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ABSTRACT

A simple nonlinear model of the generation of Kelvin waves is presented and applied to internal Kelvin
waves in Lake Michigan. It is shown that a Kelvin wave which has a wavelength longer than the Rossby
radius of deformation steepens. This may explain “warm fronts’ in records of nearshore temperature in

Lake Michigan.

1. Introduction

This study was motivated by the observations of
Mortimer (1963) of large variations in the depth of the
thermocline near the shores of Lake Michigan. He
found that, although wind-induced vertical motion
could explain much of the data, some incidents sug-
gested the propagation of internal Kelvin waves.
Csanady (1967, 1968a, b) supported this theory by
showing with a simple two-layer model that Kelvin
waves of sufficient amplitude would be generated by
wind stress. He noted that for many purposes these
waves would be indistinguishable from the steady
currents which Charney (1955) called “baroclinic
coastal jets,” since their frequency is small compared
to the Coriolis parameter.

Baroclinic edge-waves in nature can be expected to
deviate in many ways from linear Kelvin waves in a
basin of constant depth. Undoubtedly the nearshore
topography is important (Csanady, 1971). It is equally
certain that finite-amplitude effects are important since
it is not uncommon for the thermocline to intersect
the surface. Also, since the observed relative vorticity
is comparable to the Coriolis parameter, one can expect
the nonlinear acceleration terms to be important. The
effects of a continuous wvertical density distribution
discussed by Csanady (1972) are probably of lesser
importance in the Great Lakes but may be important
in oceans and lakes with more detailed vertical density
structures.

Nonlinear Kelvin waves have been discussed previ-
ously by Saylor (1970) and Smith (1972). Saylor noted
that nonlinear effects could be expected since Kelvin
waves are nondispersive. Smith found that for small-
amplitude waves, dispersion due to topography could
balance the nonlinearity.
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This work will concentrate on the simplest case—that
of a Kelvin wave generated from a state of rest in a
single layer of fluid of uniform depth. The results, how-
ever, will be used to infer nonlinear effects which may
occur in a two-layer system, such as Lake Michigan.

2. The general problem

The water is assumed to obey the shallow water
approximation and the longshore component of the
current is assumed to be geostrophic. The range of
validity of these approximations will be discussed in
Section 4. The motion is generated by a longshore ac-
celeration, F(y,f), which has zero curl. The governing
equations are:

oh
— fo=—g—, (2.1)
dx
dv v oh
—tu—to—+ fu=—g—+F(y,0), (2.2
a  dx  dy dy

oh 9 0
——(uh) +—(vh) =0. (2.3)
. dx ay

The Coriolis parameter is f (assumed constant), g is
gravity, # and v are velocities in the x (onshore) and
y (longshore) directions, and /% is the water depth. The
water occupies the region x<0 (see Fig. 1).

At ¢=0, the depth is assumed equal to H, the equi-
librium depth, and the geostrophic component of the
flow is thus zero:

t=0: h=H, v=0. (2.4)

At the shore the normal component of the flow is zero:
t20, (2.5)

and far away from the shore, the depth is uniform and

x=0: u=0,
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Fic. 1. Perspective sketch of section of shoreline, showing defini~
tion of variables used in this study.

the current is simply wind drift:

120, x— —ow: =0, h=H, u=F/f. (2.6)

This problem can be reduced by noting that the

following potential vorticity law can be derived from
(2.1)-(2.3):

] ] v/ dx+f
]
ot dx dy h

Therefore, since the potential vorticity is initially uni-
form, it will be uniform for all time. Setting it equal
to the initial potential vorticity, f/H, and using (2.1)
gives

2.7

gH 9%h
—————h=—H. (2.8)
12 ox?

