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Abstract

Contingent valuation and contingent rating and ranking methods for measuring willingness-to-pay for

non-market goods are compared by using random coefficient models and data pooling methods. Pooled

models on CV data and CR data on the preferred choice accept pooling if scale differences between the

model estimates of CV and CR  methods are allowed for. More detailed response models, such as pooled

CV model and rank-ordered models for two or three ranks, reject pooling of the data.
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Introduction

Stated preference methods (SP methods) are widely used in measuring economic values related to the

environment. They involve conducting surveys, in which respondents are presented with hypothetical

alternatives, usually policy options. Each policy option results in the supply of a certain nonmarket good,

such as environmental quality, for certain costs to respondents. Survey respondents are asked to evaluate

the alternatives and to state their preferences over them. The contingent valuation (CV) method is based

on asking for acceptance or refusal of a policy alternative, which has a specified cost. The contingent

rating and ranking (CR) methods ask respondents to rate or rank the suggested alternatives. In its simplest

form, this is done by asking them to choose a preferred alternative.

Although CV and CR are the most commonly used SP methods, their performance and consistency has

not been exhaustively studied. Comparisons between the CV and CR include Desvouges and Smith 1983,

Magat et al. 1988, MacKenzie 1993, Ready et al. 1995, Boxall et al. 1996, Adamowicz et al 1998,

Stevens et al. 2000, and Cameron et al. 2001. They all suggest that there are differences in the results of

the SP methods. All the methods, however, attempt to measure essentially the same tradeoffs between

money and changes in the environmental quality, and their results should be very similar when applied to

the same policy problem.

The previous studies that find differences between SP methods have been based on fixed coefficient

discrete choice models, typically logit models. The assumptions and properties of fixed logit models are

restrictive, but more flexible models with random coefficients have been impractical until recently due to

limitations in computing power. This constraint has recently been greatly relaxed by the development of

simulation-based econometric techniques, and random coefficient models can now be employed in

modeling discrete choice data (e.g. Train’s 1998, Layton 2000). The results of random coefficient

applications suggest that it would be beneficial to examine the differences between SP methods by using
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less restrictive econometric models than has been used in the past. More flexible models help determine

whether the past conclusions have resulted from actual discrepancies between different SP methods, or

perhaps from using overly restrictive econometric models.

Data pooling methods involve combining separate sources of data, such as CV and CR data, and

estimating the econometric models by utilizing the pooled data set. This enables to compare different data

sources at the estimation stage, and brings several benefits over estimating separate models for different

data and comparing their results afterwards. First, likelihood ratio-based tests for data source invariance

become available. Second, if data from different SP sources can in fact be considered equal, the pooled

econometric models provide practical means to utilize all the information in the data collected. This in

turn can result in more reliable estimates than are obtained with the unpooled models.

Fairly few studies have used the data pooling approach in examining SP methods. Adamowicz et al.

(1994) combined survey data on choices in the past and stated preferences over hypothetical future

alternatives. Adamowicz et al. (1998) combine choice experiment and contingent valuation data and

estimate models on the combined data. Cameron et al. (2001) pool data from one actual and six different

hypothetical value elicitation experiments regarding the same good. Hensher et al. (1999) provide a

general framework for applying data pooling techniques to test for the invariance between separate

sources of data. Their approach is adopted here and used in testing for the consistency of CV and CR

data.

The empirical application of this study deals with measuring WTP for conserving habitats that are

especially valuable ecologically (i.e. biodiversity hotspots) in non-industrial private forests in Finland.

According to ecologists, protection of biodiversity hotspots is particularly important for biodiversity

conservation in Finland. The hotspots cover a total of 1.1 million hectares, which is some 6 percent of
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Finnish forests. Current regulations protect some 120,000 hectares of hotspots, and their extended

protection is currently debated. This study evaluates potential conservation policy alternatives for the

future by examining the public’s preferences for them.

The rest of the paper is organized as follows. Econometric models for CV and CR data are explained first.

Then, using the data pooling approach in testing for invariance between different data sources is

described. The empirical section starts with a description of the survey on public preferences for

biodiversity conservation in Finland. The results section starts  with results for separate CV and CR data,

and continues with pooled models that are used in testing for the invariance between the CV and CR data.

Discrete Choice Econometric Models for Stated Preference Survey Responses

Econometric models for stated preference survey responses are typically based on McFadden’s (1974)

random utility model (RUM). It is used here as a point of departure for explaining various econometric

models for CV and CR survey responses3. Consider an individual i choosing a preferred alternative from

a set of m alternatives providing utility Uij, that can be additively separated into an unobserved stochastic

component εij and a deterministic component Vij(zj,yi-Aij), i.e., the indirect utility function that depends

only on individual’s income y and environmental quality z. Denoting the cost of alternative j to person i

with Aij, the utility of alternative j can then be represented as:

Uij = Vij(zj,yi-Aij)+εij (1)

The stochastic term εij represents the unobserved factors affecting the choices. They are known, and taken

into consideration, by individual j choosing between the alternatives, but are not observed by the analyst.

