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ABSTRACT

Water motion in the barotropic mode, directly forced by suddenly imposed wind stress, is investigated in
basins with arbitrary topography, but paying special attention to long basins, in which the depth contours
run parallel to the shores over a “trunk’ region. In the initial period the depth-integrated transport is found
to increase linearly in time; later, friction slows down this increase. Where the water is shallower than the
average depth of the lake, transport is with the wind; it is against the wind in the deeper portion. Over the
entire basin, a transport-streamline pattern may be calculated numerically, which is identical in appearance
with the steady-state flow pattern calculated on the basis of assuming bottom friction to be linearly related
to transport. A more realistic frictional force (quadratic in the velocity) modifies this pattern somewhat, but
does not change it qualitatively.

An analysis of IFYGL coastal chain observations in Lake Ontario shows that the observed nearshore
transport behaves much as the theoretically derived forced flow pattern. One may conclude that in nearshore
areas (for practical purposes, in water shallower than the basin average depth), the forced component of the
flow dominates the observable depth-integrated transport, oscillating movements (seiches) being relatively
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less important, This forced flow pattern may be described as consisting of barotropic coastal jets.

1. Introduction

The more intensive studies of water movements in
the North American Great Lakes carried out in recent
years [and especially the International Field Year
(IFYGL), a just completed detailed study of Lake
Ontario] have demonstrated with considerable force
that the major prime movers of currents are short
bursts of strong winds. Not that this should have come
as a surprise: winds are known to be quite variable at
these latitudes and to attain gale force on occasion. The
stress of the wind over water is known to be a quadratic
function of wind speed, a fact which accentuates greatly
the importance of storms.

Because strong wind stress impulses are exerted on
the water at random times, at a typical frequency of
about once in 100 hr, and because the strength and
direction of these impulses vary in a random manner,
water movements produced by them are always essen-
tially in a transient state, there being never enough
time to obtain any sort of a steady-state flow pattern.
It is quite possible that some residual, long-term average
circulation still exists, but the intensity of this is certain
to be much less than that of the transient patterns.
Therefore, in order to understand the first-order
dynamics of the observable water movements, it is
necessary to study time-dependent theoretical models.

One theoretical problem in this category is the
response of a long and narrow lake of homogeneous
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density to a suddenly applied wind stress. One may
easily gain the over-optimistic impression from the
literature that the basic physical factors involved in
this problem are well understood: the wind is supposed
to cause a static “‘set-up” or accumulation of water at
the downwind end, and to start off several modes of
free oscillations (seiches). While the art of numerical
modeling of such phenomena in basins of complex shape
is advanced [witness the study of the North Sea storm
surge problem by Heaps (1969), or of the Lake Ontario
winter circulation by Paskausky (1971)7], such nu-
merical calculations often yield results whose physical
meaning is just as difficult to decipher as observed phe-~
nomena. The aperiodic part of the barotropic response
to wind stress in realistic lake models has still not been
studied with the aid of theoretical models of sufficient
simplicity to exhibit the basic dynamical factors in-
volved. In a nonrotating basin of constant depth, the
aperiodic or forced response is a simple surface distor-
tion (set-up), a constant non-zero surface slope balanc-
ing the wind stress. In a basin of variable depth the
set-up 1s accompanied by a non-trivial forced flow
pattern, as will be seen below.

The present paper is devoted to a study of the wind-
forced flow problem in basins of variable depth, but
especially in lakes which are much longer than they
are wide, and which are also narrow enough for the
rotation of the earth not to affect barotropic motions
very significantly. The “trunk” region of such lakes
will be assumed to have parallel shores and depth
contours. Such a theoretical model bears close resem-
blance to Lake Ontario, the bathymetry of which is
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shown in Fig. 1. The theoretical conclusions are com-
pared with current observations at coastal chains,
which were carried out in Lake Ontario during IFYGL.

2. Formulation of the problem

Consider at first a basin of arbitrary shape and depth
distribution, over which a wind stress constant in time
(but arbitrarily distributed in the horizontal plane) is
imposed suddenly at ¢=0. We neglect the Coriolis
forces for the time being and write the depth-integrated
equations of motion and continuity for the volume
transport components U, V, linearized, and with the
hydrostatic approximation assumed, as follows:

oU a¢ 1

0! ox
oV a¢
—=—gh—+F, |, M
ot dy
ol oV a
ax  dy ol J

where F., FF, are the components of the wind stress
divided by density, 4(x,y) the water depth, and { the
surface elevation from equilibrium. The linearization
does not apply in the immediate vicinity of the shores
where #— 0, but in dealing with relatively large-scale
motions this complication may be safely ignored. How-
ever, the absence of bottom friction terms in Egs. (1)
is only justifiable in the initial period of response, before
significant velocities develop. At later times Fy., Fp,
have to be added to the right-hand sides of the first
and second of Eqs. (1).

