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Abstract

D. Boneh and R. Venkatesan have recently proposed an approach

to proving that a reasonably small portions of most signi�cant bits of

the DiÆe{Hellman key modulo a prime are as secure the the whole key.

Some further improvements and generalizations have been obtained

by I. M. Gonzales Vasco and I. E. Shparlinski. E. R. Verheul has

obtained certain analogies of these results in the case of DiÆe{Hellman

keys in extensions of �nite �elds, when an oracle is given to compute

a certain polynomial function of the key, for example, the trace in

the background �eld. Here we obtain a new result in this direction

concerning the case of so-called \unreliable" oracles. The result has

applications to the security of the recently proposed by A. K. Lenstra

and E. R. Verheul XTR cryptosystem.

1 Introduction

Let IFq denote a �nite �eld of q elements.

D. Boneh and R. Venkatesan [1] have proposed an approach to proving

that about n1=2 of most signi�cant bits of the DiÆe{Hellman key modulo an

n-bit prime are as secure as the whole key. Their results have been generalized

(and slightly corrected) by I. M. Gonzales Vasco and I. Shparlinski [7, 8].

A detailed survey of several other results of this type (including the RSA

cryptosystem and the discrete logarithm problem) has recently been given

in [5], see also [6, 9, 13, 14, 15, 17, 18, 19, 20] for several more recent results.
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E. R. Verheul [21] among several other results, considers a similar prob-

lem for the DiÆe{Hellman key in arbitrary �nite �elds. However instead

of studying the security of the most signi�cant bits the paper [21] deals

with the security of values of sparse polynomials at the values of the DiÆe{

Hellman keys. More precisely, let us �x an element 
 2 IFq and a polynomial

F (X) 2 IFq[X]. It has been shown in [21], under certain natural conditions,

that if we are given an oracle which for each pair (
x; 
y) with some inte-

gers x and y returns the value of F (
xy), than this oracle can be used to

construct a polynomial time algorithm to compute the DiÆe{Hellman key


xy. We remark that polynomials F can be of very large degree (thus direct

solving the equation F (
xy) = A is not feasible) but contain a reasonably

small number of monomials. The result has been motivated by applications

to the proof of security of a certain new cryptosystem, see [2, 10, 11, 12, 21].

Here we obtain a generalization of Theorem 24 of [21] to the \unreliable"

case, when oracle returns the result only for a certain very small fraction of

inputs and returns an error message for other inputs.

2 Preparations

The following estimate on the number of zeros of sparse polynomials is a

version of the similar result from [3, 4].

Lemma 1 For r � 2 elements a1; : : : ; ar 2 IF�q and integers �1; : : : ; �r 2 ZZ

let us denote by Q the number of solutions of the equation

rX
i=1

aiz
�i = 0; z 2 IF�q:

Then

Q � 3(q � 1)1�1=(r�1)d1=(r�1);

where

d = min
1�i�r

max
j 6=i

gcd(�j � �i; q � 1):

Proof. It has been shown in Lemma 7 of [3] (see also Lemma 4 of [4] and

Lemma 3.4 of [16]) that

Q � 2

$
q � 1

dL1=(r�1)e � 1

%
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where L = (q � 1)=d.

If L � 3r�1 then

Q � q � 1 � 3(q � 1)L�1=(r�1) � q > Q:

Otherwise
l
L1=(r�1)

m
� 1 � 2L�1=(r�1)=3 and the result follows. ut

Let us �x an element # 2 IFq of multiplicative order t.