                                                

3 The CV section draws from works by Hanemann (1984), Hanemann et al. (1991), and Hanemann and Kanninen
(1999); the CR section relies on McFadden (1974), Beggs et al. (1981), Chapman and Staelin (1982), Hausman and
Ruud (1987), recent works by Train (e.g. 1998), McFadden and Train (2000), and Layton (2000).
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Choices are based on utility comparisons between the available alternatives, and the alternative providing

the highest utility becomes the preferred choice. The probability of person i choosing alternative j from

among all the m alternatives therefore equals the probability that alternative j provides person i with

greater utility Uij than any other available alternative Uik, i.e.,:

Pij = P(Uij > Uik, k = 1, ..., m,� k� j)  (2)

Representing Uij = Vij(.j)+εij, then rearranging and denoting the difference of random components

between alternatives j and k as εijk=εij–εik, and the difference between the deterministic components as

∆Vijk(.) = Vik(zik,yi-Aik) –Vij(zij,yi-Ai), the probability Pij can be presented as:

Pij = P(εijk  > ∆Vijk(.), k = 1, .., m,� k� j)  (3)

To estimate parametric choice models, specification of both the distribution of the εij and the functional

form of Vij is required. The specification of εij determines the probability formulas for the observed

responses; the functional form of Vij is employed in estimating the unknown parameters. Denoting all the

exogenous variables of alternative j for the ith person as a vector Xij and the unknown parameters as β, Vij

is typically specified as linear in parameters Vij=Xijβ.

Fixed Coefficient Logit Models

Contingent Rating or Ranking

Assume in the following that the random terms εj and εk are independently and identically distributed,

type I extreme value (TEV) random variables. It follows that their difference εijk is logistically distributed.

Under these assumptions, McFadden (1974) showed that choice probability Pij in (3) is determined as a

conditional logit model:
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The parameter µ is a scale factor that appears in all the choice models based on the RUM, because the

parameter vector β in the choice probabilities is identified up to a multiplicative constant. With data from

a single source, the scale factor is typically normalized to one, and the normalized parameter vector β is

estimated. This is necessary for identification; without the restriction imposed on µ, neither µ nor β could

be identified. In combining data from different sources, in general n-1 scale factors can be estimated from

n sources of data. Since pooling of CV and CR data, and estimating scale factors for different data sources

plays an important role here, scale parameters are included in all the following models.

Beggs et al. (1981) and Chapman and Staelin (1982) extended the conditional logit model to modeling the

ranking of alternatives. A rank-ordered logit model treats the ranking as m-1 consecutive conditional

choice problems. In other words, it assumes that the ranking results from m-1 utility comparisons, where

the highest ranking is given to the best alternative (the preferred choice from the available alternatives),

the second highest ranking to the best alternative from the remaining m-1 alternatives, the third ranking to

the next best alternative, and so on. The probability of the observed ranking r for person i is given by:
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Hausman and Ruud (1987) developed a rank-ordered heteroscedastic logit model that is flexible enough

to take into account possible chances in variance of the random term in the RUM as the ranking task

continues. It is based on formulation (5) and modified to include a rank-specific scale parameter that

accounts for systematic changes in the variance of the random term. By its structure, a rank-ordered

heteroscedastic logit model can identify m-2 scale parameters.
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Maximum likelihood method is typically used in estimating the unknown vector of parameters. The

earlier presented response probabilities form the likelihood function for each individual. By independence

of observations, the total likelihood is then simply the sum of individual likelihoods over the whole

sample. Estimation is usually based on a logarithmic transformation of the likelihood function. For

instance, a conditional logit model is estimated by maximizing the total of ln(Pij) over the whole sample.

Double Bounded Contingent Valuation Responses

In the double bounded CV, respondents are asked a follow-up question based on the first response.

Respondents who answered Yes to the first question (FirstBid) are asked a similar second question, this

time with HighBid > FirstBid. Respondents who answered No get a second question with LowBid <

FirstBid. The second responses provide more detailed data on individual preferences between the two

alternatives, and the choice probabilities can now be determined on the basis of responses to two separate

questions. The four possible response sequences are: Yes-Yes, Yes-No, No-Yes and No-No. Using the

conditional logit model, and denoting the exogenous variables for questions with FirstBid, HighBid and

LowBid by XiFB, XiHB and XiLB, the probabilities of the different responses are given by:
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Using dummy variables Iyy, Iyn, Iny, Inn to indicate Yes-Yes, Yes-No, No-Yes and No-No responses, the log-

likelihood function for the double-bounded CV is:
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Random Coefficient Models

Although they are frequently applied to SP data, the fixed coefficient logit models have some undesirable

properties and assumptions. First, they overestimate the joint probability of choosing close substitutes,

because of the Independence of Irrelevant Alternatives (IIA) property (McFadden 1974). Second, they are

based on the assumption that the random terms εij are independently and identically distributed. In

practice, it is more likely that individual specific factors influence the evaluation of all the available

alternatives, and make the random terms correlated instead of independent.

Random coefficient logit (RCL) models have been proposed to overcome possible problems of the fixed

coefficient logit models (e.g. Revelt and Train 1998, Train 1998, Layton 2000). The RCL model is

specified similarly to the fixed coefficient models, except that the parameters β are assumed to vary in the

population rather than be fixed at the same value for each person. Utility is expressed as the sum of

population mean b, an individual deviation �, which accounts for differences in individual taste from the

population mean, and an unobserved i.i.d. random term ε. The total utility for person i from choosing

alternative j is therefore:

Uij = Xijb+Xij�i+εij (11)

where Xijb and Xij�i+εij are the observed and unobserved parts of utility, respectively. Utility can also be

written as Xij(b+�i)+εij, which shows how the previously fixed β now varies across people as βi=b+� i.