In common with many other oscillating systems, the
response of the lake to a suddenly applied wind stress
consists of a directly forced motion [mathematically, a
particular solution of Egs. (1)] and of a sequence of
free oscillations known as ‘‘seiches” (homogeneous
solutions), whose amplitudes are proportional to the
stress and depend on basin geometry. While there is
an almost overwhelming wealth of literature on seiches
[for a recent review see Wilson (1972)7], mostly dealing
with the calculation of natural frequencies for an im-
pressive -range of geometries, little or no attention
seems to have been paid to the forced solution. We shall
therefore concentrate on the latter, ignoring the well-
explored seiche problem.

The only forced solution of Egs. (1) which has
apparently ever been discussed is that valid for a
constant depth basin (2=constant) and for spatially
constant wind stress. The simplicity of the result is
perhaps the reason for the uniform neglect of the forced
motion problem:

F, F,
§=~x+_—"y7

U=0, V=0,
gh gh

@
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where the origin of the coordinate axes are at the
centroid of the lake surface. This solution is referred to
as a static set-up of the lake. It is at once obvious that
(2) does not satisfy (1) for 2(x,y) # constant.

For a more realistic depth distribution we may still
hope to find a time-independent elevation distribution
(i.e., a somewhat more complicated set-up) {(x,¥), so
that 9¢/8t=0. The structure of Egs. (1) then suggests
that U and V should be linear functions of time, i.e.,

U=At, V=Bt 3)
Substituting into Egs. (1), we find

at 3
A= —gh—+F,
ax
ag
B=—gh—+F, 4)
oy
4 9B
___+__..=
dx  dy J

The boundary conditions are that the normal com-
ponents of the transport vanish at the shores at all
times £, so that the same condition applies to the
accelerations 4, B. If, subject to these conditions,
Egs. (4) may be solved, the solution yields a time-
independent surface level distribution accompanied
by a mnon-trivial transport distribution, increasing
linearly with time.

It is not difficult to demonstrate that such solutions
may, in fact, be found. The third of Eqgs. (4) may be
satisfied by introducing a streamfunction for the
accelerations:

ov ov
A=—, B=——. ®)
ady ax

The boundary condition at the shores is now
¥ =constant, a streamline coinciding with the coastline.
Eliminating ¢ from the first two of Egs. (4), we find

arl/ov arlov
P e s b
OxLgh\ dx oylgh\ oy
This equation may be integrated (e.g., numerically).
For Lake Ontario, Rao and Murthy (1970) have pre-
sented such numerical solutions for different wind stress
distributions, although they placed a different physical
interpretation on their results (see later discussion).
Their solutions were calculated for the actual, irregular
topography of this Lake, only slightly smoothed to
facilitate the numerical work. Similar solutions may
clearly be found for other arbitrarily shaped closed
basins: we may legitimately regard these as the forced
responses of a lake to a given wind stress, for vanishing
friction and Coriolis force.
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Fic. 2. Schematic diagram of long and narrow lake with regular
trunk section, in which depth contours are parallel.

3. The special case of long lakes

Relatively simple results are obtained in long lakes
which contain a considerable trunk region with parallel
shores and depth contours. An idealized model of such
a lake is sketched in Fig. 2. This represents reasonably
realistically a number of long lakes, and in particular
Lake Ontario. The lake is taken to be much longer than
it is wide. We place the x-axis along the Iength of the
lake and consider the forced motion produced by a
constant (in space and time) wind stress acting along
this same axis (F,=F =constant, F,=0). With an eye
on interpreting field observations, we seek to determine
the transport distribution in a cross section (x
=constant plane) within the trunk region.

