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Abstract
We present a reordered version of the inclusion–exclusion principle, which is useful when com-
puting the probability of a union of events which are close to independent. The advantages of
this formulation are demonstrated in the context of 3 classic problems in combinatorics.

1 Introduction

The inclusion–exclusion principle is one of the fundamental results of combinatorics. If A is
the union of the events A1, A2, . . . , An then, writing pi for the probability of Ai, pij for the
probability of Ai ∩Aj , pijk for the probability of Ai ∩Aj ∩Ak etc, the probability of A is given
by

P(A) =
∑

i

pi −
∑
i<j

pij +
∑

i<j<k

pijk − · · · + (−1)n−1p123...n . (1)

The inclusion–exclusion principle tells us that if we know the pi, pij , pijk . . . then we can find
P(A). In practice, though, we are unlikely to have full information on the pi, pij , pijk . . ..
We are then faced with the highly nontrivial task of approximating P(A) taking into account
whatever partial information we are given. The difficulty in this is that knowledge of any of
the probabilities pi, pij , pijk . . . places constraints on the others; these constraints have been
extensively studied for about 150 years [1].
Recent work of Kahn, Linial, Nisan and Samorodnitsky [2] has shown that if n is large, and
we are given all the probabilities pi, pij , pijk . . . with up to r indices, then in general we will
not be able to make any firm predictions about P(A) unless r is at least O(

√
n). On the

other hand, in certain cases where the events Ai are in some sense close to being independent,
then there are a number of known results bounding P(A), such as the Lovász local lemma [3]
and Janson’s inequality [4] (see [5] for an exposition), and these bounds use just the pi and
the pij . So although little can be said in general, in the case that the events Ai are close to
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independent we might hope that inclusion–exclusion can be used to give good estimates for
P(A). The aim of this paper is to propose a method for this.
A first guess for approximating P(A), if we are given just the “low order” probabilities (the p’s
with few indices), might be simple truncation of the series in (1). In other words, if we know
just the pi we might take just the first term, if we know both the pi and the pij we might take
just the first two terms etc. This approach works poorly in general, but if the events Ai are
close to mutually exclusive (i.e. the probabilities of the multiple intersections Ai1∩Ai2∩· · ·∩Air

drop rapidly as r increases), then such truncations do give good approximations. Of course,
if the events Ai actually are mutually exclusive, then any truncation of (1) will be exact. The
approach we give to approximating P(A) when the events Ai are close to being independent
is based on a reordering of terms in the inclusion–exclusion formula, with the property that
any truncation of the reordered formula is exact if the events Ai are independent.
Our reordering of the inclusion–exclusion principle is presented in section 2. In section 3 we
present results from use of our approximation schemes on 3 classic problems in combinatorics,
which are encouraging. In section 4 we discuss further questions arising out of our work. An
appendix discusses the relationship with Janson’s inequality.
As a last note in this introduction, we refer the reader to the work of Naiman and Wynn [6],
who have shown that under certain circumstances there can be significant simplifications in
the inclusion–exclusion principle, for example whem it is used to calculate the volume with
respect to some measure of a finite union of balls in d-dimensional Euclidean space.

2 Reordering the Inclusion–Exclusion Principle

Proposition 1. If A is the union of the events A1, A2, . . . , An, and we write

qi = P(Āi)

qij =
P(Āi ∩ Āj)
P(Āi)P(Āj)

qijk =
P(Āi)P(Āj)P(Āk)P(Āi ∩ Āj ∩ Āk)
P(Āi ∩ Āj)P(Āi ∩ Āk)P(Āj ∩ Āk)

...

q12...n =

(∏
i

P(Āi)

)(−1)n−1 
∏

i<j

P(Āi ∩ Āj)




(−1)n−2
 ∏

i<j<k

P(Āi ∩ Āj ∩ Āk)




(−1)n−3

× · · · ×
(∏

i

P(Ā1 ∩ Ā2 ∩ · · · ∩ Āi−1 ∩ Āi+1 ∩ · · · ∩ Ān)

)−1

P(Ā1 ∩ Ā2 ∩ · · · ∩ Ān)

then

P(A) = 1 −
(∏

i

qi

)∏
i<j

qij




 ∏

i<j<k

qijk


 . . . q12...n . (2)

Proof. We count the number of times each factor occurs in the product of the q’s in (2). For
fixed r, P(Ār) appears once in the product of the qi,

(
n−1

1

)
times in the denominator in the
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product of the qij ,
(
n−1

2

)
times in the numerator of the product of the qijk etc. Thus in the

full product of the q’s the number of factors of P(Ār) is

1 −
(

n − 1
1

)
+
(

n − 1
2

)
−
(

n − 1
3

)
+ · · · + (−1)n−1

(
n − 1
n − 1

)
=
{

1 n = 1
0 n > 1 .

