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Abstract

In this article, we investigate the question of equivalent keys for two Multivariate Quadratic
public key schemes HFE and C∗−− and improve over a previously known result, to appear at
PKC 2005. Moreover, we show a new non-trivial extension of these results to the classes HFE-
, HFEv, HFEv-, and C∗−−, which are cryptographically stronger variants of the original HFE
and C∗ / MIA schemes. In particular, we are able to reduce the size of the private — and
hence the public — key space by at least one order of magnitude. While the results are of
independent interest themselves, we also see applications both in cryptanalysis and in memory
efficient implementations.
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1 Introduction

In the last 15 years, several schemes based on the problem of Multivariate Quadratic equations have
been proposed. The most important ones certainly are C∗ / MIA [MI88] and Hidden Field Equations
(HFE, [Pat96b]) plus their variations C∗−−, HFE-, HFEv, and HFEv- [KPG99, Pat96a, Pat96b].
Both have been used to construct signature schemes, namely C∗−− in Sflash [CGP03], and HFEv- in
Quartz [CGP01]. As for all systems based on MQ-equations, the public key has the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n
∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms). We write
the set of all such equations as MQ(Fn, Fm). Moreover, the private key consists of the triple (S,P ′, T )
where S ∈ Aff−1(Fn), T ∈ Aff−1(Fm) are affine transformations (cf Sect. 2.2) and P ′ ∈ MQ(Fn, Fm)
is a polynomial-vector P ′ := (p′1, . . . , p

′
m) with m components; each component is a polynomial in n

variables x′
1, . . . , x

′
n. Throughout this paper, we will denote components of this private vector P ′ by a

prime ′. In contrast to the public polynomial vector P ∈ MQ(Fn, Fm), the private polynomial vector
P ′ does allow an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. Hence, the goal of MQ-

schemes is that this inversion should be hard if the public key P alone is given. The main difference
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between MQ-schemes lies in their special construction of the central equations P ′ and consequently
the trapdoor they embed into a specific class of MQ-problems.

In this paper, we investigate the question of equivalent keys for selected MQ-schemes. Due to
space limitations, we concentrate on HFE, HFE-, HFEv, HFEv-, C∗, and C∗−−. As outlined above,
they are quite important as they have been used in constructions submitted to the NESSIE project
[NES]. However, we want to point out that the techniques outlined here are quite general and can
also be applied to other schemes. The first paper on the topic of equivalent keys is [WP05b]. In
this paper, we introduce the Frobenius sustainer and are hence able to improve over the results from
[WP05b]. Moreover, this paper is the first to deal with variations of MQ-schemes, cf [WP05c] for
the terminology of MQ-trapdoors. To this aim, we needed to develop the reduction sustainer, as we
would not have been able to deal with the HFE- and the C∗−− modification otherwise.

This paper is outlined as follows: after this general introduction, we move on to the necessary math-
ematical background in Sect. 2. This includes particularly a definition of the term equivalent keys. In
Sect. 3, we concentrate on a subclass of affine transformations, denoted sustaining transformations,
which can be used to generate equivalent keys. These transformations are applied to different varia-
tions of Multivariate Quadratic equations in Sect. 4. This paper concludes with Sect. 5, cf [WP05b]
for results on Unbalanced Oil and Vinegar schemes (UOV). A general overview of MQ-schemes can
be found in [WP05c].

2 Mathematical Background

In this section, we outline some observations useful in the remainder of this paper.

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 2.1 We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ Aff−1(Fm) ×MQ(Fn, Fm) × Aff−1(Fn)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In order to find equivalent keys, we consider the following transformations:

Definition 2.2 Let (S,P ′, T ) ∈ Aff−1(Fm)×MQ(Fn, Fm)×Aff−1(Fn), and σ, σ−1 ∈ Aff−1(Fn) plus
τ, τ−1 ∈ Aff−1(Fm). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ Aff−1(Fn) × Aff−1(Fm) “sustaining transformations” for an MQ-system if
the “shape” of P ′ is invariant under the transformations σ and τ . For short, we write (σ, τ)•(S,P ′, T )
for (1) and (σ, τ) sustaining transformations.

Remark. In the above definition, the meaning of “shape” is still open. In fact, its meaning has to
be defined for each MQ-system individually. For example, in HFE, it is the bounding degree d ∈ N

of the polynomial P ′(X ′). In the case of C∗ / MIA, the “shape” is the fact that we have a single
monomial with factor 1 as the central equation. However, for σ, τ sustaining transformations, we are
now able to produce equivalent keys for a given private key by (σ, τ) • (S,P ′, T ). A trivial example of
sustaining transformations is the identity transformation, i.e., to set σ = τ = id.
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Lemma 2.3 Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H := (τ, ◦) form a subgroup
of the affine transformations, they produce equivalence relations within the private key space.

Proof. We start with a proof of this statement for G := (σ, ◦). First, we have reflexivity as the
identity transformation is contained in G. Second, we have symmetry as subgroups are closed under
inversion. Third, we also have transitivity as subgroups are closed under composition. Therefore,
the group G partitions the private key space into equivalence classes. The proof for H := (τ, ◦) is
analogous. ¤

Remark. We want to point out that the above proof does not use special properties of sustaining
transformations, but the fact that these are a subgroup of the group of affine transformations. Hence,
the proof does not depend on the term “shape” and is therefore valid even if the latter is not rigorously
defined yet. In any case, instead of proving that sustaining transformations form a subgroup of the
affine transformations, we can also consider normal forms of private keys. As we see below, normal
forms have some advantages to avoid double counts in the private key space.

After these initial observations over equivalent keys, we concentrate on bijections between ground
fields and their extension fields as both HFE and C∗ / MIA use an extension field to define their
central equations P ′. Let F be a finite field with q := |F| elements. Using a polynomial i(t) ∈ F[t],
irreducible over F, we generate an extension field E := F[t]/i(t) of dimension n. This means we view
elements of E as polynomials in t of degree less than n. Addition and multiplication are defined as for
polynomials modulo i(t). In addition, we can view elements from E as vectors over the vector-space
F

n. We will therefore view elements a ∈ E and b ∈ F
n as

a := αn−1t
n−1 + . . . + α1t + α0 and b := (β1, . . . , βn) ,

for αi−1, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define the canonical bijection between E and F
n

by identifying the coefficients αi−1 ↔ βi. We use both this bijection φ : E → F
n and its inverse

φ−1 : F
n → E.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2.4 Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0 qn − qi invertible
(n × n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite fields F and E.

Definition 2.5 Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a vector and let
S(x) := MSx + vs. We call this the “matrix representation” of the affine transformation S.

Definition 2.6 Moreover, let s1, . . . , sn be n polynomials of degree 1 at most over F, i.e., si(x1, . . . , xn) :=
βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for
x := (x1, . . . , xn) as a vector over F

n. We call this the “multivariate representation” of the affine
transformation S.

Remark. The multivariate and the matrix representation of an affine transformation S are inter-
changeable. We only need to set the corresponding coefficients to the same values: (MS)i,j ↔ βi,j

and (vS)i ↔ αi for 1 ≤ i, j ≤ n.
In addition, we can also use the “univariate representation” over the extension field E of the

transformation S.
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Definition 2.7 Let 0 ≤ i < n and A,Bi ∈ E. Moreover, let the polynomial S(X) :=
∑n−1

i=0 BiX
qi

+A
be an affine transformation. We call this the “univariate representation” of the affine transformation
S(X).

Lemma 2.8 An affine transformation in univariate representation can be transfered efficiently in
multivariate representation and vice versa.

Proof. This lemma follows from [KS99, Lemmata 3.1 and 3.2] by a simple extension from the linear
to the affine case. ¤

3 Sustaining Transformations

In this section, we discuss several examples for sustaining transformations. In addition, we will consider
their effect on the central transformation P ′. The authors are not convinced that the transformations
stated here are the only ones possible but encourage the search for other and maybe more powerful
sustaining transformations.