At any cross section (whether in the trunk region or
not) we have on integrating the third of Egs. (4) over a
region to one side of the cross section, by the divergence
theorem and in virtue of the boundary conditions:

y2
/ Ady=0, @
Y

1

where y; and . are the coordinates of the shores. In
the trunk region, x,<x<x», we expect any transport
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to be parallel to the boundaries and depth contours, i.e.,
B=0
dg . (8)
A= —gh—+F, x3<{x<x
dx
Imposing the condition expressed by Eq. (7), we find
the elevation gradient
d¢ Fb
—=— x<x<xy, Q)
dx g8

where b=v,—%, is the width of the lake and S is its

cross-sectional area:
y2
S= / hdy.
y1

Returning to Eqgs. (8) and (3), we may now write the
transport in the trunk region as

(10)

hb
U=Fl<1—g:>, <z <xm. (11

It may be verified directly that Eqs. (9) and (11)
constitute a solution of Eqgs. (1) for the trunk region of
the lake.

The simple relationship in Eq. (11) is illustrated in
Fig. 3, using the depth distribution of Lake Ontario
south of Coburg as an example. The transport distribu-
tion is clearly a rescaled and displaced depth distribu-
tion. The calculated transport is zero where 2=S/b,
which is the average depth of the section. The elevation
gradient df/dx may be seen to be the same as would be
produced in a lake of this average depth [Eq. (9)7].
Given this depth, the wind stress and the pressure
gradient are in balance. Where the depth is less, the
wind stress overwhelms the pressure gradient and

Km FROM NORTH SHORE
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Fi6. 3. Distribution of depth and theoretically derived transport, using Lake Ontario
as an example.



OCTOBER 1973 G. T.
accelerates the water. Where the water is deeper, the
reverse happens and a return flow develops.

The transport distribution in the remainder of the
basin may now also be elucidated qualitatively with
very little difficulty. Recalling that by Egs. (5) and (6)
the 4, B distribution may be represented by a stream-
line pattern, we can draw the streamlines in the trunk
region with the correct spacing to correspond to the
calculated transport pattern. This yields relatively
densely spaced lines both at the center and at the
shores, pointing in opposite directions, however. In the
end regions these streamlines must close: the details
depend on the depth distribution, but the appearance
of a “double-gyre” pattern follows regardless of these
details, much as sketched in Fig. 4 in which a not too
irregular basin was tacitly assumed. Fig. S shows the
calculated pattern for constant wind stress slong the
longer axis of Lake Ontario (Rao and Murthy, 1970),
which is not quite so symmetrical, but agrees with the
qualitative inference from the simplified theory for a
parallel trunk region. The gyres are indeed related to
the actual depth distribution. It is also of interest to
calculate the wvelocities #={7/h for the trunk region,
given a realistic wind impulse, say Ft=20,000 cm? sec™’
(a stress of 1 dyn cm™ acting for about 6 hr) ; these are
shown in Fig. 6. Near the shores a singularity occurs
on account of the depth % reducing to zero. In very
shallow water it is not realistic to neglect friction even
for a short initial period: observable velocities at short
times would presumably behave somewhat like the
conjectured dotted curve in Fig. 6. Note also that if
some transport is suppressed near the shores, the center
return flow is similarly diminished. Frictional effects
are considered in greater detail later.

The velocity distribution is noteworthy in that it
shows the development of strong barotropic coastal
currents. Although the mechanism of these differs from
that of the baroclinic coastal jets described earlier
(Csanady, 1972a), the net practical effect is much the
same, i.e., bands of high velocity occurring in the
coastal zone.

For the practical application of these results one
must keep in mind that the above forced flow pattern is
accompanied by seiches. The amplitude of seiche cur-
rents is (for the tvpical wind stress assumed above) of
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F1c. 4. General appearance of wind-forced transport
streamlines in long and narrow lakes.
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the order of 1 cm sec™?, uniform over the cross section,
and initially these are directed downwind. Thus, the
combination of seiche current and forced flow pattern
results in near-zero velocities in the center part of a
lake (where the two initially more or less cancel each
other) and a slightly fortified barotropic coastal current
as compared to the distribution in Fig. 6.

Barotropic coastal jets of this sort have first been
identified by Bennett (1972) in connection with
analytical and numerical studies of an idealized shore
zone. Some of Bennett’s assumptions in the analytical
part of his work may be thought contentious. For ex-
ample, Bennett postulates the equivalent of our Eq. (7)
essentially without justification, while also retain-
ing the Coriolis force in his theory. It will be seen below
that these assumptions are incompatible. The same
objections do not apply to Bennett’s numerical studies,
which show nearshore flow patterns much as found
above with the aid of an analytical model. Bennett also
invokes the “rigid lid approximation,” perhaps un-
necessarily. It should be noticed that our approach is
in no way equivalent to the rigid lid approximation:
we have merely been looking for (and found) a forced
flow pattern accompanied by a time-independent, free
surface elevation distribution.