Likewise for fixed r, s and n ≥ 2, the factor P(Ār ∩ Ās) appears once in the product of the
qij ,

(
n−2

1

)
times in the denominator in the product of the qijk,

(
n−2

2

)
times in the numerator

of the product of the qijkl etc. Thus in the full product of the q’s the number of factors of
P(Ār ∩ Ās) is

1 −
(

n − 2
1

)
+
(

n − 2
2

)
−
(

n − 2
3

)
+ . . . + (−1)n−2

(
n − 2
n − 2

)
=
{

1 n = 2
0 n > 2 .

Continuing this way we see that the full product of the q’s is simply

P(Ā1 ∩ Ā2 ∩ . . . ∩ Ān) = P
(
A1 ∪ A2 ∪ . . . An

)
= 1 − P(A1 ∪ A2 ∪ . . . An)
= 1 − P(A). •

Now

P(Āi) = 1 − P(Ai) = 1 − pi ,

P(Āi ∩ Āj) = 1 − P(Ai ∪ Aj) = 1 − pi − pj + pij

P(Āi ∩ Āj ∩ Āk) = 1 − P(Ai ∪ Aj ∪ Ak) = 1 − pi − pj − pk + pij + pjk + pki − pijk

etc. Thus the qi can be written in terms of the pi (in fact qi = 1 − pi), the qij can be written
in terms of the pi and the pij , the qijk can be written in terms of the pi, the pij and the pijk

etc. With the qi, qij , qijk , . . . written this way in terms of the pi, pij , pijk, . . ., we call (2) the
reordered inclusion–exclusion principle. If all the products were to be multiplied out it would
reduce to the standard inclusion–exclusion principle (1). But for approximation purposes, at
least when the events Ai are close to independent, the form (2) turns out to be much more
useful. In particular the reader will be able to verify the following result:

Proposition 2. The Ai are independent if and only if for all i, j, k, . . ., qij = qijk = · · · =
q12...n = 1.

In other words, for independent events Ai we can “truncate” the product in (2) after as many
terms as we wish, and the result will be exact. The qij , qijk, . . . provide a measure of the
dependence of the events. In addition to the formulae given above for the qij , qijk, . . . we note

qij =
P(Āi|Āj)
P(Āi)

,

qijk =

P(Āi|Āj ∩ Āk)
P(Āi)

P(Āi|Āj)
P(Āi)

P(Āi|Āk)
P(Āi)

,

qijkl =

P(Āi|Āj ∩ Āk ∩ Āl)
P(Āi)

P(Āi|Āj)
P(Āi)

P(Āi|Āk)
P(Āi)

P(Āi|Āl)
P(Āi)

P(Āi|Āj ∩ Āk)
P(Āi)

P(Āi|Āj ∩ Āl)
P(Āi)

P(Āi|Āk ∩ Āl)
P(Āi)

.
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From these formulae (and their generalizations with more indices) we see that if the event Ai is
independent of the set of events Aj1 , . . . , Ajr (in the sense that any information on Aj1 , . . . , Ajr

does not affect Ai), then qij1 = qij1j2 = · · · = qij1j2...jr .
What we have written up to here is probably sufficient to justify using truncations of (2), with
the qi, qij , qijk, . . . written out in terms of the pi, pij , pijk, . . ., as a method for approximation
of probabilities for a union of events that are close to independent. But before moving to
examples, we mention another property that reinforces the link between this and the standard
inclusion–exclusion principle.

Definition. We say a function f of the pi, pij , pijk, . . . is homogeneous of order n if

f(λpi, λ
2pij , λ

3pijk, . . .) = λnf(pi, pij , pijk, . . .) ,

and, in greater generality, of order n if

f(λpi, λ
2pij , λ

3pijk, . . .) = O(λn) .