The general solution for % which satisfies (2.8) and the
boundary condition (2.6) must, therefore, have the

form

h=H+Q(y,t) exp[xf/ (gH)*]. (2.9)
From (2.1), v must be of the form

v= \/ fl—Q(y,l) explaf/(gH)*] (2.10)

By inserting these expressions into (2.2) and se:ting
x=0 (noting that #=0 at x=0), one finds that Q must

satisfy
J—l' (v,0).  (2.11)

From either (2.2) or (2.3), it follows that the transport
normal to the shore is

HF
ul=u{H+Q explxf/(¢H) ]} =_f{ 1—explxf/(gH)* ]}

2 ¢
_Q+ EQ_Q_+ VgH H———
ot H dy

a
+§Q5g{e><p[xf/(gH)*]—eXPDxf/(gH)*]}. (2.12)
y
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The first term, multiplied by the forcing function
F(y,t), is zero at the shore and at x=—c gives the
normal wind drift current there. The second term, the
normal component of velocity in a free Kelvin wave,
vanishes both at the shore and at x=—o. It is of
second order in the amplitude and is therefore zero in
the linear theory. The longshore component of the
current is the same as in the linear theory since it is
geostrophic.

This separation of variables reduces the original
problem given by (2.1)-(2.6) to the problem of solving
(2.11) subject to the condition that Q=0 at ¢=0. It is
straightforward to do this by the method of character-
istics. First, define a set of curves ¥;(¢) by

dY; .
=\/gH|:1+g(Yi,l):|- (2.13)
dt H
On each curve (2.11) is
@ \f —F(Yi)). (2.14)

The initial condition for each pair of equations is

1=0: V=Y, Q=0. (2.13)

3. A simple example

The theory reduces to the linear theory when Q/H«K1,
for then the characteristics are straight lines with a
slope of 4 (gH)?, indicating Kelvin wave propagation
in the positive y direction. To show how nonlinearity
alters the solution, it suffices to examine a simple
example. We choose

F(y,t)=—Fosin(y/R). 3.1

This corresponds to a wind independent of time and
varying as a sine function in y; it would correspond to
the tangential component of a uniform wind over a
circular basin of radius R, as in the problem Csanady
studied. The angle that the wind comes from is §=7y/R
= —m. It is natural to form the following nondimen-
sional variables:

QO’'=Q/H, i’:i\—/g, 6=y/R. (3.2)
R
Eqgs. (2.13) and (2.14) arc then
dé; ,
—d7=1+Q (6:,0) , (3:)
=0: 6:=6
dQ’ R
(3.4)

dt' .
t'=0: Q’=0 J
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From (3.4), it follows that, for a large-amplitude wave
to be formed, Fy must be comparable to gH/R. If F,
is set equal to gH/R, and Q' is eliminated, the character-
istics can be computed from

d%6;

91:001
d6;

dr

(3.6)

This “pendulum” problem was solved with the aid of
a table of elliptic functions. The total depth at the
shore (Q'+1) is shown in Fig. 2 for #=1.0, along with
the linear solution. Since there is little difference, it
can be concluded that the linear theory describes the
initial growth quite well even up to the point where
the depth approaches zero. Since the depth becomes
negative soon afterward, the forcing was set to zero
at 2 1. The solution for 14Q’ at #'=1.5 is shown in
Fig. 3. Since the characteristics are straight lines of
differing slope, they must eventually cross no matter
what the amplitude is. For the wave studied here, this
“breaking” occurs in a time of approximately a tenth
of the period of the linear wave. In order to understand
this phenomenon it is necessary to discuss the validity
of the approximations.

4. The validity of the solution

The major approximation is the assumption that the
longshore component of the flow is geostrophic. This
will be valid as long as the term du/df, missing from
(2.1), is small compared to fv. The normal component
u, as given by (2.12), is composed of two terms. One
depends on the forcing function which in nature has a
wide range of time and space scales. The only part
of relevance here is that which has a time scale larger

_1';,2 ) q;é
e —
F16. 2. Nondimensional depth of water at the shore of a circular

basin at #=1.0. The solid line is the nonlinear solution, and the
dashed line the linear solution.
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16. 3. Same as Iig. 2, but at ¢'=1.5 after the
wind is stopped at #'=1.0.

than f=. The same criterion applys to the acceleration
term for the onshore component of the wind. Thus,
this theory excludes one of the most interesting cases—
that of a strong wind of short duration. The other
term which does not vanish for F=0 is