That barotropic coastal jets at a typical velocity
amplitude (much as shown in Fig. 6) in fact frequently
occur in Lake Ontario was shown by the results of the
“coastal jet” project (Csanady and Pade, 1969-72).
Birchfield (1972) drew attention to this fact, and
proposed a theoretical explanation in terms of a fric-
tionally dominated, steady-state flow pattern. How-
ever, it is clear that the observed jets were not in any
kind of steady state, and the above explanation, as
barotropic forced response, appears much more realistic.

F16. 5. Calculated pattern of wind-forced transport streamlines for Lake Ontario.
After Rao and Murthy (1970).
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16, 6. Velocity distribution corresponding to the transport
distribution in Fig. 3.

4. Effect of the Coriolis force

Should the Coriolis force due to the rotation of the
earth become important in this problem, the terms
—fV, fU respectively would have to be included on
the left-hand side of the first and second of Egs. (1).
Focussing on the frunk region of a long lake only, a
forced solution of the so expanded equations may be
found in the form

U= At, =V (y)##0

a¢ or ) (12)
—=(G=constant, —=2ZI#0

ox dy

where Z=Z(y). On substitution into the expanded
Eqgs. (1), one arrives at the relationships

Ad—fV=—ghG+F

fA=—ghZ
- , (13)
[t
— =7
dy?

for x<a<axa. -

These equations are somewhat more,complicated
counterparts of Eq. (8) and may be solved for given
i(y), subject to the boundary conditions V=0 at yy, ys.
Very similar equations govern the development of
internal mode (baroclinic) coastal jets along an “in-
finite”” shore or continental shelf (Csanady, 1973), the
only difference being in the forcing term, which also
becomes depth-dependent.

Because the surface elevation now also depends on
time, Eq. (7) no longer follows from the equation of
continuity. Indeed, the full solution of the initial value
problem for very simple topography (Csanady, 1972a)
shows that the coastal jets supply a certain volume of
water from the upwind to the downwind end of the
basin, which leads to a slow propagation of the flow
pattern around the basin perimeter in a counter-
clockwise direction (in the Northern Hemisphere), in
the form of a Kelvin-type wave. From Egs. (13), on
two partial integrations, and noting that‘at the shores
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both / and V are zero, one may show that
2 g [vd*h
/ A dy=- / (14)
vyt fJu dy?

The effect of the Coriolis force is to produce a drift to
the right of the wind stress, i.e., a negative V for
positive F. The basin bottom is generally speaking
concave, i.e., d*h/dy* negative. Thus a positive value of
the integral in Eq. (14) results for positive wind stress.

The case with Coriolis force differs from the pre-
viously discussed no-rotation case mainly to the extent
that fV is not negligible compared to 4 in the first
of Egs. (13). If the maximum value of V occurs at
y=y, (so that dV/dy is zero there) we may express V
from the second and third of Egs. (13) as

1/‘
/ / ——dy“dy
Ye

If A, 1s the maximum value of 4 in the cross section,
and V,, that of V, we therefore have the inequality

fVm fz/‘ /WHUH‘ '
—dy

Because the lake bottom is concave, the inequality is
true a fortiori if we replace % in the integrand by A.y/y.,
where k. is the lake depth at y=y,.. The integrations
may then be carried out and yield

'fVm fz 2
(Aw !l gh

(15)

(16)

(17)

I
—
1
{

The result shows that the Coriolis acceleration 1s
negligible in comparison with the local acceleration if
y. 1s small compared to the radius of deformation
(gh.)!/f. For a symmetrical basin y. would be equal to
half the basin width b, and /. to the maximum basin
depth. While Lake Ontario is not quite symmetrical,
k=150 m and y,=30 km are reasonable values to use
in the above estimate, leading to

’——‘ <6X1073,

which is indeed suitably small.

This result would encourage one to regard rotational
effects minor in the barotropic forced motion problem
in a lake of the width of Lake Ontario. However, a
disturbing point is that the longshore pressure gradient
may differ significantly from the value calculated in
Eq. (9). From the first of Egs. (13) and from (14),
one finds

v g d%h
—gGS+Fb= / (~ ————f>1/y
Ju \fdy?