Although the RCL models account for heterogeneous preferences via parameter �i, individual taste

deviations are neither observed nor estimated. The RCL models aim at finding the different moments, for

instance the mean and the deviation, of the distribution of β, from which each βi is drawn. Parameters β
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vary across the population with density f(β|�), with � denoting the parameters of density. Since actual

tastes are not observed, the probability of observing a certain choice is determined as an integral of the

appropriate probability formula over all the possible values of β weighted by its density. The probability

of choosing alternative j out of m alternatives can now be written as:
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Equation (12) is the random coefficient extension of the conditional logit model (4). Random coefficient

models for rank-ordered logit models are defined similarly, as well as the RCL model for double-bounded

CV. The extension is straightforward and not replicated here. It suffices to note that in other models the

bracketed part of (12) is replaced by the appropriate probability formula.

Integral (12) cannot be analytically calculated and must be simulated for estimation purposes. Train has

developed a method that is suitable for simulating (12), and its many extensions needed in this study. His

simulator is smooth, strictly positive and unbiased for just one draw of βi (Brownstone and Train 1999)

and can be easily modified to allow for strictly negative or positive random coefficients. Simulating (12)

is carried out simply by drawing a random βi, calculating the bracketed part of the equation, and repeating

the procedure many times. Using R draws of β i from f(β|�), the simulated probability of (12) is:
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The simulator (13) can be easily extended to the rank-ordered logit models and to logit models for the CV

responses. The only change required is to replace the bracketed term with the rank-ordered or double-

bounded CV probability formulas.
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Data Pooling Method

The scale factor µ of the response models is inversely related to the variance of the random component in

the RUM. Using a single source of data, µ is typically set equal to one since it cannot be identified. The

problem is that estimated vector of parameters β gets confounded with constant µ. This in turn makes

absolute values of the parameter estimates incomparable between different data sets; only the ratios of

parameters are comparable across different sources of data (Swait and Louviere 1993).

Consider n separate sources of stated preference data, such as survey data using CV and CR. Normalizing

scale factors equal to one in estimation of separate data sources, each data set q=1,...,n provides us with

parameter estimates βq. Denoting the scale parameters of different data sources with µq, n vectors µqβq of

parameter estimates result. Pooling n sources of data, it is possible to identify n-1 scale parameters for

different data sources. Fixing one scale factor, say µ1=1, the rest of the n-1 estimated scale parameters are

inverse variance ratios relative to the reference data source (Hensher et al. 1999).

Denote the vector of CV and CR estimates by µCVβCV and µCRβCR. Pooling the CV and CR models, fixing

µCV =1, and estimating µCR, then accounts for possible differences in the variance of the random terms

between the CV and CR data. To test for the parameter invariance between the CV and CR data, models

with and without the restriction βCV=βCR need to be estimated. Likelihood ratio tests can then be applied

to accept or reject the imposed parameter restriction. If the null hypothesis cannot be rejected, the data can

be considered generated by the same taste parameters but still have scale differences. Restricting both

βCV=βCR and µCR=1 provides an even stricter test of data invariance, testing for both parameter and

random component invariance. If not rejected, the two data sets can be considered similar and absolute

parameter estimates comparable across the data sources.
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The Survey

Data were collected using a mail survey, sent out in spring 1999 to 1740 Finns between 18 and 75 years

of age. The sample was randomly drawn from the official census register of Finland, and is therefore a

representative sample of the Finnish population. The sample was randomly divided into two sub-samples

of 840 and 900 respondents. The first sub-sample received a double-bounded CV questionnaire and the

second sub-sample a CR questionnaire.

WTP was measured for three hypothetical conservation programs: Increasing conservation from the

current 120,000 hectares to (1) 275,000 hectares, (2) 550,000 hectares and (3) 825,000 hectares. The new

alternatives correspond to 25-, 50- and 75-percent protection of all the biodiversity hotspots, respectively.

The current legislation already protects 10 percent of them.

In designing the survey, special attention was paid to making the conservation policy scenarios relevant

and credible. An easy to read one page section in the questionnaire explained different conservation

programs and their details. Suggested new conservation programs were described as extensions to an

already existing policy measure that uses incentive payments to encourage landowners to voluntarily set

aside biodiversity hotspots. While designing the survey, questionnaire versions went through several

rounds of modifications and reviews by experienced SP practitioners as well as other economists,

foresters and ecologists with expertise in survey methods or biodiversity conservation. After the expert

comments were incorporated, the questionnaires were tested by personal interviews and a pilot survey

(n=100), and modified on the basis of the results.

The questionnaires started with questions about the respondents’ attitudes on different aspects of forest

and public policies. The next section of the questionnaire described the forest management and current



11

conservation situation in the country. The valuation questions followed next. The questionnaire concluded

with questions on the respondents’ socioeconomic background.

The respondents to the CV questionnaires were divided into two groups. The first group was asked to

state their WTP for the first two policy alternatives, i.e., 275,000 and 550,000 hectares, and the second

group for the 550,000 and 825,000 hectare alternatives. Each respondent was asked two separate CV

questions, and responses for 50-percent conservation were collected by using both the first and the second

WTP question, depending on the respondent’s sub-sample. The CV method employed a double-bounded

format. The bid vector in the CV survey consisted of first bids between $4 - 500 and the follow-up bids

between $2 - 800, with seven different starting bids. The same bid amounts appeared as first and second

bids for different respondents and different programs. Description of the programs was exactly the same

as in the CR surveys, except that each CV-respondent was offered only the status quo and two new policy

alternatives, not three new alternatives as in the CR surveys.

The CR survey described to respondents the status quo and all three hypothetical programs of setting

aside 275,000, 550,000 and 825,000 hectares of hotspots. Each respondent was asked to rate the four

programs on a scale from 0 to 10. The three hypothetical programs were assigned costs using the same

variation across the respondents and the conservation programs as in the CV survey. The costs were

assigned so that the higher conservation percentages were always assigned higher bids than the lower

conservation percentages.

The final survey consisted of 29 different questionnaire versions, of which 14 used the CV and 15 used

the CR. In both types of surveys, WTP was measured as the increase in annual tax burden of the

household. Except for the valuation question, the CV and CR questionnaires were exactly the same.

Therefore, only the choice task in the valuation question varies between the CV and CR respondents.
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The survey was mailed out in May 1999. A week after the first mailing, the whole sample was sent a

reminder card. Two more rounds of reminders with a complete questionnaire were sent to non-

respondents in June and July. The CV and CR surveys resulted in response rates of 48.9 percent and 50

percent, respectively. Different methods therefore resulted in almost the same response rates.

Results

The CV data (376 observations) was first censored for missing responses. The remaining 306 observations

with complete responses to the both WTP questions were employed in the estimation. The CR data with

ratings of alternatives was first transformed into rankings by assuming that preferred alternatives were rated

higher than the less preferred ones. Rankings utilize only the ordinal information on preferences.

Respondents with, for instance, ratings sequences (3, 2, 1, 0) and (10, 9, 3, 1) for the four policy alternatives

are therefore considered similar responses with the same preference ordering A > B > C > D. In building the

ranking data, observations with ties or missing ratings were censored, leaving a total of 270 observations for

estimation. Hence, the results are based on data with full and unique rankings of all four policy alternatives4.

Several alternative specifications were estimated5. They specified the valuation function for conservation

either as a continuous linear, logarithmic or a quadratic function, or by using alternative specific

dummies. Non-nested model selection test by Pollak and Wales 1991 was then employed in selecting a

preferred specification among them6. Based on its statistical performance, a quadratic models was chosen

as the preferred specification for these data. The observed part of the RUM is estimated as:

                                                

4 Ties were distributed as follows: The ratings for the status quo and the 25-percent alternative were tied 15 times,
resulting in 3.9 percent of observations being tied. The status quo and the 50-percent alternative had 12 ties (3.1%);
the status quo and the 75-percent alternative 19 ties (4.9%); the 25- and 50-percent alternatives were tied 37 times
(9.6%); the 25- and 75-percent alternatives 36 times (9.3%); the 50- and 75-percent alternative 67 times (17.4%).
Examining the ties, and modeling them within the rank-ordered logit model, is computationally demanding and an
objective for future work.
5 All the models were programmed and run in GAUSS.
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Vij = βBIDBIDij +βPercentPERCENTij+βSqrPercentSQRPERCENT
2

ij (14)

where BID is the cost of alternative j to person i, PERCENT
7 is the percentage of the biodiversity

hotpots conserved under alternative j, and SQRPERCENT is its square.

Random coefficients are typically estimated as normally distributed parameters. A normally distributed

parameter βn can take both negative and positive values. It is estimated as βn = (bn+�ne), where b and �

are the estimated mean and deviation parameters of the βn, and e a standard normal deviate (Train 1998).

The BID parameter is assumed to be strictly negative. For the strictly negative BID, increasing the costs of

a policy alternative always decreases its probability to become chosen. Train (1998) suggests that the

strictly positive random coefficients can be estimated as log-normally distributed, and provides a practical

method for incorporating them into his simulator. Each log-normal βk can be estimated by expressing

them as βk=exp(bk+�ke), where b and � are estimated mean and deviation parameters of ln(βk), and e an

independent standard normal deviate. Strictly negative parameters are estimated by entering the variable

values in question as their negative. A disadvantage of the log-normally distributed random coefficients is

that they are often very hard to estimate and identify (e.g. McFadden and Train 2000). Alternatively,

Layton (2001) proposes employing distributions determined by a single parameter in estimating the

strictly negative or positive random coefficients. While the RCL models typically estimate the mean and

variance of the distribution, one-parameter distributions, such as Rayleigh distribution, identify all the

moments of the distribution by estimating just a single parameter. A strictly positive BID with Rayleigh

distribution has a cumulative density function F(BID)=1-exp[-BID
2/(2b2)], and a probability density

function f(BID)=(BID/b2)exp[-BID
2/(2b2)], where b > 0 is the scale parameter fully determining the shape

                                                                                                                                                            

6 Non-nested models selection results are not reported in detail here; their results are available from the authors.
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of the distribution. Using the inverse transformation method, the Rayleigh distributed BID can be obtained

as BID=(-2b2ln(1-u))1/2, where u is a random uniform deviate and b the random draw for BID parameter.

Since Rayleigh distributed BID is strictly positive, it is estimated by entering the values of the BID variable

as their negative. The mean, variance, median and mode of the Rayleigh-distributed BID are b(Π/2)½, (2-

Π/2)b2, b(log4), and b, respectively (Johnson et al. 1994, Layton 2001).

Previous applications have typically modeled either the BID or other alternative characteristics as random

coefficients, not both. With these data, heterogeneity of preferences for conservation level could be

observed, and PERCENT and SQRPERCENT were therefore modeled as normally distributed random

coefficients8. On the other hand, previous studies suggest that heterogeneity of preferences is often related

to the BID coefficient. It was therefore also estimated as a random coefficient. Since it essentially

represents the negative of the marginal utility of income, it was estimated as a non-positively distributed

coefficient. The BID was estimated using a Rayleigh-distributed random coefficient BIDRAYLEIGH.9

Table 12 reports both the fixed (FCL) and random coefficient (RCL) model results for the quadratic

specification. The FCL models result in statistically significant estimates for all the parameters.

Further, the BID parameter has an expected negative sign in all the results. The linear term of the value

function, PERCENT, and the quadratic term, SQRPERCENT, together reveal how value of conservation

changes as the conservation level is increased. In all the models, PERCENT gets a positive, and

SQRPERCENT a negative estimate, suggesting that the value of conservation is first increasing as a function

of conservation, and then decreasing as conservation is further increased.

                                                                                                                                                            

7 The CR alternatives are given values 0, 15, 40, and 65 for a measure of increased conservation under each
alternative; the CV data is constructed similarly.
8 No correlation parameters between random coefficients were estimated to ensure identification of coefficients.
9 Despite substantial efforts, BID was not estimable as a log-normal random coefficient for all the models.
Employing a Rayleigh distributed BID lead to faster iteration and convergence of all the models.
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Table 1. Model results

Model: CV CR - 1 Rank CR - 2 Ranks CR - 3 Ranks
Estimate

(|t-statistic|)
FCL RCL FCL RCL FCL RCL FCL RCL

BID -0.3556
(19.850)

-0.0860
(4.746)

-0.0752
(5.803)

-0.0557
(5.232)

BIDRAYLEIGH 1.6353
(8.252)

0.0752
(3.311)

0.1905
(2.901)

0.1096
(2.311)

Means
PERCENT 0.9216

(11.309)
2.8384
(9.060)

0.1831
(1.677)

0.2268
(1.056)

0.4180
(5.290)

2.3525
(5.239)

0.6925
(10.124)

1.7012
(7.458)

SQRPERCENT -0.1189
(8.343)

-0.2926
(7.913)

-0.0257
(1.671)

-0.0350
(0.851)

-0.0667
(5.875)

-0.4737
(4.882)

-0.1075
(11.110)

-0.3217
(9.832)

Deviations

PERCENT 0.9266
(6.539)

-0.0350
(0.135)

2.1215
(5.131)

1.8121
(8.383)

SQRPERCENT 0.0114
(0.398)

0.0471
(0.272)

0.1765
(2.632)

0.0079
(0.285)

LL - 846.85 -693.34 -347.82 -348.73 -608.78 -479.99 -746.98 -545.31

LL0 -848.41 -848.41 -374.30 -374.30 -670.93 -670.93 -858.08 -858.08

Pseudo-R2 0.018 0.183 0.071 0.068 0.093 0.285 0.129 0.364

Note: Number of the CV and CR responses are 306, and 270, respectively. 1000 replications were employed in simulating
the maximum likelihood function. Bid variable values were divided by 100 to facilitate estimation; the PERCENT was
divided by 10, and the SQRPERCENT calculated using the scaled PERCENT.

Although exploiting information on more than the first rank seems to improve model performance, one

must check the consistency of rankings before accepting the rank ordered models. The LR-tests in the

fashion of Hausman and Ruud (1987) for the consistency of rankings suggested that none of the rank-

ordered models can be accepted. Consistency of two and three ranks was not accepted, and hence, the fixed

coefficient rank-ordered logit models for two and three ranks were rejected. Rejection of the consistency of

rank-heteroscedastic models suggests that the heterogeneity of responses is not sufficiently systematically

related to the ranks for the rank-ordered models to be consistent10.

                                                

10 Estimating models separately for second and third rank result in log-likelihood values 251.28 and 45.56,
respectively. Tests for consistency of rankings for the rank-ordered logit models for two and three ranks result in
LR-test statistics 19.36 and 204.64, respectively, and rejection of both rank-ordered models. Also the Hausman and
Ruud rank-heteroscedastic models lead to rejection of consistency of rankings.
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The RCL models are statistically superior models for the CV data, and the CR data for two and three

ranks. The pseudo-R2 has increased substantially for all these models. Interestingly, the CR 1 Rank model

performs statistically slightly worse than the fixed parameter model11. Despite the poor performance of

the CR 1 Rank model, the other model results confirm the importance of addressing the parameter

heterogeneity issue in modeling these data.

Using the formula for the asymptotic mean of Rayleigh distributed BID parameter, the estimated

BIDRAYLEIGH parameters translate into the mean of -1.60 for BID parameter, and values for CR models for

one, two and three ranks into values -0.37, -0.34, and -0.30 for means of BID parameters, respectively.

The RCL models for CV data, and for CR data on two and three ranks, produce a statistically significant

estimate of PERCENT variable, suggesting that preferences regarding the conservation level are

heterogeneous. The curvature parameter, SQRPERCENT, has a statistically significant deviation estimate

only in the CR model for two ranks. The estimate for the mean for the SQRPERCENT parameter is

significant for all the RCL models except the CR 1 Rank-model, suggesting that the quadratic nature of

the value function was not a product of the fixed parameter formulation, but a phenomena that is inherent

in the data.

Models for Pooled Contingent Valuation and Contingent Ranking Data

Pooled models were estimated on combined CV and CR data. The estimation can be implemented in

several ways; the main concern is to make sure that appropriate likelihood functions are applied to each

response. Formulating a dummy variable for the CR data can facilitate estimation. Defining IiCR = 1 for

CR respondents, and IiCR = 0 for CV respondents, the pooled log-likelihood function for individual i is

determined as:

                                                

11 This is expected to be a result of the properties of Rayleigh distribution. For instance, it  has as long right hand tail,
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LLi = IiCR*ln(PiCR)+ (1- IiCR)*ln(*PiiCV) (14)

where PiCR and PiCV  are the appropriate CV and CR response probabilities of the model. Logically, the

total log-likelihood function is again a sum of the individual likelihoods over the whole sample12.

Table 2 reports the model results for the combined CV and CR data. Although the previous analysis has

shown that the random coefficient formulation is the preferred modeling approach for these data, a variety

of pooled models were estimated to examine the effects of modeling choices on accepting or rejecting

pooling the data. LR-tests were employed in accepting or rejecting the pooling hypothesis; the respective

LR-test statistics are reported in the second last row of the Table 2. The test statistics is distributed �2 with

degrees of freedom equal to difference in number of estimated parameters between pooled and unpooled

models. Estimating a scale parameter in pooled model versions, degrees of freedom (d.o.f) for fixed and

random parameter logit models with all parameters random equal to 2 and 5, respectively. The critical

values with 2 d.o.f at 5 percent and 1 percent significance levels are 5.99 and 9.21; the respective values

for 5 d.o.f are 11.07, and 15.09. If the LR-test statistic gets a lower value than the critical value, pooling of

data cannot be rejected.

All the models estimate parameter µCR, which is a scale factor for the CR data, and accounts for

differences in the variance of random term of the RUM between the CV and CR data. Since only the

parameter ratios are comparable between the different sources of data, estimating a scale factor

allows for direct comparisons of the estimates. Logically, if no differences in the random term

variance exist between the CV and CR data, the estimate of µCR is not statistically different from one.

                                                                                                                                                            

which, despite the benefits due to parameter heterogeneity, can make a RCL model more constrained than the FCL model.
12 Considerable time savings, especially in estimating random coefficient models, can be obtained by structuring the
data so that unnecessary calculations of the log-likelihood function are avoided. Calculations of CR response
probabilities are unnecessary for CV respondents, vice versa.
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Since the scale factor is inversely related to the variance of the random component of the RU-model,

an estimate µCR < 1 suggests that the CR data is noisier than the CV data, and µCR > 1 the opposite.

Table 2. Model results for pooled CV and CR data

Model: CV & CV & CV  &

1 Rank 2 Rank  3 Rank
Estimate
(t-statistic) FCL RCLa FCL RCL FCL RCL

BID -0.3558
(19.863)

-0.3522
(19.719)

-0.3439
(19.348)

BIDRayleigh 1.6086
(8.243)

1.2032
(8.383)

1.1947
(8.594)

Means
PERCENT 0.9204

(11.504)
2.8398
(9.104)

0.9924
(12.718)

2.9765
(9.690)

1.0877
(14.170)

2.9839
(9.841)

SQRPERCENT -0.1190
(8.569)

-0.2957
(8.026)

-0.1334
(9.939)

-0.3299
(9.421)

-0.1512
(11.508)

-0.3268
(9.698)

Deviations
PERCENT 0.9199

(6.529)
1.3855
(8.613)

1.4052
(8.738)

SQRPERCENT 0.0114
(0.407)

0.0301
(0.632)

0.0234
(0.911)

µCR 0.2569
(5.661)

0.0486
(4.140)

0.2579
(7.862)

0.6797
(5.634)

0.2390
(8.836)

0.7152
(7.084)

LL pooled -1194.89 1043.09 -1462.19 -1265.32 -1631.77 -1355.77

LL unpooled -1194.67 1042.16 -1455.63 -1173.33 -1593.83 -1238.65

LL0 -1222.71 -1222.71 -1519.34 -1519.34 -1706.49 -1706.49

LR-test 0.44 1.86 13.12 183.98 75.88 234.24

Pseudo-R2 0.023 0.147 0.038 0.167 0.044 0.206
Note 1: 1000 replications were employed in simulating maximum likelihood function. BID variable was divided by 100 to
facilitate estimation; the PERCENT was divided by 10; the SQRPERCENT was calculated from the scaled PERCENT.
Note 2: The values of log-likelihood functions for unpooled models can be obtained simply as sums of separate log-
likelihood functions for the CV and CR data. The LL0 is obtained similarly.

Models “CV & 1 Rank” pool the CV model with a CR model for first rank, using both the FCL and the

RCL formulation. The estimate of the µCR is statistically significant and smaller than one in both models,

suggesting that CR data is noisier. The random coefficient model provides a substantially higher
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explanatory power than the fixed coefficient counterpart. The value 1.6027 of the BIDRAYLEIGH parameter

translates into the mean of -1.59 for the BID parameter. Both LR test statistics (0.44 for FCL, and 1.86 for

RCL) are smaller than the critical values (5.99, 11.07, respectively) and very insignificant. Therefore,

pooling the two data sets, and estimating a pooled model did not result in statistically significant decrease in

the value for the maximized likelihood function. Hence, both fixed and random coefficient models provide

support for accepting pooling of the CV and CR data.

“CV & 2 Rank” models pool the fixed and random coefficient models for the CV model and the CR

model for 2 ranks. Similarly as in the previous pooled models, these models result in highly significant

estimates with expected signs. The value of BIDRAYLEIGH parameter translates into the mean of -1.37 for the

BID parameter. Comparing the unpooled and unpooled fixed coefficient models results in a LR test

statistic 13.12, thus rejecting the pooling hypothesis at 1 percent significance level. The random

coefficient model results in a much higher LR test statistic, and a strong rejection of pooling the CV and

CR data. Despite rejection of pooling, the random coefficient model results in substantially higher

pseudo-R2 than the fixed coefficient model. The scale parameter for the CR data gets an estimate 0.6797

with standard error of 0.1206, making the scale parameter estimate statistically significantly smaller than

one. It suggests that variance of the random term is higher in the CR data than in the CV data, and that

absolute parameter estimates are not directly comparable between the two data sources.

Models “CV & 3 Rank” pool the fixed and random coefficient models for 3 ranks and the CV data.

Results are similar with the pooled models involving the CR model for two ranks. The value of BIDRAYLEIGH

parameter translates into the mean of -1.37 for the BID parameter. Pooling of CV and CR data is strongly

rejected for both the fixed and the random coefficient models. The scale parameter for the CR data gets an

estimate of 0.7152, and a standard error of 0.1010. Hence, similarly as with the “CV & 2 Rank” model,

the scale parameter is statistically significantly smaller than one.
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Although not reported in Table 3, the pooling hypothesis was further tested with the restriction µCR=1 that

imposes equal variances of the RUM random terms for the CV and CV models. Using the completely

pooled model, the pooling of the CV and CR data was uniformly and strongly rejected. The fixed model

for the pooled CV and first rank CR data using a CR scale factor provides the strongest support for

accepting pooling, and is therefore likeliest to provide support for the complete invariance hypothesis.

Estimating the pooled model for it results in a log-likelihood value 1247.37, hence, a LR-test statistic

105.4, that suggests strong rejection of completely pooling the CV and CR data. All the other models

without an estimated scale parameter reject the pooling hypothesis with stronger statistical evidence than

this model. Complete invariance of the CV and CR data is therefore uniformly rejected.

Willingness to Pay for Biodiversity Conservation

The results show a variety of WTP estimates based on different models. The question becomes which

results are preferred and chosen for further purposes, such as policy evaluation. Clearly, all the rejected

models can be screened out first. Therefore, the fixed coefficient models for CR data on two and three

ranks are rejected first. The rest of the models can be evaluated by using success in pooling the CV and

CR data as criterion. The models that successfully pool the CV and CR data are not fully dependent on a

single survey method, and can therefore considered most general.

Two models were accepted by the pooling success criterion: (1) pooled fixed coefficient model for the

CV and the CR data on one rank, and (2) pooled random coefficient model for the CV data and the CR

data on one rank. The FCL model can then be screened out as more restrictive than its RCL counterpart.

The random coefficient model for the pooled CV data and the CR data on first choice is therefore chosen

as the preferred model for evaluation preferences for conservation of biodiversity of forests.



21

The WTP for policy alternative xj is calculated as:

1/ *( / )jV x V y −∂ ∂ ∂ ∂ (15)

where the / jV x∂ ∂  is the utility change from reaching some conservation level, and 1( / )V y −∂ ∂  is the

inverse of the marginal utility of income, i.e., the inverted BID parameter. The estimates for PERCENT and

SQRPERCENT parameters are employed in calculating a point estimate for the utility change from

increasing conservation from status quo to a conservation level of interest. This change in utility is then

transformed into a money measure by multiplying it by inverted marginal utility of income.

The mean estimate multiplied by the aggregate population measures the aggregate WTP, and the mean

WTP is therefore chosen as the measure of the WTP. Calculating the mean WTP estimates from the fixed

coefficient model results is straightforward. The fixed coefficient estimates equal their expectation, and with

linear-in-income specification, the relation between estimates for the utility changes / jV x∂ ∂  and /V y∂ ∂

measure the mean WTP. Calculating the WTP estimates for the random coefficient models requires

calculating expectation of the inverted BID which is Rayleigh distributed. Note that since the BID
-1 is now a

non-linear transformation of the BID, its expected value E(BID
-1) cannot be calculated straightforwardly as an

inverse of the expected value of BID. The E(BID
-1) can be obtained as (Π/(2b2))½, where b is the estimated

scale parameter parameter for the Rayleigh distribution (Layton 2001). The WTP is then obtained

multiplying a point estimate of the utility change from reaching a certain level of conservation by E(BID
-1).

The mean estimates of WTP for the preferred pooled models are reported in Table 3, as well as their 90-

percent confidence intervals. The confidence intervals are based on the Krinsky and Robb (1986), and

calcualte them by using a  Monte Carlo simulation, programmed and run in GAUSS. Simulating the WTP

results was carried out by using the estimated parameter vector and its variance-covariance matrix to



22

obtain a vector of parameters, which was then use to calculate the WTP. The procedure was repeated

2000 times, resulting in a simulated distribution for the WTP.

Table 3. Willingness to pay estimates

WTP
Conservation 25-percent 50-percent 75-percent

Model CI 10b Mean CI 90b CI 10 Mean CI 90 CI 10 Mean CI 90

FCL CV + CR 1 43 48.1 54 64 76.9 91 10 41.3 74

RCL CV + CR 1 36 42.7 50 65 78.9 94 46 71.4 97

a All estimates in reported in USD=FIM6.5.
b 90 percent confidence intervals (the lower limit CI 10 and the upper limit CI 90) are reported in italics. They are reported
as integers, rounding the lower limit down, and the upper limit up.

The WTP estimates are quite similar between the FCL and RCL models. The WTP for 25-percent

conservation for the FCL model is about $48, whereas the RCL model produces a WTP estimate of about

$43. The FCL and RCL estimates of WTP for 50-percent conservation are almost equal (some $77 and $79,

respectively). The models behave somewhat differently in estimating the WTP for 75-percent conservation.

The FCL model gives an estimate of $41, whereas the RCL models produces a considerably higher

estimate, $71. The RCL model therefore predicts a higher WTP for 75-percent conservation than for the 50-

percent conservation, and the FCL the other way around. Both models estimate the highest WTP for the 50-

percent alternative.

Conclusions

This study examined using stated preference (SP) surveys for measuring public’s willingness-to-pay

(WTP) for conservation of forest biodiversity in Finland. Both fixed and random coefficient logit (FCL,

and RCL, respectively) models were described and applied to the data collected. Comparison of the FCL

and RCL models suggested that from purely statistical viewpoint, the RCL models are superior to the

FCL models in modeling these data.
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Successful pooling of the CV and CR data required estimation of scale factors for separate data sources,

which made the parameter estimates comparable between the data sources. With scale factors in the

estimated model, pooling of CV and CR data could not be uniformly rejected or accepted. Less detailed

models such as CV and conditional choice logit models accepted the pooling hypothesis. The more

detailed models such as models for pooled CV data and CR data on two and three ranks rejected the

pooling hypothesis. The RCL models rejected the pooling hypothesis more strongly than the FCL models.

Two models satisfied the pooling criterion: (1) pooled fixed coefficient model for the CV and the CR data

on one rank, and (2) pooled random coefficient model for the CV data and the CR data on one rank. The

FCL model with one rank CR data was then screened out as more restrictive than its random coefficient

counterpart. The RCL model for the pooled CV data and the CR data on first choice was therefore chosen

as the preferred model for evaluation preferences for conservation of biodiversity of forests. Its WTP

estimates for the 25-, 50-, and 75- percent conservation programs were $43, $79, and $71.

The random coefficient models do not seem to provide a miracle in terms of solving differences between

CV and CR data. Applying the RCL models was strongly supported by the econometric analysis, but their

flexibility did not provide an easy means to combining of the CV and CR data. To the contrary, pooling

of the CV and CR data was more easily accepted by the less flexible fixed coefficient models. Differences

in the choice task in the CR and CV method, especially in the amount of information they collect on

individual preferences, seems to be the primary contributor to the differences between the two methods,

not the flexibility of the econometric models used for modeling the stated responses.

The issue of negative marginal WTP for conservation after reaching a certain conservation level is of course

worth some further investigation. The results suggest that the marginal utility from conservation is
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decreasing after a certain level of conservation. This observation at first may seem counterintuitive and

contradictory to economic theory. To understand the results, one must interpret them from the viewpoint of

the respondents. To many of them, the choice between the policy alternatives is probably more like a choice

between moderate and extreme conservation policies than a purely economic consideration with nicely

behaving tradeoffs between money and the conservation benefits. The choice between the different policy

alternatives is therefore not limited to just choosing between the money and conservation; other important

tradeoffs are involved as well. Many people feel it is not justified, and simply not fair to keep increasing the

conservation. Some have personal experience of the past conservation efforts and of the rather aggressive

takings approach that was favored by the environmental agencies and lead into conflicts and somewhat

strong public opposition to conservation.

The strong opinions about conservation became apparent already when the survey was carried out. Many of

the phone calls received criticized increases in the conservation. On the other hand, some respondents were

perhaps as strong supporters of the conservation as the opponents were against it. Since the preferences for

conservation seem to be rather polarized, modeling the WTP distribution as a two peaked bimodal

distribution would possibly be fruitful in the future. Further, polarized preferences are not necessarily unique

to the Finnish case of forest conservation, but are likely to appear with many other controversial policies; a

very typical circumstance for stated preference applications.

Data pooling techniques provide a powerful approach to tests for invariance between the different sources

of data. The analysis of pooled data that has been presented in this paper highlights only some of the

possible uses of data pooling methods in examining SP survey methods. For instance, sources of

differences between different SP sources can be further examined using the same framework.
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Rejecting the pooling of CV and CR data despite very similar survey setting naturally raises some

questions about the ability to measure WTP values at all. Although almost everything to facilitate the

comparisons of WTP models was done, from sampling the same population to using nearly identical

questions in different treatments, yet it proved not fully possible to reconcile the two sources of data

within a single estimation framework. If this ultimately proves fruitless, then it raises questions about the

ability to measure WTP, because each method seems as credible as the other, yet they give different

results and generate incompatible data.

Failing to pool the data could be a result from different methods imposing a sufficiently different

cognitive burden on the respondents so that different responses are elicited. However, misspecification of

WTP either in the systematic part or the error structure could have also contributed to inability to pool the

data. For instance, inadequately accounting for heterogeneity in the population would be sufficient to

cause this. As noted, the WTP could be modeled using, for instance, a bimodal distribution. It could also

be that there are multiple sets of preferences at work that do not fall into single normal or Rayleigh

distribution. Sorting the data, perhaps along the lines of environmental and other attitudinal responses,

into groups that have different parameter distributions, is also an interesting issue for further research.
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