9
uh =§Qgg{ exp[xf/ (¢H)* J—exp[2xf/ (¢H) ]}
y

Using this expression and (2.10), one can estimate the
ratio

|du/dt| gH
ol PR

where 6 is |Q|/H, the amplitude of the wave, and \ is
the ratio of the Rossby radius of deformation [ (gH)?/ 1]
to the longshore length scale of the wave. Thus, the
longshore component is geostrophic for long Kelvin
waves or for small-amplitude waves. The nonlinear
terms in (2) and (3), however, have a magnitude of 8.
Thus, it is consistent to include these terms but drop
the du/dt term only if A1,

We conclude that a freely propagating Kelvin wave
which has a wavelength larger than the Rossby radius
of deformation ultimately steepens. Our theory de-
scribes the steepening up to the point where the width
of the “front” is comparable to the radius of deforma-
tion. The steepening is accompanied by a large growth
of the normal component of the current. This suggests
that if the missing terms were included, the motion
would no longer be confined to the coastal region; the
adjustment might involve exchange of the coastal and
interior water.

One cannot say whether the steepening continues
until the hydrostatic theory is no longer valid. The
work of Houghton (1969) implies that there is a
critical amplitude above which the formation of a
hydraulic jump occurs. For a Kelvin wave this critical
amplitude is probably larger than for the inertio-
gravity wave studied by Houghton, since in his problem

0=N\?

3
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the solution was constrained to be independent of one
direction.

5. Application to Lake Michigan

It is empirically true that in most baroclinic coastal
currents in the Great Lakes the velocity falls off rapidly
with depth. Thus, in the stratified season a lake may
behave qualitatively like an ‘“‘equivalent one-layer”
system, i.e., one obeying (2.1)-(2.3) where % is the
depth of the thermocline and g is a reduced gravity,
(Ap/p)g. If the longshore acceleration F is set equal to
Ty(9,)/ (poH ), where 7, is the longshore wind stress, and
the Kelvin wave velocity ¢=[gH (Ap/p) P is defined,
then (2.11) can be written

00 1, 90 QI

—_——=————((— —

. (3.1)
a pic 8y H oy

This equation states that the rise and fall of the
thermocline at the shore is due to three mechanisms.
The first is the effect of a longshore wind which produces
an Ekman drift of the surface water toward or away
from the shore. The second is the propagation of linear
Kelvin waves. The third is advection by the geo-
strophic longshore current. Charney (1955) considered
only the first term, and Csanady (1968b) considered
the first two. It is interesting to note that the Coriolis
parameter does not appear in this equation.

For Lake Michigan in summer, the following values
are typical:

7y=% dyn cm™2

H=1500 cm
f=10"%sec™!
Ap
—=1.5X10"?
p
AP H
c= <g——H ) =48 cm sec™!
P
R=100 km.

Thus, the wind stress term in (5.1) is approximately
6m day ! and the time scale, R/¢, for which the thermo-
cline intersects the surface is 2% days. The ratio RF,/
(¢H) in (3.4) is equal to unity as in the example of
Section 3. The steepening would occur in a time of 3%
days from the imposition of this wind stress. In the
lake the wind stress is probably larger but all the other
factors not considered here (topography, friction, etc.)
probably serve to inhibit the nonlinear steepening.
Mortimer (1963) has published a preliminary analy-

OF PHYSICAL OCEANOGRAPHY

VOLUME 3

sis of 20 years of temperature records from municipal
water intakes on Lake Michigan. He found that a
common occurrence was the propagation of a steep
rise in temperature eastward around the southern end,
and northward as far as Ludington, the most northerly
intake. This usually appeared after a wind shift from
the southwest to the northeast. The first response of
the lake is strong upwelling on the eastern shore with
corresponding downwelling on the western shore. If
this is followed by several days of light winds, the rise
in temperature propagates around the southern end
at approximately the speed of an internal Kelvin wave
in a constant-depth model. Prof. Mortimer (personal
communication) reports that although this “warm
front” behavior occurred on several occasions in most
(but not all) summers, he saw no examples of a sharp
fall of temperature propagating around the lake. This
is what would be expected from the theory presented
here. The records await a more systematic examina-
tion, but except in isolated incidents it will probably
prove very difficult to separate the propagation of
baroclinic edge-waves from wind induced upwelling and
nonlinear effects.
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