With this definition of order, the standard inclusion–exclusion principle writes P(A) as a
sum of terms which are, respectively, homogeneous of order 1,2,3,... The reordered inclusion–
exclusion principle has a similar property:

Proposition 3. As functions of the pi, pij , pijk, . . ., qi − 1 is of order 1, qij − 1 is of order 2,
qijk − 1 is of order 3 etc.

Before we explain the proof of this we demonstrate it explicitly in the first few cases. For the
one index case it is obvious since

qi = 1 − pi . (3)

For the two index case we have

qij =
1 − pi − pj + pij

(1 − pi)(1 − pj)
= 1 +

pij − pipj

(1 − pi)(1 − pj)
. (4)

For the three index case, it can be checked that

qijk =
(1 − pi − pj − pk + pij + pjk + pik − pijk)(1 − pi)(1 − pj)(1 − pk)

(1 − pi − pj + pij)(1 − pj − pk + pjk)(1 − pi − pk + pik)
= 1 + β (5)

where β =


 −pipjpk(2 − pi − pj − pk) − pijk(1 − pi)(1 − pj)(1 − pk) − pijpikpjk

+pipjk(1 − pi − pjpk) + pjpik(1 − pj − pipk) + pkpij(1 − pk − pipj)
−pijpik(1 − pj − pk) − pjkpij(1 − pi − pk) − pikpjk(1 − pi − pj)




(1 − pi − pj + pij)(1 − pj − pk + pjk)(1 − pi − pk + pik)
.

β is clearly of order 3.

Proof of Proposition 3. We consider the following perturbative approach to the reordered
inclusion–exclusion principle. For independent events the first truncation

P(A) ≈ 1 −
∏

i

(1 − pi) (6)
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is exact. In general, (6) is not exact, but it is still correct to first order, that is if we ignore
terms of order greater than 1 on each side. Suppose now that we try to modify (6) to make it
correct to second order by looking at formulae of the form

P(A) ≈ 1 −
∏

i

(1 − pi)
∏
i<j

(1 + α
(2)
ij ) , (7)

where α
(2)
ij is homogeneous of order 2. A brief calculation shows this can be done if (and only

if) we choose α
(2)
ij = pij − pipj . With this choice made, we can proceed to try to modify (7)

to make it correct to order 3. This requires adding in two extra terms, both homogeneous of
order 3,

P(A) ≈ 1 −
∏

i

(1 − pi)
∏
i<j

(1 + α
(2)
ij + α

(3)
ij )

∏
i<j<k

(1 + α
(3)
ijk) ,

where α
(3)
ij = (pi + pj)(pij − pipj)

α
(3)
ijk = pipjk + pjpik + pkpij − 2pipjpk − pijk .

We can continue to modify in this way to make the formula correct to arbitrary order; fur-
thermore in the second product all correction terms will only depend on pi, pij , in the third
product all correction terms will only depend on pi, pij , pijk etc. In this manner we build
up the reordered inclusion–exclusion principle order-by-order, and in particular we deduce
proposition 3. •

3 Examples

In the three examples below we approximate the probability of events using the first, second
and third truncations of (2), i.e. the approximations

P(A) ≈ 1 −
(∏

i

qi

)
, (8)

P(A) ≈ 1 −
(∏

i

qi

)
∏

i<j

qij


 , (9)

P(A) ≈ 1 −
(∏

i

qi

)
∏

i<j

qij




 ∏

i<j<k

qijk


 , (10)

where qi, qij , qijk are given by (3)-(5).

3a. The Derangement Problem. Suppose that in any pack of cards there are k copies
of n different cards (for conventional cards k = 4, n = 13). Two players each take a pack of
cards, and draw a card at random. We say a “match” occurs if they draw cards of the same
kind. The players continue to draw cards at random and compare until their packs are used
up. What is the probability that in the process there will be at least one match?
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No closed form solution is known for this problem, but it is possible to derive an expansion
for the probability in powers of 1

n , the first few terms of which are

1 − e−k

(
1 − k − 1

2n
+

3k3 − 14k2 + 15k − 4
24kn2

+ . . .

)
, (11)

see for example [7].
To apply our methods, let Ai, i = 1, . . . , nk, be the event that the players draw the same card
on draw number i. Clearly pi = 1

n for every i, so using the first reordered approximation (8)
we obtain

P(A) ≈ 1 −
(

1 − 1
n

)nk

. (12)

In the limit of large n we recover the correct limit 1 − e−k. We emphasize that this comes
from using just the first reordered approximation, i.e. just using the pi; in contrast, if we were
to take just the first term of the standard inclusion–exclusion formula we would obtain the
absurd answer P(A) ≈ k. Note that expanding (12) in powers of 1

n gives

P(A) ≈ 1 − e−k

(
1 − k

2n
+

(3k − 8)k
24n2

+ . . .

)
,

and we see that the first reordered approximation in fact gives more than just the leading
order term in 1

n : For large k we obtain the correct dominant contribution to the coefficients
of both the O

(
1
n

)
and O

(
1

n2

)
terms. This is a first hint that our methods work well not just

in the large n limit.
Moving to the second reordered approximation, there are a total of 1

2nk(nk−1) events Ai∩Aj .
In 1

2nk(k − 1) of these player 1 draws identical cards on draws i and j, and we have pij =
k−1

n(nk−1) . In the remaining 1
2n(n − 1)k2, player 1 draws distinct cards on draws i and j, and

we have pij = k
n(nk−1) . Thus (9) gives

P(A) ≈ 1 −
(

1 − 1
n

)nk
(

1 − 2
n + k−1

n(nk−1)(
1 − 1

n

)2
) 1

2nk(k−1)(
1 − 2

n + k
n(nk−1)(

1 − 1
n

)2
) 1

2nk2(n−1)

Expanding this in powers of 1
n gives

P(A) ≈ 1 − e−k

(
1 − k − 1

2n
+

3k3 − 14k2 + 15k + 12
24kn2

+ . . .

)
,

where now the coefficient of 1
n is exact, and the coefficient of 1

n2 is improving (at least for large
k).
The necessary information to apply the third reordered approximation (10), is as follows:

Type of events Ai ∩ Aj ∩ Ak Number of such events Probability pijk

Player 1 draws 3 distinct cards n(n−1)(n−2)k3

6
k3

nk(nk−1)(nk−2)

Player 1 draws 2 cards of one type
and 1 of another type

n(n−1)k2(k−1)
2

k2(k−1)
nk(nk−1)(nk−2)

Player 1 draws 3 identical cards nk(k−1)(k−2)
6

k(k−1)(k−2)
nk(nk−1)(nk−2)

Due to its length we do not write down explicitly the formula obtained by putting this in-
formation into (10). As might by now be expected, if we expand the answer in powers of
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1
n we obtain exact agreement with all three coefficients given in (11). In practice it seems
the third reordered approximation outperforms the first three terms of the large n expan-
sion (11). For conventional cards, n = 13 and k = 4, the third reordered approximation
gives 1 − P(A) ≈ 0.01623287, which has an error of less than 5% that of (11), which gives
1−P(A) ≈ 0.01622939. (we compare against the reported value 1−P(A) ≈ 0.01623273 given
in [8]). For the case n = 3 and k = 8, the second and third reordered approximations give
1 − P(A) ≈ 7.47 × 10−5 and 1 − P(A) ≈ 7.83 × 10−5 respectively, the latter being in good
accord with the result of a computer simulation of 109 trials, in which we observed 78119 cases
of “no matches”. In this case, with k > n, we do not expect (11) to do well, and it gives
1 − P(A) ≈ 9.09 × 10−5.
In the case k = 1 the general derangement problem reduces to the famous “hatcheck” problem.
In numerous probability textbooks, see for example [9], the full inclusion–exclusion principle
is used to show that as n → ∞ the probability of a match tends to 1 − e−1. We emphasize
again that we have obtained this from just the first reordered approximation, using just the
values of the pi.

3b. Success Runs in Coin Flips. In a series of x coin flips, what is the probability that
there will be at least one run of n successive “heads”?
Again no closed form solution is known to this problem, but if we denote the probability P x

n

then by conditioning on the possible outcomes of the first n events we obtain the recursion

P x
n =

1
2
P x−1

n +
1
4
P x−2

n + . . . +
1
2n

P x−n
n +

1
2n

.

Using this, along with the starting values P x
n = 0, x = 0, 1, . . . , n − 1, it is easy (for given n)

to generate the probabilities numerically. Alternatively, writing P x
n = 1 − Rx

n

2x we obtain the
n-Fibonacci recursion [10]

Rx
n = Rx−1

n + Rx−2
n + . . . + Rx−n

n ,

with starting values Rx
n = 2x, x = 0, 1, . . . , n − 1. For fixed n one can solve numerically for

the roots λ1, λ2, . . . , λn of the characteristic equation

λn = λn−1 + λn−2 + · · · + 1 (13)

of the recursion, and also determine constants C1, C2, . . . , Cn such that Rx
n = C1λ

x
1 + C2λ

x
2 +

· · ·+Cnλx
n. It is known [10] that (13) has one root, say λ1, close to 2 and all other roots inside

the unit circle, which for large x will give very small contributions to the P x
n . Thus when x is

large

P x
n ≈ 1 − C1

(
λ1

2

)x

(14)

where λ1 and C1 depend on n alone and λ1 is close to 2. It is possible, with substantial effort,
to obtain expansions of λ1 and C1 in powers of 2−n. As we will see, our methods produce such
results with ease.
To apply reordered inclusion–exclusion to this problem, define Ai to be the event that there
is a run of n heads starting on the ith coin flip, i = 1, 2, . . . , x − n + 1. Here by “starting” we
mean strictly starting, i.e. except when i = 1 there is a tail on the (i − 1)th flip. Thus

p1 =
1
2n

, pi =
1

2n+1
, i = 2, . . . , x − n + 1 .
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Figure 1: Absolute errors in the second reordered approximation for the success run problem,
n = 5 and n = 8.

Applying (8) we have

P x
n ≈ 1 −

(
1 − 1

2n+1

)x−n(
1 − 1

2n

)
.

This approximation is of the form (14), with

λ1

2
= 1 − 1

2n+1
, C1 =

(
1 − 1

2n+1

)−n(
1 − 1

2n

)
≈ 1 +

n − 2
2n+1

.

Here in the last line we have indicated the start of the expansion of C1 in powers of 2−n.
To implement the second reordered approximation we need to look at the events Ai ∩ Aj .
Because we have defined Ai to be the event that there is a success run starting strictly on
the ith flip, Ai and Aj will be mutually exclusive if |i − j| ≤ n. But for |i − j| > n Ai and
Aj are independent. As explained in the introduction, when the events Ai are close to being
mutually exclusive, we expect the standard form of the inclusion–exclusion principle to reliable
approximations, and when the Ai are close to independent we expect the reordered forms to be
better. In the success run problem, for x ≤ O(n) most pairs of events are mutually exclusive,
but for x � n most pairs of events are independent. So we expect truncation of the standard
inclusion–exclusion principle to work well for low x and the reordered approximations to work
well for high x. This prediction is born out, and in fact improved upon, in practice. Here,
however, we just report some results using the second reordered approximation. This is

P x
n ≈ 1−

(
1 − 1

2n+1

)x−n(
1 − 1

2n

)
1 − 1

2n+1
− 1

2n+1(
1 − 1

2n+1

)2




n(x− 3
2n− 1

2 )
 1 − 1

2n
− 1

2n+1(
1 − 1

2n

)(
1 − 1

2n+1

)



n

,

which is of the form (14), with

λ1

2
=
(

1 − 1
2n

)n(
1 − 1

2n+1

)1−2n

≈ 1 − 1
2n+1

− n

22n+2
+ . . . ,
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and

C1 =
(

1 − 1
2n

)1− 3
2n− 3

2n2 (
1 − 1

2n+1

)n(3n−1)(
1 − 3

2n+1

)n

≈ 1 +
n − 2
2n+1

+
n(2n − 3)

22n+2
+ . . . .

In Figure 1 we show the (absolute) errors in the second reordered approximation for n = 5
and n = 8. Even the low x errors are reasonably small. At the peak of error P x

n is about 0.7
in the case n = 5 and 0.6 in the case n = 8.

3c. The Birthday Problem. Assume there are D days in a year, and there is equal
probability of being born on any particular day of the year. What is the probability P that
in a group of N people (0 ≤ N ≤ D) there are (at least) two with the same birthday?
This problem has closed form solution

P = 1 − D!
(D − N)!DN

= 1 −
(

1 − 1
D

)(
1 − 2

D

)
. . .

(
1 − N − 1

D

)

but it is nevertheless interesting to see what can be done with the reordered approximations
to the inclusion–exclusion principle. Let Ai, i = 1, . . . , 1

2N(N − 1), be the event that pair i
share the same birthday. Clearly pi = 1

D . Thus the first reordered approximation gives

P ≈ 1 −
(

1 − 1
D

) 1
2 N(N−1)

.

The events Ai are pairwise independent, so the second reordered approximation is the same
as the first. There are, however, correlations between triples of events Ai: if persons 1 and
2 share a birthday and so do persons 2 and 3 then necessarily so do persons 1 and 3. There
are 1

6N(N − 1)(N − 2) triples of events correlated in this way, and thus the third reordered
approximation reads

P ≈ 1 −
(

1 − 1
D

) 1
2N(N−1)

(
1 − 3

D + 2
D2(

1 − 1
D

)3
) 1

6N(N−1)(N−2)

.

In Figure 2 we show the error in the first and third reordered approximations for D = 365.

4 Comments and Further Directions

In this article we have given an introduction to the reordered inclusion–exclusion principle
and shown it can be useful in approximating probabilities. We are hopeful that the set of
applications we have presented here will be enlarged, and that also the necessary theoreti-
cal developments will appear to justify the approximation scheme. Central to this is a bet-
ter understanding of the quantities qijk, qijkl, . . .. We suspect that the condition qi1...ir = 1
might be interpretable as a criterion that all dependence between the r events Ai1 , . . . , Air

is determined through the dependence of subsets of r − 1 events. In [11] Savit and Green
considered an ordered sequence of dependent events Ai1 , . . . , Air and proposed the condition
P(Ai1 |Ai2 ∩ . . . ∩ Air ) = P(Ai1 |Ai2 ∩ . . . ∩ Air−1 ) as a suitable definition of “(r − 2)-lag de-
pendence” of the sequence, in the sense that event Ai1 depends on the (r − 1) events before
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Figure 2: Absolute errors in the first and third reordered approximations for the birthday
problem, D = 365.

it “only through” the the (r − 2) events before it. The condition qi1...ir = 1 seems to be a
symmetric version of this condition.
In addition to understanding the meaning of the qijk , qijkl, . . ., it is necessary to compute the
constraints on the “higher order” q’s induced by knowledge of the “lower order” q’s. This
should allow estimation of the error in truncation of the reordered inclusion–exclusion princi-
ple. In suitable circumstances we expect the results of truncation of the reordered inclusion–
exclusion principle to give bounds, not just approximations, for probabilities (see the appendix
on the relationship with Janson’s inequality). It would be extremely interesting if the Penrice
inequalities for the derangement problem, as presented in [8], could be shown to come from a
general result in probability.
A final open problem is whether the reordered inclusion–exclusion can be generalized, like the
standard one [9], to give expressions for the probability of m amongst n events occurring.
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Appendix: The Relationship with Janson’s Inequality

Our second approximation formula is

P(A) ≈ 1 −
∏

i

(1 − pi)
∏
i<j

(
1 +

pij − pipj

(1 − pi)(1 − pj)

)
. (15)

Suppose that any two events Ai, Aj are either independent or positively correlated, in the
sense P(Ai|Aj) > P(Ai) ⇔ P(Aj |Ai) > P(Aj) ⇔ pij > pipj . Suppose furthermore that
pi ≤ ε for all i, and write ∆ =

∑
i<j(pij −pipj) ≥ 0. Clearly all terms in the second product in

(15) are greater than 1 (if the events Ai, Aj are dependent) or equal to 1 (if the events Ai, Aj

are independent). Thus the product is not less than 1. To bound the product from above we



INCLUSION–EXCLUSION REDUX 95

use the arithmetic-geometric inequality to get

∏
i<j

(
1 +

pij − pipj

(1 − pi)(1 − pj)

)
≤

1 +

1
N

∑
i<j

pij − pipj

(1 − pi)(1 − pj)




N

,

where N denotes the number of pairs. Since 1
1−pi

≤ 1
1−ε for all i, and pij ≥ pipj for all i, j, it

follows that

∏
i<j

(
1 +

pij − pipj

(1 − pi)(1 − pj)

)
≤
(

1 +
1
N

∆
(1 − ε)2

)N

< exp
(

∆
(1 − ε)2

)
.

Thus we see that our second approximation formula obeys a Janson-type inequality, namely
the approximation is P(A) ≈ 1 − P

∏
i(1 − pi) where 1 ≤ P < exp

(
∆

(1−ε)2

)
(c.f. [5]).
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