(18)
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The second derivative d%/dy? is of order k./y.?; for
a symmetrical, parabolic depth distribution it is
constant, equal to 2/k./y.2 where y,=5/2 and k. is the
center depth. Therefore, the first term in the integral
in (18) is large compared to the second, this ratio being
exactly twice the reciprocal of the right-hand side of
Eq. (17). Thus the right-hand side of (18) is of order
A b, which is of order Fb; hence, Eq. (9) is replaced by

dc Fb
dx gS
where
g v2 (2h
y=1-"— [ —va,
fFb Sy dy?

and (1—v) is of order unity. This change mainly affects
the flow in the center portion of the cross section where
the pressure gradient dominates. Near the shores, where
the wind stress dominates, the change is not likely to be
of much practical importance. Nevertheless, it is
interesting to note that the Coriolis force makes the
longshore pressure gradient dependent on conditions
outside the trunk region, in the end regions of the basin.
For an infinitely long channel one would postulate
y=0: this is indeed the basis of idealized coastal jet
calculations in the baroclinic mode (Csanady, 1973), in
which case the actual basin length is in fact very large
compared to the (internal) radius of deformation. At
the other extreme, one would intuitively expect Eq. (9)
to remain satisfied for sufficiently short lakes. It is not
clear from the present simplified theory exactly at what
length to radius of deformation ratio the longshore
pressure gradient would begin to diminish significantly.

5. Effect of friction

If the wind blew with constant force for a very long
time, the linear increase in transport would certainly be
reduced by bottom friction. After a long time a steady-
state flow pattern would indeed be established.
Although it is unlikely that such a steady state would
ever be reached in a lake at mid-latitudes, the asymp-
totic flow pattern is still of interest as possibly illus-
trating what the tendency of any changes would be,
from the initial pattern we have already discussed.

We therefore return to Eqs. (1), set the time-
dependent terms all zero and introduce bottom friction
terms on the right. Although such friction is in fact
quadratic in velocities, a frequently used simplification
is to assume Jinear friction:

Foo=—kU, Fyy=—dV, (29)

where % is effectively a transport “decay constant,” a
reciprocal of the time scale in which a given flow pattern
would die away.

G. T. CSANADY

Making this substitution, Egs. (1) become

e
kU= —gh—+F,

ax
a¢
kV=—gh—+F, ;. (21)
ay
oV aU
——— =0
dx  Jy

The boundary conditions are again that the transport
vanishes normal to the boundary (we have included no
lateral friction). Eqs. (21) and the boundary conditions
are clearly identical to Eqs. (4), if we replace 4, B by
kU, kV. Therefore, the calculated acceleration-
streamline pattern is at once the asymptotic steady-flow
streamline pattern. The calculations of Rao and
Murthy (1970) were carried out to discover this steady-
flow streamline pattern, using Eqs. (21) as the starting
point.

[t is easy to see now that at some intermediate time,
when neither d0/d¢ nor kU are negligible, Egs. (1)
with linear friction included vield for the forced part of
the motion only (i.e., setting 4¢/91=0):

d ¢
<——}—k>b' = —gh—+F,
ot

dx

) a5
<~—+k> = —gh—+F, (22)
at ady

a 0 i} dJ
G Bl G o
dxL\a¢ ayL\a¢

These are again of the same form as Eqs. (4) so that

the calculations of the streamline pattern still hold, if
we replace 4, B according to the scheme

<§;+k)u=,1]

L
oy

These are simple differential equations in time, and
for zero initial transport have the solutions

A
U=—(1—¢ )
k
(24)
B
V — ____(1 —_ —/ct)
k

At short times we recover the solution (U,V)



436 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 3
= (A1,Bl), while at long times (U, V) tend to (4 /k,B/k), continuity, that
the pattern remaining all along unchanged. v

.NQ such simple results are obtained with quadratic / U dy=0. 27
friction. The bottom friction along the x-axis is in this "

case
U
Foo=—co—

h

h

U
I, (25)

where ¢, is the drag coefficient. In the trunk section of
a long, narrow lake we therefore have

(26)

Ca

uyu d¢
lﬂzF_gh-_7
hlh dx

which is subject to the condition, from the equation of

1 ]
10 20

Km FROM NORTH SHORE

10 20 30 40
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Fie. 7. Transport distribution with quadratic friction (a) and
the corresponding velocity distribution (b) for the cross section
in} Fig. 3.

At some intermediate depth /g4 the transport vanishes.
At shallower depth, it is directed downwind; at A> ha,
upwind. The surface slope, from (26), is

& F

—_—=— (28)
dx g}ld

For a given depth distribution, /44 may be calculated
from Eq. (27), and then the transport distribution
determined.

