2006 年 12 月 December 2006

・博士论文・

Computer Engineering 文章编号: 1000—3428(2006)23—0027—03

中图分类号: TP751.1

# 基于 SIMO 和 NAS-RIF 的 SST 图像盲恢复

仲伟波<sup>1</sup>,金声震<sup>2</sup>,宁书年<sup>3</sup>

(1. 南京工业大学信息工程学院,南京 210009; 2. 中科院国家天文台空间技术实验室,北京 100012; 3. 中国矿业大学计算中心,北京 100083)

**摘 要:**图像恢复是太空太阳望远镜图像处理的重要组成部分,针对 SST 的多通道太阳观测的特点,将 SIMO 模型引入到 SST 图像恢复 中,根据 SST 图像的特点,给出了基于 SIMO 和 NAS-RIF 的多通道盲恢复算法。仿真结果表明,该方法对 SST 图像恢复具有较好的适应 性。

关键词:太空太阳望远镜图像; SIMO; NAS-RIF 盲恢复

# SST Image Blind Restoration Based on SIMO and NAS-RIF

#### ZHONG Weibo<sup>1</sup>, JIN Shengzhen<sup>2</sup>, NING Shunian<sup>3</sup>

(1. College of Information Engineering, Nanjing University of Technology, Nanjing 210009;

2. Laboratory of Solar Space Technology of National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012;

3. Computer Center, China University of Mining and Technology, Beijing 100083)

**(Abstract)** Image restoration is an important part of space solar telescope(SST) image processing. The SIMO is introduced and used in SST image restoration for its multi-channel observation. This paper proposes a SST image blind restoration algorithm based on SIMO and NAS-RIF. Simulation shows that the new blind SIMO image restoration algorithm behaves better and can be used in SST image processing.

[Key words] Space solar telescope image; SIMO; NAS-RIF blind restoration

#### 1 概述

SST是国家天文台正在研制的太空望远镜,将运行在太阳同步轨道上,用包括直径为1m的主光学望远镜在内的多种 载荷对太阳进行观测。SST在图像获取、传输和记录的过程 中,由于光学系统、CCD相机等因素会造成图像变质失真。 对退化的太阳图像进行恢复处理,是SST图像处理的一个重 要内容。绝大多数图像恢复方法需要事先知道退化系统的点 扩散函数,若对退化过程没有足够的先验知识,没有准确把 握退化系统的点扩散函数,就不可能有较好的恢复结果。SST 用不同的观测波长观测太阳,如太阳的光球部分用波长为 590nm的可见光进行观测,色球部分的观测波长为 656nm。 由于观测波长和设备的不同,可得到同一图像多幅不同退化 版本<sup>[1]</sup>。由同一真实图像得到多幅不同退化图像模型被称为 单输入多输出(SIMO)模型,如图1所示。



#### 图1 多通道图像退化和恢复的模型

图 1 中实线箭头为退化部分,虚线箭头表示的是恢复部 分。这种由多幅同一图像的不同退化版本进行图像恢复称为 基于 SIMO 模型的图像恢复,若在恢复过程中,点扩散函数 事先未知,此时的图像恢复称为基于 SIMO 的图像盲恢复。

随着基于SIMO模型的信号处理和图像处理研究的深入, 出现了许多的SIMO图像恢复算法<sup>[2-6]</sup>,其中有代表性的是 Harikumar和Bresler提出的EVAM,其通过计算多通道模型的 条件矩阵的最小特征向量的方法,可以得到比较好的恢复效

#### 果,但对噪声非常敏感。

Pillai 等提出了基于最大公因式分解的办法,其缺点是不 稳定。Giannakis 和 Heath 首先构造一个逆 FIR 滤波器,退化 图像经过该逆 FIR 滤波器后得到恢复图像。在 SST 图像恢复 中,各通道点扩散函数规模及值都未知,无法使用现有的任 何一种图像恢复和盲恢复方法。

针对上述情况,并结合 SST 图像特点和具体的系统要求, 本文提出了基于 SIMO 模型和 NAS-RIF 的 SST 图像盲恢复 方法。首先根据 SST 图像退化的特点,利用 SIMO 模型及其 性质确定各退化通道的点扩散函数的阶数,然后根据各通道 的点扩散函数的规模分别采用改进的 NAS-RIF 盲恢复算法 进行图像恢复,以得到原始的真实图像。

# 2 SIMO 模型中点扩散函数阶数的估算

文献标识码:A

基于 SIMO 图像恢复方法的流程如图 2 所示,不论是何 种恢复,必须首先进行通道的点扩散函数的规模的估算。



作者简介:仲伟波(1975-),男,博士、讲师,主研方向:信号与信息处理,数字图像处理,模式识别;金声震,博士、研究员、博导; 宁书年,教授、博导

收稿日期: 2006-04-14 E-mail: vebopost@sohu.com

一般认为 SIMO 中每个退化通道都是线性移不变的,则 SIMO 退化模型的表达式为

 x<sub>i</sub> = h<sub>i</sub> \* s + v<sub>i</sub>
 其中, x<sub>i</sub> 为第 i 个通道退化后的图像; h<sub>i</sub> 为第 i 个通道的点扩 散函数; s 为原始真实图像; v<sub>i</sub> 为第 i 个通道的加性白噪声;
 i = 1, 2, ..., M 为通道的标识。

S通道退化模型在频域的表示形式为  $X_i = H_i \times S + V_i$  (2)

 $X_i = H_i \times S$ 

对于  $\forall m_1, m_2 \in [1, M]$ ,在不考虑噪声的影响和去除  $S(\omega_1, \omega_2) = 0$ 的频率点后,有

$$\frac{X_{m_1}(\omega_1,\omega_2)}{X_{m_2}(\omega_1,\omega_2)} = \frac{H_{m_1}(\omega_1,\omega_2)S(\omega_1,\omega_2)}{H_{m_2}(\omega_1,\omega_2)S(\omega_1,\omega_2)} = \frac{H_{m_1}(\omega_1,\omega_2)}{H_{m_2}(\omega_1,\omega_2)}$$
(4)

进一步可表示成

 $X_{m_1}(\omega_1,\omega_2)H_{m_2}(\omega_1,\omega_2) - X_{m_2}(\omega_1,\omega_2)H_{m_1}(\omega_1,\omega_2) = 0$ (5) 式(5)对应的空域的表示式为

$$\sum_{l_1=0}^{\Sigma} \sum_{l_2=0}^{\Sigma} \left[ h_{m_1}(l_1, l_2) x_{m_2}(n_1 - l_1, n_2 - l_2) - h_{m_2}(l_1, l_2) x_{m_1}(n_1 - l_1, n_2 - l_2) \right] = 0 \quad (6)$$

$$\dot{h_m} := \left[ h_m(0,0), ..., h_m(0,L_2); ...; h_m(L_1,0), ..., h_m(L_1,L_2) \right]$$
 (7)

$$x_m(n_1, n_2) := [x_m(n_1, n_2), ..., x_m(n_1, n_2 - L_2)]$$

$$\boldsymbol{X}_{\boldsymbol{m}}\boldsymbol{h}_{\boldsymbol{m}} := \begin{bmatrix} x_{m}^{'}(N_{1}-1,N_{2}-1) & \cdots & x_{m}^{'}(N_{1}-1-L_{1},N_{2}-1) \\ \vdots & \cdots & \vdots \\ x_{m}^{'}(N_{1}-1,L_{2}) & \cdots & x_{m}^{'}(N_{1}-1-L_{1},L_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ x_{m}^{'}(L_{1},N_{2}-1) & \cdots & x_{m}^{'}(0,N_{2}-1) \\ \vdots & \cdots & \vdots \\ x_{m}^{'}(L_{1},L_{2}) & \cdots & x_{m}^{'}(0,L_{2}) \end{bmatrix} \begin{bmatrix} h_{m}^{'}(0,0) \\ \vdots \\ h_{m}^{'}(0,L_{2}) \\ \vdots \\ h_{m}^{'}(L_{1},0) \\ \vdots \\ h_{m}^{'}(L_{1},L_{2}) \end{bmatrix}$$
(9)

式(6)可表示为

$$\begin{bmatrix} X_{m_1} & -X_{m_2} \end{bmatrix} \begin{bmatrix} h_{m_2} \\ h_{m_1} \end{bmatrix} = 0$$
(10)

对于所有的  $m_1, m_2 \in [1, M]$  对,都可以像式(10)那样堆积在 一起:

$$\begin{split} X_{L_1,L_2}\hbar &= 0 \end{split} \tag{11}$$
 其中

$$\boldsymbol{X}_{\boldsymbol{L}_{\boldsymbol{I}},\boldsymbol{L}_{\boldsymbol{Z}}} \coloneqq \begin{bmatrix} X_1 \\ \vdots \\ X_M \end{bmatrix}, \quad \boldsymbol{\pi} \coloneqq \begin{bmatrix} h_1 \\ \vdots \\ h_M \end{bmatrix}$$
(12)

$$\begin{aligned} (\mathbf{f} \mathbf{I}_{i}) \mathbf{\Psi}, \mathbf{X}_{i} \neq i \in [1, M] \; \mathbf{f} \\ \mathbf{X}_{i} := \begin{bmatrix} 0 & \cdots & 0 X_{i+1} & \cdots & -X_{i} & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \underbrace{X_{M} & \cdots & \cdots & -X_{i}}_{M-i+1} \end{bmatrix} \end{aligned}$$
(13)

虽然各个通道的点扩散函数的规模未知,但可以假设各

个通道的点扩散函数规模的上限为  $(\mathit{L}_{1},\mathit{L}_{2})$  , 其中  $\mathit{L}_{1} \geq \mathit{L}_{1}$  ,

 $L_{2} \geq L_{2} \circ \overrightarrow{\mathbf{p}} \bigcup \overrightarrow{\mathbf{u}} \overleftarrow{\mathbf{u}} \overleftarrow{\mathbf{u}}^{[5]}_{1}$   $rank(H_{L_{1},L_{2}}) = M(L_{1}+1)(L_{2}+1) - (L_{1}-L_{1}+1)(L_{2}-L_{2}+1)$ (14)

其中, H<sub>\_</sub> \_ 的结构与式(11)中的 X<sub>L1,L2</sub> 类似。式(14)揭示了各 <sub>L1,L2</sub> 个通道点扩散函数的规模 (L1,L2) 与 rank(H\_ \_) 之间的关系。

在各个通道的点扩散函数互质,原始真实图像的秩大于等于  $(2L_1+1)(2L_2+1)$ ,并且在原始真实图像的规模 $(N_1, N_2)$ 足够大时,有

 $rank(X_{-}) = M(L_{1}+1)(L_{2}+1) - (L_{1}-L_{1}+1)(L_{2}-L_{2}+1)$ (15)

式 (15) 为各通道点扩散函数规模 (L<sub>1</sub>,L<sub>2</sub>) 与已知数据 <sup>rank(X</sup>-\_-) 之间的关系,除 (L<sub>1</sub>,L<sub>2</sub>) 未知外,其他都已知,可 <sub>L1,L2</sub>

令 (L1,L2) 为不同值,分别求得 rank(X\_\_\_) 后计算出 (L1,L2)。

#### 3 NAS-RIF 盲恢复算法及其改进

(3)

(8)

目前具有代表性的图像盲恢复方法大致可以分为:(1)先 将点扩散函数归为某一已知模型,估计出其相应的模型参数, 采用传统的图像恢复方法恢复图像;(2)将点扩散函数的识别 和图像恢复合为一体同时进行。图像盲恢复的方法很多,其 中非负有限支撑限制递归逆滤波算法(NAS-RIF)能获得良好 的恢复效果,它只需事先知道原始图像观测到的图像中的位 置和假设退化函数的反函数存在,由于其代价函数是一个凸 函数,因此能收敛到一个合适的解上。但是NAS-RIF对于高 频噪声有放大作用,当噪声较大的情况下会严重影响其恢复 效果<sup>[7]</sup>。

由于 SST 图像退化函数无法准确测定且图像的背景变化 不大,而 NAS-RIF 算法又特别适合于背景较为单调的图像恢 复,因此在 SST 图像盲恢复时选用了该算法。

为了降低高频噪声在循环计算中被放大的程度,提高低 信噪比图像的恢复效果,根据 SST 图像的具体特点,在原 NAS-RIF 算法代价函数的基础上增加一个基于 Hessian 矩阵 的自适应平滑项,并在各项加上权值矩阵,使之更加精确的 反应具体现实情况。变化后的代价函数如式(16)所示。

$$J(u) = \sum_{(x,y)\in D_{\text{sup}}} W_{I}(x,y) f^{2}(x,y) [\frac{1 - \text{sgn}(f(x,y))}{2}] + \sum_{(x,y)\in D_{\text{sup}}} W_{I}(x,y) [f(x,y) - L_{B}]^{2}$$

$$+ \gamma [\sum_{(x,y)\in D_{\text{sup}}} u(x,y) - 1]^{2} + \lambda \sum_{(x,y)\notin [f(x,y)]} W_{I}(x,y) \phi[f(x,y)]$$
(16)

其中, $\varphi(f) = c(af_{\eta\eta} + bf_{\xi\xi})$ , c 表示平滑程度, a 和 b 均衡 2 个 方向的平滑程度。

本文采用的参数为

$$c(x, y) = 1/\sqrt{1 + |\nabla f|^2} = 1/\sqrt{1 + f_x^2(x, y) + f_y^2(x, y)}, a = 0, b = 1$$

其中,  $f_x(x,y)$ 和  $f_y(x,y)$ 分别为图像中像素点 f(x,y)在 x和 y方向的一阶方向导数。 $f_{\eta\eta}$ 和  $f_{\xi\xi}$ 分别表示图像 f的梯度方向和垂直梯度方向的二阶方向导数, 可以通过 Hessian 法求得

$$f_{\xi\xi} = \left[ (f_{xx} + f_{yy}) - \sqrt{(f_{xx} - f_{yy})^2 + 4f_{xy}^2} \right] / 2$$

其中,  $f_{xx}$ 、  $f_{yy}$ 、  $f_{xy}$  分别为图像 f 各相应像素点的二阶方 向导数。根据文献[7]及 SST 的具体情况,本文采用  $L_B = 128$ 、  $\gamma = 0$ 。式(16)可简化为

$$J(u) = \sum_{(x,y)\in D_{sup}} W_1 f^2 [\frac{1 - \operatorname{sgn}(f)}{2}] + \sum_{(x,y)\in D_{sup}} W_1 [f - L_B]^2 + \lambda \sum_{\forall (x,y)} W_2 \varphi(f) (17)$$

其中,  $\lambda$  为拉格朗日乘子,  $W_1(x,y)$ 、 $W_2(x,y)$ 分别为权值矩阵。  $W_1(x,y)$ 用于消除迭代计算中不可靠数据对后续计算的影响, 当  $0 \le f(x,y) \le 255$ 时, 令  $W_1(x,y) = 1$ , 否则令  $W_1(x,y) = 0$ 。  $W_2(x,y)$ 是与图像局部特征有关的权值矩阵,根据文献[8], 在图像的平滑部分为了压制噪声, $W_2(x,y)$ 应该大一点,而在 图像细节较多的区域  $W_2(x,y)$ 应该小一点以保护图像细节信息,所以令

# $W_2(x, y) = 1/(1 + \alpha \max(0, \sigma_g^2(x, y) - \sigma_n^2))$

其中,  $\alpha = 1000 / \max_{\forall (x, y)} [\sigma_g^2(x, y) - \sigma_n^2]$ ;  $\sigma_n^2$ 为退化图像中加性噪声

的方差;  $\sigma_s^2(x,y)$  为退化图像中以 (x,y) 为中心的矩形区域内 的方差,一般矩形选为 5×5。可以验证,式(6)依然满足凸函 数的要求,也就是说改进后的代价函数在已知的条件下依然 收敛,同时又可以降低高频噪声的放大。

但是代价函数中参数的选择对恢复效果有着直接影响, 特别是 $\delta$ 和 $\lambda$ 的选择,太小则起不到抑制噪声的作用,太大 则易在恢复过程中模糊恢复结果。 $\delta$ 和 $\lambda$ 的选择与具体图像 的统计特性有关,本文实验中所选用的值是经验值, $\delta$ 和 $\lambda$ 的 选值规则及其与图像统计特性之间的关系需要进一步研究。

## 4 多通道盲恢复结果及分析

根据上述推导,我们进行了仿真计算,随机产生3个5×5 的点扩散函数,每个点扩散函数矩阵中元素之和为1。原始 真实图像如图3所示,3个退化图像分别如图4~图6所示。





图 3 真实图像

图 4 退化图像 1





图像 2

根据通道点扩散函数规模估计方法和改进的NAS-RIF图 像盲恢复算法<sup>[9]</sup>进行了仿真计算。在仿真中令 $\overline{L}_1 = \overline{L}_2$ ,并假 设 $L_1 = L_2$ 。

图 7 为利用估计出来的点扩散函数的规模和改进的 NAS-RIF 分别对 3 幅退化图像进行恢复处理以后叠加的 结果。



图 7 多通道盲恢复后的结果

从视觉上看,恢复后的图像较3幅退化图像更加接近原 始真实图像,图像对比度虽然没有原始真实图像好,但是恢 复图像的层次还是比较清晰,效果比退化图像要好。图像恢 复的效果的优劣除了可以用主观标准进行评价,还可以用如 式(18)所示的图像恢复前后的信噪比的提高这一客观标准来 判断。

$$\Delta SNR = 10(\log_{10} \left\| Y - \hat{X} \right\|^2 - \log_{10} \left\| X - \hat{X} \right\|^2)$$
(18)

本文所述的基于 SIMO 和 NAS-RIF 的图像盲恢复方法恢 复后图像的 ΔSNR 为 2.6,仿真结果说明多通道图像盲恢复对 图像质量的有所提高,且算法所需要的基础假设与 SST 的实 际情况非常吻合。

## 参考文献

- 1 中国科学院国家天文台. 空间太阳望远镜研究报告[R]. 1996.
- 2 Harikumar G, Bresler Y. Perfect Blind Restoration of Images Blurred by Multiple Filters: Theory and Efficient Algorithms[J]. IEEE Transactions on Image Processing, 1999, 8(2): 202-219.
- 3 Harikumar G, Bresler Y. Exact Image Deconvolution from Multiple FIR Blurs[J]. IEEE Transactions on Image Processing, 1999, 8(6): 846-862.
- 4 Pillai S, Liang B. Blind Image Deconvolution Using a Robust GCD Approach[J]. IEEE Transactions on Image Processing, 1999, 8(2): 295-301.
- 5 Giannakis G B, Robert W. Blind Identification of Multichannel FIR Blurs and Perfect Image Restoration[J]. IEEE Transactions on Image Processing, 2000, 9(11): 1877-1896.
- 6 Šroubek F, Flusser J. Multichannel Blind Interative Image Restoration[J]. IEEE Transactions on Image Processing, 2003, 12(9): 1094-1106.
- 7 Kundur D, Hatzinakos D. A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(2): 375-390.
- 8 You Y, Kaveh M. A Regularization Approach to Joint Blur Identification and Image Restoration[J]. IEEE Transaction on Signal Processing, 1996, 5(3): 416-428.
- 9 仲伟波. SST 图像退化及其恢复的研究[D]. 北京: 中国矿业大学, 2005.

#### (上接第26页)

- 3 Cao Junwei, Daniel P, Spooner, et al. Agent-based Resource Management for Grid Computing[C]. Proceedings of the 7<sup>th</sup> IEEE International Symposium on High Performance Distributed Computing, Chicago, 1998: 28-31.
- 4 Majid A K, Shankar K, Vaithianathan, et al. Towards an Agent

Framework for Grid Computing[C]. Proceedings of the 2<sup>nd</sup> International Advanced Research Workshop on Concurrent Information Processing and Computing, Sinaia, Romania, 2003.

5 刘大有,杨 博. 基于旅行图的移动 Agent 迁移策略[J]. 计算机研 究与发展, 2003, 40(6): 838-845.