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ABSTRACT

In 2 two-layer model of stratified fluid flow, motions in the internal mode are governed by the distribution
of an equivaleni depth k.. For a typical continental shelf, the distribution of /, with distance from shore
may be closely approximated by two straight-line distributions patched at the shelf break, one of constant
slope and one of constant (equivalent) depth. For such a simple model the forced response to a suddenly
imposed wind stress (in the internal mode) is easily calculated. The component of the wind stress perpen-
dicular to shore produces a step-like feature of the thermacline at the shelf, and a longshore Ekman drift
gradually reducing to zero at the coast from the infinite ocean value far offshore. Wind stress parallel to
the shore produces a thermocline step and a longshore jet at the shelf break, both of linearly increasing
amplitude (in time), and an onshore or offshore Ekman drift, again reducing to zero at the coast but having

the infinite-ocean magnitude far offshore.

1. Introduction

One would expect water movements over continental
shelves to exhibit at least some similarities with those
in large, oblong lakes, such as, for example, Lake
Michigan. The width and depth scales are quite similar,
and the seasonal thermocline (or rather pycnocline)
occurs at comparable depths, with a very similar density
jump across it. The main difference is that one edge of
the shelf is open to the deep sea: at this open edge a
rather extreme and abrupt depth increase terminates
the shelf, providing a boundary condition quite different
from an opposing shore.

It has by now been well documented that the seasonal
thermocline is subject to relatively very large wind-
induced displacements within the coastal boundary
layer of large lakes. The resulting coastal upwelling or
downwelling of the thermocline is often (although not
always) accompanied by a baroclinic coastal jet. The
simplest dynamical theory which reproduces these
phenomena relies on the linearized equations of motion,
takes into account stratification by a two-layer model,
and contains a constant Coriolis parameter. The wind
stress may be highly idealized, e.g., assumed constant
in space, if it is allowed to vary in time at least to the
extent that it is suddenly imposed. Basin topography
may also be highly idealized: a circular basin or a long
and narrow lake model lead to very similar coastal
responses (Csanady, 1973). Frictional forces appear to
cause only relatively straightforward damping effects
near solid boundaries and may be neglected in a first
approximation. However, in a frictionless model it is
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necessary to consider time-dependent motions, both free
oscillations and an accelerating forced flow pattern.
Analytical models of a long and narrow lake, based on
the above simplifications, are particularly simple and
illuminating. The key point is perhaps that the shores
prevent perpendicular water movements and thereby
suppress the development of Ekman drift. Thus, when
a wind stress is exerted at the lake surface, the stress
component perpendicular to the shore causes a thermo-
cline upwelling or downwelling, while the parallel com-
ponent sets up both upwelling (or downwelling) and a
baroclinic coastal jet.

The question arises, as to whether similar thermocline
displacements and water movements due to wind stress
impulses occur at the open edge of a continental shelf,
and if so, whether these will be of sufficient amplitude
to constitute an important part of motions observable
over the continental slope. In view of the success in long
lakes of the simple analytical models, it appears to be
profitable to discuss this question with their aid. The
calculations below show that thermaocline steps and
“shelf jets” indeed occur over the shelf break, but that
they are about an order of magnitude less intense than
the coastal kind.

Theoretical studies of shelf dynamics, by means of
numerical modeling, have recently been published by
O’Brien and his collaborators, notably O’Brien and
Hurlburt (1972), Hurlburt and Thompson (1973), and
Thompson and O’Brien (1973). These are based on
theoretical assumptions much as enumerated above,
but they also take into account internal and bottom
friction. Shelf topography is modeled by a step-like
feature in the depth distribution. The results show ther-
mocline features and shelf jets much as in the present
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calculation, in spite of rather different assumptions on
the details of the depth distribution. The present study
therefore helps confirm the generality of those numerical
results, and, being analytical, perhaps identifies the
physical factors involved somewhat more clearly. Some
experimental evidence in support of the numerical
results has been quoted in the above three papers of
O’Brien e al. Further evidence is mentioned below,
although it must be pointed out that the total empirical
knowledge of phenomena at the shelf break is rather
weak.