The distribution of the depth-integrated longshore
transport, calculated with quadratic friction in the
manner described, for a cross section of Lake Ontario
south of Coburg (using a drag coefficient of ¢, =2X1073)-
is shown in Fig. 7a. Corresponding velocities = U/h
are shown in Fig. 7b. The barotropic coastal jet is still
quite evident in the velocity distribution, although the
contrast with mid-lake is much less pronounced. The
transport-streamline pattern changes somewhat com-
pared to the linear-friction calculation (Fig. 4), although
not in a qualitative way. Because #q is grealer than the
average depth, the asymptotic pressure gradient is less
than the initial one [cf. Eq. (28)].

6. Comparison with IFYGL observations

The observations carried out during the International
Field Year on Lake Ontario provide for the first time a
sufficiently detailed set of data for testing theories of
the above kind. The main sources of information for
this purpose are the coastal chain studies, carried out
by a technique previously described (Csanady, 1972b)
at several locations both on the south and north shores.
The coastal chain observations yielded the current
velocity distributions in chosen cross sections, extending
from the shores to 10-14 km into the lake. There was
sufficient resolution to give reasonable estimates of
depth-integrated transports and their distribution in
the key nearshore bands. During well-defined storms
the winds may be expected to be more or less uniform
over the whole lake and the wind stress impulse esti-
mated with acceptable accuracy from meteorological
data. The observed response of the lake to such a wind
stress impulse should show the characteristics predicted
by the theory developed above.

Two clear-cut wind stress impulses occurred early in
August 1972, during the second alert period of IFYGL.
We shall focus here on the response of the lake during
these episodes, as determined by the observations in the
Olcott-Oshawa cross section, approximately 90 km east
of the western tip of the lake, in a more or less regular
trunk region (in the sense of the simple theory discussed
before). The data of the Olcott chain, including calcu-
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The depth distribution of the lake in this section is
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took place, with hourly winds of up to 6 m sec™. The
total estimated westward wind stress impulse for this
storm was approximately

Ft=125,000 cm? sec™.

Another, oppositely directed wind stress impulse was
exerted on the water on 9 August, with hourly winds of
up to 15 m sec™?, lasting some 10 hr, and yielding a total
estimated wind stress impulse of (again counting
westward impulse as pos’tive)

Fi=-90,000 cm? sec™™.

Detailed current distributions during stormy weather
could not always be determined but have been obtained
at Oshawa on 8 and 10 August and at Olcott on 10
August. Depth-integrated transports in the shore-
parallel direction, calculated from the observations, are
shown in Figs. 9 and 10. The dotted line in Fig. 9 shows
the change in transport from 8-10 August, presumably
caused by the wind stress impulse on the 9th.

Except for fairly obvious effects of friction and some
minor irregularities, the observations show a transport
distribution very much as expected from theory. The
maximum transports agree well in order of magnitude
with the wind stress impulse estimate. The strongest
support for the theory comes from the observation that
the integrated transports tended to zero near the locus
of the average depth both along the north and the
south shores. The detailed theoretical transport distri-
bution (for comparison with the data) may be taken to
be the depth curve in Fig. 8, with the horizontal line
labeled “average depth” as the abscissa, and the
ordinate appropriately rescaled. The discrepancy be-
tween theory and observation is of course strong in
very shallow water, for reasons already discussed. It is
clear, however, that frictional influences are not nearly
strong enough to eliminate the coastal jets predicted
by frictionless theory. Indeed, coastal zone observations

I'1c. 9. Observed transport distribution along Oshawa coastal chain
following two storm episodes during the second IFYGL alert.

seem to constitute a rather critical test of the theoretical
arguments given above.

Accepting the basic correctness of the theory, one
may infer to what distance from shore bottom friction
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I'1c. 10. Observed transports along Olcott coastal chain
(data of J. T. Scott).
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exerts a controlling influence on the transport. Friction-
less theory yielded maximum transports at the shore
(cf. Fig. 3). The observations showed maxima at 7-9
km. This may for practical purposes be regarded as the
edge of a “Irictional” coastal boundary layer. The
depth of water at this distance was about 50 m.

7. Conclusions

We have shown that wind stress applied at the surface
of a basin of variable depth sets up a circulation pattern
characterized by relatively strong barotropic coastal
currents in the direction of the wind, with return flow
occurring over the deeper regions. In a basin of the
dimensions of Lake Ontario the effects of the Coriolis
force on this forced flow pattern are relatively minor.
Frictional effects are strong very close to the shores
(within 7-9 km), but they do not modify qualitatively

the flow pattern which may be simply calculated from

the frictionless, linearized equations.
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