Lemma 2 For m � 2 elements a1; : : : ; am 2 IF�q and integers e1; : : : ; em we

denote by W the number of solutions of the equation

mX
i=1

ai#
eiu = 0; u 2 [0; t� 1]:

Then the bound

W � 3t1�1=(m�1)D1=(m�1);

holds, where

D = min
1�i�m

max
j 6=i

gcd(ej � ei; t):

Proof. We write # = g(q�1)=t where g is a primitive root of IFq and note that

each solution u 2 [0; t� 1] of the previous exponential equation gives rise to

(q � 1)=t distinct solutions

zj = gu+tj; j = 0; : : : ; (q � 1)=t� 1;

of the equation
mX
i=1

aiz
�i = 0; z 2 IF�q;

where �j = ej(q � 1)=t. Remarking that

gcd(�j � �i; q � 1) =
q � 1

t
gcd(ej � ei; t);

from Lemma 1 we obtain that

W � 3
t

q � 1
(q � 1)1�1=(m�1)

�
q � 1

t
D

�1=(m�1)
= 3t1�1=(m�1)D1=(m�1)

as claimed. ut
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3 Security of Polynomial Transformations of

the DiÆe{Hellman Key

Let 
 2 IFq be an element of multiplicative order t.

As in [21] we consider an m-sparse polynomial

F (X) =
mX
i=1

ciX
ei 2 IFq[X]; (1)

where c1; : : : ; cm 2 IF�q and e1; : : : ; em are pairwise distinct modulo t.

Let 0 < " � 1.

Assume that we are given an oracle OF;" such that for every x 2 [0; t�1],

given the values of 
x and 
y, it returns F (
xy) for at least "t values of

y 2 [0; t� 1] and returns an error message for other values of y 2 [0; t� 1].

The case " = 1, that is, the case of a \noise-free" oracle has been consid-

ered in [21].

We are ready to prove the main result. For simplicity we assume that t

is a prime number, although analogues of our result hold for composite t as

well. Nevertheless this case allows us to simplify some arguments and it is

also one of the most practically important cases, see [2, 10, 11, 12, 21].

Theorem 3 Let t be prime, m � 2 and let an m-sparse polynomial F be

given by (1). Assume that

1 � " � 6t�1=(m�1):

Given an oracle OF;", there exists a probabilistic algorithm which given 
x and


y makes the expected number of at most 2m"�1 calls of the oracle OF;", ex-

ecutes polynomial number (m log q)O(1) arithmetic operations in IFq per each

call and returns 
xy for all pairs (x; y) 2 [0; t� 1]2.

Proof. If x = 0 the result is trivial. Let us consider a pair (x; y) 2 [0; t� 1]2

with x 6= 0.

Let U be the set of u 2 [0; t�1] for which the oracle, given the values of 
x

and 
y+u returns the value of F
�

x(y+u)

�
. By the conditions of the theorem

jUj � "t. We also remark that if 
y is known then for any v 2 [0; t � 1] the

value of 
y+v can easily be computed as well.

Put # = 
x.
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Select a sequence of elements v uniformly and independently at random

in the interval [0; t � 1] and for each of them feed 
x and 
y+v in the oracle

OF;" until we �nd an element u 2 U and thus �nd the values of F
�

x(y+u)

�
.

Let us call this element u1. The expected number of oracle calls to �nd

such an element is "�1 � 2"�1.

Assume that for some integer k, 2 � k � m, we have selected k � 1

elements u1; : : : ; uk�1 2 U with

det (#eiuj)
k�1
i;j=1 6= 0: (2)

We select elements v uniformly and independently at random in the interval

[0; t� 1] until we �nd an element uk 2 U such that

det (#eiuj)
k
i;j=1 6= 0: (3)

We remark that if the last determinant vanishes then uk satis�es an equation

of the form

�1#
ekuk + : : : +�k#

e1uk = 0

where, by the assumption (2), we have

�1 = det (#eiuj)
k�1
i;j=1 6= 0:

Applying Lemma 2 we obtain that the number of elements uk 2 U which

satisfy the condition (3) is at least

jUj � 3t1�1=(k�1) � jUj � 3t1�1=(m�1) �
1

2
jUj:

Thus such an element uk 2 U can be found in the expected number of at most

2"�1 oracle calls with 
x and 
y+v where elements v are selected uniformly

and independently at random in the interval [0; t � 1]. More precisely, we

call the oracle OF;" with 

x and 
y+v for a random v 2 [0; t� 1] until both it

returns F (gx(y + v)) and

�1#
ekv + : : :+�k#

e1v = 0;

and call the corresponding value uk. Because there are at least 0:5jUj � 2"t

such values of v, the expected number of call is at most 2"�1.

Therefore after the expected number of at most 2m"�1 oracle calls we ob-

tain m elements u1; : : : ; um 2 U with corresponding values of Aj = F (#y+uj)

for each j = 1; : : : ;m and such that

det (#eiuj)
m
i;j=1 6= 0:
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The rest of the proof follows essentially the same arguments as the proof of

Theorem 24 of [21]. Indeed, we see from our construction that we have a

nonsingular system of linear equations

mX
i=1

ci#
eiuj#eiy = Aj; j = 1; : : : ;m;

from which the vector (c1#
e1y; : : : ; cm#

emy) can be found and thus we obtain

the values of 
e1xy; : : : ; 
emxy. Because m � 2 and t is prime, at least one

of e1; : : : ; em (which are pairwise distinct modulo t) is relatively prime to t.

Say if gcd(e1; t) = 1 we de�ne an integer f1 2 [1; t� 1] from the congruence

f1e1 � 1 (mod t) and compute


xy = (
e1xy)
f1 :

Remarking that besides the expected number of oracle calls is 2m"�1 and that

the rest of the algorithm can be implemented in deterministic polynomial in

m log q time, we obtain the desired result. ut

4 Remarks

Let q = pr. Then the trace function

Tr(X) =
r�1X
i=0

Xpi

provides a natural example of a polynomial of the form (1). This function

as well as the function

L(X) =
X

0�i6=j�r�1

Xpi+pj

have been studied in [2] (with r = 6). Our results imply a stronger version of

Lemma 3.1 of [2] and thus give more security assurance to the proposed there

cryptosystem. The same comment also applies to the proposed in [10, 11, 12]

XTR public key cryptosystem which is based on a more computationally

eÆcient modi�cation of the ideas of [2].

It is easy to see that making more oracle calls one can replace the oracle

OF;" with a more natural and general oracle eOF;" which returns F (
xy) for
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at least "t2 pairs (x; y) 2 [0; t � 1]2. For x 2 [0; t � 1], let Mx denote the

number y 2 [0; t � 1] for which the oracle eOF;", given the values of 
x and


y, returns F (
xy). Thus,
tX

x=0

Mx � "t2:

Let L be the number of x 2 [0; t� 1] for which Mx � 0:5"t. Then

tX
x=0

Mx � 0:5"t(t� L) + Lt = 0:5"t2 + (1� 0:5")Lt:

Therefore

L �
"

2(1� 0:5")
t � 0:5"t:

Now we select a random u 2 [0; t�1] and compute 
x+u. Using polynomially

many random values of v 2 [0; t � 1] with high probability we can test

whether Mx+u � 0:5"t. If this is not the case we select another value of

u. After the expected number of t=L � 2"�1 random choices of u we �nd

a value with Mx+u � 0:5"t. Now we apply the same arguments as in the

proof of Theorem 3 with 
x+u and 
y, recovering 
(x+u)y. Now we can �nd


xy = 
(x+u)y (
y)
�u
.

In fact we do not even need the oracle to return the error message. It is

enough to assume that, when it does not compute F (
xy), it returns just a

random element of IFq. Then repeating each oracle call polynomially many

times one can distinguish between correct outputs and random outputs with

overwhelming probability.

On the other hand, it would also be very important to obtain similar

results for the case where the oracle returns the correct value of F (
xy) for a

certain portion of inputs and returns wrong (but consistent) results for other

inputs (instead of the error message or a random element of IFq, thus wrong

outputs cannot be immediately identi�ed).
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