2. A continental shelf model

We shall be discussing internal mode motions only and
represent the stratification of the water mass by a two-
layer model. The physical situation we are considering
and the coordinate system used are illustrated in Fig. 1,
where the x axis coincides with the intersection of the
equilibrium thermocline surface and the bottom. The
proportionate density defect, e=(p’'—p)/p’, has a
typical value of 3X 1073 For such small density con-
trasts, motions in the internal mode are characterized
by vanishing total transport (to order ¢):

U+U'=0
, )
V4V'=0

where (U,V) are depth-integrated velocities in the top
layer, and (U’,V”) those in the bottom layer, along the
x and y axes, respectively. Supposing the thermocline
displacements from equilibrium, {’, to be small com-
pared to both % and /', and the bottom slope dk’/dy
sufficiently gentle for the hydrostatic approximation to
be valid, the equations of motion and continuity for
the internal mode become (Csanady, 1971):
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where F, and F, are wind stress components, the inter-
face and bottom stresses baving been set zero. Clearly,
the linearization of the pressure gradient does not apply
near y=0 where 4’ reduces to zero, and the hydrostatic
approximation may also break down over a very steep
continental slope. Making due allowance for these weak-
nesses of the simple theory, it is still likely to provide
considerable physical insight into the dynamics of wind-
induced motions over continental shelves, given its
success in dealing with similar phenomena in long lakes.

The factor multiplying the pressure gradient terms
in Eq. (2) contains the “equivalent depth” /,, defined
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Fic. 1. Schematic illustration of continental shelf
and coordinate system used.
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which is a slowly varying function of the position
coordinates. To gain an idea of its typical behavior,
consider, for example, the section of the sea floor just
off the Virginia-Maryland border, roughly perpendicular
to the coast (Fig. 2, top). The summer thermocline is
typically at a depth of 20 m, so that the equivalent
depth distribution is as illustrated in Fig. 2, bottom.
What strikes one at once is that the extreme depth
variation at the edge of the shelf hardly affects the
equivalent depth distribution. Indeed, the simple
idealized distribution also shown in the figure provides
a close model: %, varying linearly between y=0 and
80 km from #%,=0 to %,=20 m, beyond that %,=con-
stant. This simple model is particularly realistic near
the slope region, where we are most interested in the
motions generated. Near the coast a rather larger slope
would make the model more realistic, but we will not
concern ourselves with this,
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I'16. 2. Depth distribution over continental shelf off the Virginia-
Maryland border (top) and the “equivalent” depth (bottom).



276

It is worth emphasizing here that a separate con-
sideration of internal-mode motions on the basis of the
above equations relies on the various linearizing
hypotheses underlying their derivation, which are not
always valid. Experimentally, it may not always be easy
to abstract baroclinic components of the flow from the
observed total. However, where internal-mode motions
produce such large ‘“‘signatures” as major thermocline
displacements, theories of the kind discussed here are
likely to be helpful in their understanding.

3. Response to an onshore wind

Consider now motions induced by a suddenly imposed
wind on a straight, infinite shelf of the idealized equiva-
lent depth distribution shown in Fig. 2. The response
will consist of a directly forced part and of some free
oscillations, much as in an infinite channel (Csanady,
1973). One may infer from the calculations of Crépon
(1967) that the free oscillations will contain standing
and progressive waves, all at the inertial frequency.
Through the progressive waves some energy is likely
to be radiated away. We shall not be concerned here
with these inertial oscillations, confining our attention
to the forced part of the response only.

Let a steady and uniform wind blow along the y axis,
i.e., perpendicular to shore; F,=0, F,=F =constant.
On an infinite shelf we may suppose x gradients to be
absent, i.e.,

U
0, —=0. 4)
ox ox

a5’

We find now from Eq. (2) after a few simple manipu-
lations the following convenient expressions:
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The second of these equations shows that potential
vorticity is conserved, the reason being that the curl
of F/h (where F is the wind stress vector) vanishes in
this problem. The third equation demonstrates that
longshore velocity is generated by the Coriolis force, in
response to shoreward displacement.

In analogy with the case of an infinite channel, the
forced part of the solution may be expected to be time-
independent, which means V=0, and U satisfying

au o f? F
/ U= —i—. (6)
geh

dy?  gehe
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The idealized equivalent depth distribution is
he=sy, Y< Yo
he=he=constant, y2 vy, ’

M

where s is the slope, equal in the typical case illustrated
in Fig. 2 to 2.5X10™.

The general solution of Eq. (6) over the sloping part
of the shelf, y<y,, is

sF
U=ANK:(\)+BN () +‘f‘};y: Y< Yoy ®)
where 4, B are constants, K;1( ) and /;( ) are modified

Bessel functions, and
4y}
%€
S
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The quantity .S is a “slope length scale.” Outside the
edge of the shelf the solution is

9

heo F

U=— —+Cevi, (10)

with C a constant and
(geheo)?
R=="
f

i.e., R is the radius of deformation in the internal mode.
The solution (10) already satisfies the boundary condi-
tion at infinity:

. (11)

=0 as y—oeo.

(12)

From the geometry of the idealized shelf we find the
relationships:

heo=35Yo b
v Rf* R
R B ges _S (13)

4y0 3 2R
o)
S S )

For the typical case illustrated in Fig. 2, and using
e=3X10"% and f=0.9X107% appropriate to the lati-
tude of the illustrated example, we find the parameters:

S§=0.93 km
R=8.6 km
}\0= 18.5

In order to determine the constants 4, B, C in
Eqgs. (8) and (10) we need three boundary conditions.
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Two of these are supplied by the matching conditions
at y=1y,, requiring continuity of {* and V, which by (5)
also means continuity of U/ and dU/dy. A third bound-
ary condition must be imposed at the shore: this relates
to the normal transport ¥V and mainly affects the value
of the constant A. In the framework of the linearized
theory the appropriate boundary condition is V=0,
With the wind stress perpendicular to shore, this also
means by the first of Egs. (2) that U =0 at y=0, hence
A=01in Eq. (8). However, even if we set 450 to allow
finite thermocline displacements near shore, the term
ANK1(\) becomes very small at the shelf break where
the matching conditions are applied. The reason is that
A=Xo=18.5 is large compared to unity, in consequence
of the particular choice of parameters in our example.
It may also be seen from Eq. (13) that A\g=2v¢/R re-
mains large, unless the shelf width is as narrow as one
or two internal radii of deformation. Physically, the
coastal upwelling/downwelling remains separate from
its shelf-break analogue as long as the shelf width
remains reasonably large, much as in a long lake the
coastal boundary layers do not merge until the lake
becomes very narrow.

Setting 4 =0, and U and dU/dy separately equal
from (8) and (10), the constants B and C may be deter-
mined without difficulty and yield the following
distributions of U and {’:
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——=1——————e><p<— > ¥2 Yo
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For the rather high wind stress of 10 dyn cm™2 [ caused
by about a 40-kt (20 m sec™) wind], and using the
data of the example quoted above, the response to an
onshore wind is illustrated in Fig. 3, in the slope region.
The top-layer longshore velocity equals the Ekman
drift velocity F/(fI) far offshore and reduces gradually
toward the coast. The associated thermocline topo-
graphy contains a step-like feature near the edge of the
shelf and assumes a constant depression closer to the
shore, of modest amplitude. It is of interest to note that
if such a thermocline topography were observed, it
would be interpreted by the dynamic height method as
showing flow in the positive x direction, with a maximum
velocity of some 3 ¢cm sec™, as against an actual Ekman
drift velocity toward negative x of more than 50 cm sec™.
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T16. 3. Response of shelf region to onshore wind.

4. Shore-parallel wind

If the wind blows parallel to the shore (F,=F F,=0),
Eq. (2) may be reduced to the following set, again
neglecting x gradients:

v ) v , hefF

———geh—t V= ——

ot? ay? h
a’ v
—=— (15)
ot dy
oU e
—=fV+—F
ot h

In this example potential vorticity is nof conserved,
and the thermocline displacement is calculated from
the divergence of the transport (which was zero in the
previous example). Longshore velocity is produced by
direct action of the wind stress, as well as by the Coriolis
force in response to shoreward drift; the former at least
must clearly yield an acceleration constant in time.

The first of Egs. (15) is identical with the first of (5),
except for the negative sign of the forcing term on the
right. The matching conditions at the edge of the shelf
are also the same, if expressed in terms of V, as applied
to the earlier problem; namely, that V and dV/dy are
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continuous at y=y,. Therefore, again neglecting any
influence from coastal upwelling or downwelling at the
edge of the shelf, the forced solution for ¥V may be
written down at once:

JRV N 2v LN
=——d ) <y
heoF No? Aol 10()\0)““]1()\0)
fhV 2 L) y—Yo .
=—14+————exp| — » Y20
heoF Ao To(No)+11(No) R
(16)

The second and third of Egs. (15) then immediately
vield corresponding expressions for thermocline dis-
placement and longshore transport:
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These results are illustrated in Fig. 4, for the example
quoted above and again with a wind stress of 10 dyn
cm™2, for ¢£=10° sec (27.7 hr) after the imposition of
the wind stress. Observe that the amplitudes of {* and
U increase linearly with time, as in other coastal jet-
development problems. The onshore velocity remains
constant, being equal to the Ekman drift far offshore,
and reducing gradually toward the shore exactly as the
longshore velocity was in the example with an onshore
wind. The thermocline topography is also similar to
the earlier example, although the displacements are
now very much larger (and growing linearly with time).
At the amplitude illustrated (14 m over the shelf) the
validity of the linear theory is already quite doubtful,
given a 20 m equilibrium thermocline depth. The jet
accompanying these large thermocline displacements is
of modest amplitude, the top speed being 27 cm sec™.
For a similar wind stress impulse, theoretically-
predicted coastal jet amplitudes are generally much
larger. Thus, what we might describe as the “shelf jet”
is a rather less striking phenomenon, although still
likely to be easily observable. We note that the long-
shore velocity in this example is what would be calcu-
lated from the thermocline topography, assuming
geostrophic balance, the wind stress being balanced by
Ekman drift.

Weak step-like features on the o,-surfaces under
summer conditions over the edge of the shelf are
discernible in the sections published by Ketchum and
Corwin (1964) and Creswell (1967), for example. No
direct current measurements at all seem to be available
with which the theory could be compared, nor are
hydrographic stations ordinarily taken detailed enough
to resolve the shelf region adequately, in such a way
that at least the effects of wind stress impulses on
pycnocline topography could be analyzed.

The question may be asked as to what extent the
results obtained above depend on the discontinuity in
slope assumed at the shelf break in the idealized shelf
model, and whether a smooth %, distribution would not
completely obliterate the shelf jet. To answer this, we
observe that a (numerical) solution of Eq. (6) may be
obtained for an arbitrary %.(y) distribution. Asymp-
totically, for small and large y, respectively, any realistic
depth distribution will yield Egs. (7). Therefore,
Eqgs. (8) and (10) are the solutions of Eq. (6) for small
and large y, respectively, given an arbitrary %.(y). It
follows that the distribution of longshore velocities,
etc., which we have calculated will model the general
character of the forced response correctly, although the
details at the shelf-break region are likely to show
discrepancies (e.g., the cusp in the U-distribution in
Fig. 4 is certain to be smoothed out by any ‘‘real”
topography). Similar conclusions follow from a com-
parison of the above results with those of O’Brien and
Hurlburt (1972), and the other numerical studies
already referred to in the introduction,
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