~12
- 14 Cummings D. Shock deformation of biotite resulting from a nuclear explosion. Science, 1965, 148: 950 ~ 952
- 15 Short N M. Effects of shock pressures from a nuclear explosion on mechanical and optical properties of granodiorite. Journal of Geophysical Research, 1966, 71(1): 4~7
- 16 谢先德,赵景德.冲击变质石英的光学常数变化范围和微页理 分布特征.矿物学报,1982,(2):81~92

MICROSCOPIC COMPARATIVE RESEARCH BETWEEN DEFORMATION SAMPLES OF CHEMICAL EXPLOSION AND STICK-SLIP EXPERIMENT

Yao Daquan¹ Chu Yucheng² Li Xuezheng² Li Jie¹

(¹ Seismological Bureau of Anhui Province, Hefei 230031 China) (² Box 69-11, Xi an 710024 China)

Abstract Microscopic characteristics of high-speed deformation are distinguished by means of directive microscopic comparative observation. It is shown that the deformation appearances are the typical microsymbols of high-speed deformation, such as quartz shock lamellae, thetomorphic glass, mineral twist and kink, gravel-cutting microfractures, collision wedge, radial crack, gravel arrangement at random and saw-teeth shape crack. An objective basis is provided for the identification of natural focus body of paleoearthquake. As a result, the authors early stage understanding is revised and perfected.

Key words underground chemical explosion, stick-slip experiment, microsymbols, seismic focus body