3.1 Additive Sustainer

For n = m, let σ(X) := (X +A) and τ(X) := (X +A′) for some elements A,A′ ∈ E. Moreover, as long
as they keep the shape of the central equations P ′ invariant, they form sustaining transformations.

In particular, we are able to change the constant parts vs, vt ∈ F
n or VS , VT ∈ E of the two affine

transformations S, T ∈ Aff−1(Fn) to zero, i.e., to obtain a new key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ Hom−1(Fn).
Remark. This is a very useful result for cryptanalysis as it allows us to “collect” the constant terms
in the central equations P ′. For cryptanalytic purposes, we therefore need only to consider the case
of linear transformations S, T ∈ Hom−1(Fn).

The additive sustainer also works if we interpret it over the vector space F
n rather than the

extension field E. In particular, we can also handle the case n 6= m now. However, in this case it may
happen that we have a′ ∈ F

m and consequently τ : F
m → F

m. Nevertheless, we can still collect all
constant terms in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive sustainer will affect
the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n. A similar observation is true for central
equations over the extension field E: in this case, the additive sustainer affects the additive constant
A ∈ E and the linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have σ(X) := (BX) and
τ(X) := (B′X) for B,B′ ∈ E

∗. Again, we obtain a sustaining transformation if this operation does
not modify the shape of the central equations as (BX), (B ′X) ∈ Aff−1(Fn).

The big sustainer is useful if we consider schemes defined over extension fields as it does not affect
the overall degree of the central equations over this extension field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have σ(x) := Diag(b1, . . . , bn)x
and τ(x) := Diag(b′1, . . . , b

′
m)x for the coefficients b1, . . . , bn, b′1, . . . , b

′
m ∈ F

∗ and Diag(b) the diagonal
matrix on a vector b ∈ F

n and b′ ∈ F
m, respectively.
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In contrast to the big sustainer, the small sustainer is useful if we consider schemes which define
the central equations over the ground field F as it only introduces a scalar factor in the polynomials
(p′1, . . . , p

′
m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central equations while for
the transformation τ , it permutes the polynomials of the central equations themselves. As each
permutation has a corresponding, invertible permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also
affine transformations. The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permutations, multiplication
of rows and columns by scalars from the ground field F, and the addition of two rows/columns. As
all these operations can be performed by invertible matrices; they form a subgroup of the affine
transformations and are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and the small sustainer.
In addition, it allows the addition of multivariate quadratic polynomials. This will not affect the
shape of some MQ-schemes.

The sustainers given so far have been already outlined in [WP05b]. To the knowledge of the
authors, the following sustainers are new and to the knowledge to the authors have not been considered
previously in the literature.

3.6 Frobenius Sustainer

Definition 3.1 Let F be a finite field with q := |F| elements and E its n-dimensional extension.

Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H we call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations.

Obviously, Frobenius transformations are linear transformations with respect to F. The following
lemma establishes that they also form a group:

Lemma 3.2 Frobenius transformations are a subgroup in Hom−1(Fn).

Proof. First, Frobenius transformations are linear transformations, so associativity is inherited
from them. Second, the set H from Def. 3.1 is not empty for any given F and n ∈ N. Hence, the
corresponding set of Frobenius transformations is not empty either. So all left to show is that for any
given Frobenius transformations σ, τ , the composition σ ◦ τ−1 is also a Frobenius transformation.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H. Working in the multiplicative group E
∗ we

observe that we need qb · B′ ≡ 1 (mod qn − 1) for B′ to obtain the inverse function of τ . We notice

that B′ := qb′ for b′ := n − b (mod n) yields the required and moreover τ−1 := Xqb′

is a Frobenius
transformation as b′ ∈ H.

So we can write σ(X) ◦ τ−1(X) = Xqa+b′

. If a + b′ < n we are done. Otherwise n ≤ a + b′ < 2n,
so we can write qa+b′ = qn+s for some s ∈ H. Again, working in the multiplicative group E∗ yields
qn+s ≡ qs (mod qn − 1) and hence, we established that σ ◦ τ−1 is also a Frobenius transformation.
This completes the proof that all Frobenius transformations form a group. ¤
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Frobenius transformations usually change the degree of the central equation P ′. But taking τ :=
σ−1 cancels this effect and hence preserves the degree of P ′. Therefore, we can speak of a Frobenius
sustainer (σ, τ). So there are n Frobenius sustainers for a given extension field E.

It is tempting to extend this result to the case of powers of the characteristic of F. However, this
is not possible as xcharF is not a linear transformation in F for q 6= p.

Remark. We want to point out that all six sustainers presented so far form groups and hence partition
the private key space into equivalence classes (cf Lemma 2.3).

3.7 Reduction Sustainer

Reduction sustainers are quite different from the transformations studied so far, because they are
applied with a different construction of the trapdoor of P. In this new construction, we define
the public key equations as P := R ◦ T ◦ P ′ ◦ S where R : F

n → F
n−r denotes a reduction or

projection. In addition, we have S, T ∈ Aff−1(Fn) and P ′ ∈ MQ(Fn). Less loosely speaking, we
consider the function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the last r components of the
vector (x1, . . . , xn). Although this modification looks rather easy, it proves powerful to defeat a wide
class of cryptographic attacks against several MQ-schemes, including HFE and C∗ / MIA, e.g., the
attack introduced in [FJ03].

For the corresponding sustainer, we consider the affine transformation T in matrix representation,
i.e., we have T (x) := Mx+v for some invertible matrix M ∈ F

m×m and a vector v ∈ F
m. We observe

that any change in the last r columns of M or v does not affect the result of R (and hence P). Hence,
we can choose these last r columns without affecting the public key. Inspecting Lemma 2.4, we see
that this gives us a total of

qr

n−1
∏

i=n−r−1

(

qn − qi
)

choices for v and M , respectively, that do not affect the public key equations P.
When applying the reduction sustainer together with other sustainers, we have to make sure that

we do not count the same transformation twice, cf the corresponding proofs.

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section to several MQ-schemes.
Due to space limitations in this paper, we will only outline some central properties of each scheme and
sketch the corresponding proofs. We want to stress that the reductions in size we achieve represent
only lower, no upper bounds: additional sustaining transformations can reduce the key space of these
schemes further.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [Pat96b].

Definition 4.1 Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where







Ci,jX
qi+qj

for Ci,j ∈ E are the quadratic terms,

BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term
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and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Due to the special form of P (X), we can express it as a Multivariate Quadratic equation P ′ over
F, cf [Pat96b]. Moreover, as the degree of the polynomial P is bounded by d, this allows efficient
inversion of the equation P (X) = Y for given Y ∈ E. So the shape of HFE is in particular this degree
d of the private polynomial P . Moreover, we observe that there are no restrictions on its coefficients
Ci,j , Bk, A ∈ E for i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the additive and the big
sustainer (cf sect. 3.1 and 3.2) without changing the shape of this central equation.

Theorem 4.2 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in HFE, we have

n.q2n(qn − 1)2

equivalent keys.

Proof. To prove this lemma, we consider normal forms of private keys: let S̃ ∈ Aff−1(Fn) being
the affine transformation we start with. First we compute Ŝ(X) := S̃(X) − S̃(0), i.e., we apply the
additive sustainer. Obviously, we have Ŝ(0) = 0 after this transformation and hence a special fix-
point. Second we define S(X) := Ŝ(X).Ŝ(1)−1, i.e., we apply the big sustainer. As the transformation
Ŝ : E → E is a bijection and we have Ŝ(0) = 0, we know that Ŝ(1) must be non-zero. Hence, we have
S(1) = 1, i.e., we add a new fix-point but still keep the old fix-point as we have S(0) = Ŝ(0) = 0.
Similar we can compute an affine transformation T (X) with T (0) = 0 and T (1) = 1 as a normal
form of the affine transformation T̃ ∈ Aff−1(Fn). Note that both the additive sustainer and the big
sustainer keep the degree of the central polynomial P (X) so we can apply both sustainers on both
sides without changing the “shape” of P (X).

Applying the Frobenius sustainer is a little more technical. First we observe that this sustainer
keeps the fix-points S(0) = T (0) = 0 and S(1) = T (1) = 1 so we are sure we still deal with equivalence
classes, i.e., each given private key has a unique normal form, even with the Frobenius sustainer
applied. Now we pick an element C ∈ E\{0, 1} with g := S(C) is a generator of E

∗, i.e., we have
E
∗ = {gi | 0 ≤ i < qn}. As E is a finite field we know that such a generator g exists. Given that S is

injective we know that we can find the corresponding C ∈ E\{0, 1}. Now we compute gi := S(C)
qi

for 0 ≤ i < n. Using any total ordering “<”, we obtain gc := min{g0, . . . , gn−1} for some c ∈ N as
the smallest element of this set. One example of such a total ordering would be to use a bijection
between the sets E ↔ {0, . . . , qn − 1} and then exploiting the ordering of the natural numbers to
derive an ordering on the elements of the extension field E. Finally, we define S(X) := [S(X)]q

c

as new affine transformation. To cancel the effect of the Frobenius sustainer, we moreover define
T (X) := [T (X)]q

n−c

.
Hence, we have now computed a unique normal form for a given private key. Moreover, we can

“reverse” these computations and derive an equivalence class of size n.q2n.(qn − 1)2 this way as we
have

(BXqc

+ A,B′Xqn−c

+ A′) • (S,P ′, T ) for B,B′ ∈ E
∗, A,A′ ∈ E and 0 ≤ c < n .

¤

Remark. To the knowledge of the author, the additive sustainer for HFE has first been reported in
[Tol03] and used there for reducing the affine transformations to linear ones. In addition, a weaker
version of the above theorem can be found in [WP05b].

For q = 2 and n = 80, the number of equivalent keys per private key is ≈ 2326. In comparison, the
number of choices for S and T is ≈ 212,056. This special choice of parameters has been used in HFE
Challenge 1 [Pat96b].
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4.1.1 HFE-

We recall that HFE- is the original HFE-class with the minus modification (cf Section 3.7). In
particular, this means that the “shape” of the central polynomial P ′(X ′) is still the same, i.e., all
considerations from the previous theorem also apply to HFE-.

Theorem 4.3 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in HFE and a
reduction parameter r ∈ N we have

n.q2n(qn − 1)(qn−r − 1)
n−1
∏

i=n−r−1

(qn − qi)

equivalent keys. Hence, the key-space of HFE- can be reduced by this number.

Proof. This proof uses the same ideas as the proof of Theorem. 4.2 to obtain a normal form of
the affine transformation S, i.e., applying the additive sustainer, the big sustainer and the Frobenius
sustainer on this side. Hence, we have a reduction by n.qn(qn − 1) keys here.

For the affine transformation T , we also have to take the reduction sustainer into account: we use
T̃ (X) : F

n → F
n−r and fix T̃ (0) = 0 by applying the additive sustainer and T̃ (1) = 1 by applying the

big sustainer, which gives us qn−r and qn−r − 1 choices, respectively. To avoid double counting with
the reduction sustainer, all computations were performed in Ẽ := GF(qn−r) rather than E. Again,
we are able to compute a normal form for a given private key and reverse these computations to
obtain the full equivalence class for any given private key in normal form. Moreover, we observe
that the resulting transformation T̃ actually allows for qr

∏n−1
i=n−r−1(q

n − qi) possible choices for the

original transformation T : F
n → F

n without affecting the output of T̃ and hence, keeping the two fix
points T̃ (0) = 0 and T̃ (1) = 1. