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- SUMMARY: Some properties of geodesic lines in Rosen’s bimetric gravitation
theory (Rosen’s spherically symmetric solution) are reconsidered. Results are com-

pared with corrensponding properties of geodesic lines of Schwarzschild’s solution

in general relativity. Many similarities are identified. Equations of orbits are given,
also, in their first order approximation. Approximative formulas for the shift of
perihelia of planetary orbits and the deflection of light, in Rosen’s theory, are de-

termined.

1. INTRODUCTION

The subject of this paper is the motion of test parti-
cles in Rosen’s spherically symmetric and static solu-
tion 1n his bimetric gravitation theory.- That solution
In the isotropic coordinates takes the form (Rosen,
1977):

d82 — ___é-2M/r;,'dt:2 + e21ﬂ/r(dr2+ r2d93+

+7* sin’ 3d¢2) | . (1)

In chapter 2 some analytical aspects of the
equations of geodesic lines, as well as their geométri-
cal shapes (obtained by numerical integration), were
compared with corrensponding results of Schwarz-
schild’s solution (in the isotropic coordinates too; see
Brumberg, 1991) of general relativity. Chapter 3 is
devoted to the case of the radial infall, while chap-
ter 4 treats circular geodesic lines particulary. Fi-
nally, in chapter 5 equations of orbits are expanded

in their first order approximation (weak field approx-
imation). Approximative expressions for shift of the

perihelia of planets and the deflection of light are
determined. -

2.  QUALITATIVE ANALYSIS OF THE
EQUATIONS OF GEODESIC LINES

In tlns chapter the equations of time-like and null
geodesic lines are considered separately. Equations
of time-like geodesics corrensponding to metrics (1)
posses three first integrals:

a ) integral of energy:
dt ~
~2M [r —
e Is E, (2)

b ) integral of angular momentum:

rz%g»‘ezM/' = |, - (3)
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Fig. 1. Effective potentials in both theories

¢ ) geodesic integral :

2
e 2Mr (_‘ff_) 4 e2M/r

(&) +r (&) +rawte(2)] =

where s denotes proper. time (equations (2) through
(4) are written in so called geometrical units C =
G = 1). From first integrals one can see that the
equations of motion on the hypersurface § = =/2
are: I -

f_ij'_) — E-? _ 6—2.M/r 1 2
ds] '

de 1 _oprsr

_3; r2 e-2M/' ) (6)
Py

| a-; = EEZM/ (7)
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Effective potential is the function of the radial
coordinate, which is used for qualitative analysis of
the equations of type (5) (for Schwarzschild’s solu-
tion of general relativity see Shapiro and Teukolsky,
1983.). Effective potential in this case 1s:

The shapes of these functions (fig. 1), for dif-
ferent values of I, are very similar to the shapes of
corrensponding curves in Schwarzschild’s solution (in
the isotropic coordinates). From that fact one can

conclude that both types and shapes, of correnspond-
ing geodesic lines are very similar in the two theories

too.
- On figures 2, 3 and 4 are presented examples

of orbits: bound, unbound and orbits of capture (in
two theories) respectively. Curves are obtained nu-
merically by Hammings predictor-corrector method.

-I  In case of null geodesic lines (orbits of light
rays), instead of geodesic integral (4) one has:
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Fig. 2. Example of bound orbits
M=1.0, L=4 !, E=1.0029 (Ros.) M=1.0, L=4.1, E=1.0029 (Schw.)
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Fig. 3.. Example of unbound ‘orbits_ |

M=1.0, L=4.1, E=1.0129 (Ros) M=1.0, |_=4.'1. £=1.0129 (Schw.)
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Fig. 4. Example of orbit of capture
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Integrals (2) and (3) take the same form in
this case. Corrensponding equations of motion are:

(10)

dae/ _ ’
dp ~
" .
T - (12)

where a = Is and b = I/ E. Effective potential in this
case (equation (10)) is:
V — _3:: --2M/!" ' - (13)
This function has only one extreme value
(maximum) and therefore only unbound orbit or or-
bites of capture are possible (see Shapiro and Teukol-
sky, 1983). V(r) has maximum at r = M and that
maximum takes value of Vipqar = 1/eM. That maxi-
mum evaluates, actually, the critical value (the value
which divides unbound and orbits of capture) of the
parmeter b. Effective potential in the Schwarzschild’s
solution (in the isotropic coordinates) is:

1 1-M/2r
V=g (1+ M/2r)° (14

It has a critical value b = 3v/3M (as in standard co-

ordinates) at the distance r = M(1+ v3/2) (this ra-

dius corrensponds to circular orbit) from the source
of the gravitational field.

3. RADIAL INFALL

Particulary interesting is case of the radial infall, be-
 cause equations of motion are then much simpler.
Test particle is falling directlly on the source of the
gravitational field which means that angular momen-

tum integral is zero | = 0. Those simplified equa-
tions, metioned above are:

dr ? Y -2M [r

E; = — € D | (15)
, _
-3‘-5- = 0, (16)
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at _ moaM/r
- ds- o ,
~ Critical distance R wich divides areas of the
variable » where the motion is possible r < R or
impossible r > R is:

(17)

M

R=———=

18
InE (18)

Appropriate critical distance in the Schwarzschild’s
solution (given in the isotropic coordinates) is:

(E < 1).

(19)

Equation (15) is not integrable by quadratures
but the numerical integration shows (fig. 5) that for
” coordinate observer” the particle is asymptotically
falling on the source of gravity while in Schwarzsch-
ild’s case for the same observer test particle never
reaches distance r= M /2. '

4. CIRCULAR ORBITS

“Circular orbits occur in Rosen’s solution (1) too.

First integrals £ and [ are dependent upon the radius
ro of circular orbit:

52 _ 70— M -2M /7o |
b= rg — 2Me ’ (20)
' 2
Cpo Mo My (21)

. . 1’0' - 2M .
respectively. According to formulas (20) and (21) the
last possible circular orbit on the __}'adius ro = 2M,
corrensponds to the photon orbit (£ = o0). In order
to compare these results with the ones appearing 1n

the Schwrzschild’s solution one can derive appropn-
ate expressions (in the isotropic coordinates) for that

case.

~ | (21‘0 — 1\/!)4

BP0 (22)
(2ro + M) [M2 -~ 8Mry + 4rq?]

n_ _ MM+
' 41‘0[M2 —~ 8Mry + 4?‘92]

Critical values of radius ro in this case are
Tol1 = M(l e \/5/2) and rg1 = M(l -+ \/5/2), but ro1
is inside singularity (ro; < M/2), which means that
the limiting case of the circular orbit corrensponds

to rgo. Examples of circular orbits are presented on
figure 6.

(23)
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Fig. 5. Radial infall.
M=1.0. Ro=10.0 (Rosen) M=1.0, Ro=10.0 (Schwarzschild)

5
-3~ -5
-15 _ ' _ li_15'
-15 -5 5 15 -15 ~5 5 15
Fig. 6. Circular orbits
5. EQUATIONS OF ORBITS IN THE R
FIRST APPROXIMATION - ' 2M  2M?
+|14+—+—] X
_ _ r .. r :
From the analytical shape of the solution (1) Rosen dr\ 2 J0\? | do\ 2
(Rosen, 1977) himself, concluded that his spheri- ( -:) + (-—-—) + r?sin? @ (__‘E) = =1,
cally symmetric solution gives ”the same agreement ds, . ds . ds '

with present-day observations as the general relativ- (24)
ﬁi’ E}fory . anﬁ:ulahons done in this chapter show  ¢5; (ime-like geodesic lines. Appropriate first inte-
at he was right. . -ﬁ - '
SR AST L grals are:
If one expands exponential functions in .(1), a ) equation (24),
and neglect quantities of the third order of M/r, b-) integral of energy

the corrensponding approximative Lagrange function oM\ dt . -
will be: | | e )___ =F, (25)
| r2 Jds
| - “c7) int gral of angular momentum"
. oM  2M?2\ [ dt\? ” '. oM . 2M?2 'dr,p s L
le(l-“;—--l- 3 )(3‘;)+ f(1+_r+_r2),ds—-l. - (26)
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In that case equations of motion are:

ds)
P2
(1 - 2M/r + 2M2?[r2)(1 + 2M/r + 2M?/7?)

(27)

dp 1 ) ]

el w sy yvey Pt
dt E (28"

ds ~ 1-2M/r+2M2/r?’

By introducing a new variable « = 1/r, and
using  instead of s as an independent variable, equa-
tion (26), if terms proportional to M?u? are taken
into account only, takes the form:

du\® E?—1 2M(_ =5 .

2, |
+[§—4—42— (582 -1) - 1] u,  (29)
Furthermore, with the new parameters e and p (in-

stead of E and ) S '

e2—-1 FE*-1
=5 (30)
1
TR (31)

one can write (equation (29)):

wy oo s,

+{-2—3£ [3-- ig—/f-----(l - ez)] -~ l}uz-. - (31)

Parameters e and p are, actually, ecentricity and pa-
rameter of orbit, well known from classical celestial
mechanics. Equation (31) can be simplified if one ex-
tracts the terms which are greater (some quantities
were, already, neglected). For instance, for Earth,
ratio M/p is about 1072, and therefore terms with
(M/p)? can be neglected in this approximation. Sim-
plified equation (31) takes the form:

30

(33)

e2—1 2u
= + —, 32
p’ p (32)
or
where frequency w 1s:
wel-—- _{5_%!_ (34)

in an accepted ap proximation. Solution of equation
(33) can be written as:

1+ ecos(wp)
B |
For w = 1, (35) represents a conical section,

but for w near to 1 pericentral distance (perihelion

of planet) will slightly be moved after every passing

through the pericenter. According to (34) that shift
will be: _

s m VT

_ P |
like in the Schwarzschild’s solution. Analogously to
the case of time-like geodesic lines one can approx-

imate null geodesic lines. The appropriate equation
of orbit will be: '

- (35)

u

(

or after differentiation

G0

2 | _
2% putu= o - 37)

In this case the frequency w is: |
w1l - v (38)
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General solution of equation (37) could bé written in
the following form (Fock, 1956): -

U=T73 + y Cos W,
where constants of integration are taken so that one -
has the minimal distance

- _Tm,',i-sﬂ"'} b —'*2M,

(39)

at ¢ = 0.
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In Euclidian plane (r, ¢) equation (39) deter-
mines a hiperbola (for w one can take 1 in this ap-

proximation). Directions of the asymptotes of that

hiperbola determine a small angle, which is actually

light deflection. One can easily note that, in this
case, that angle is: '

(40)

as 1n Schwarzschild’s solution.
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['EOLE3NJCKE OPBUITE Y POBEHOBOJ BMMETPNYKOJ TEOPNJU 'PABUTAILNJE

- 3. haroBuh

Hnecmumym 3a acmporomujy, Mamemamuuxu gaxyamem, Cmydenmcku mpe 16, Beoepad, Jyzocaasuja

YOK 524.8-325
Op2uHaaHu HAyuHu pao

Pa3MoTpeHe cy Heke 0coBUuHe reone3u jCKHUX J1n-

HUja y Po3eHOBOj 6UMETPHUYKOj TCOPUjU I'paBUTALIUjE

(PoseHoBo cepHO cuMeTpudHO pewete). PesyaraTi
Cy yrnopeheHn ca oarosapajyhum ocobliHamMa reome-
SUJCKUX JIMHWja y llBapumiinoBoM pemery oriuTe

TEOpUj¢ PEIATMBHOCTH. YO4YEHE CY MHOIe CIMYHOCTH.
JeaHaw1MHe opOMTa Cy IaTe HHUXOBOM allpOKCHUMalLU-
joM nppor pena. MsseleHu cy npubGAWAXHY U3pasH 3a
[IOMepame repuxesia MniaHera M CaBujathe CBETJIOCTH,
y Po3eHoBoj Teopuju.

31



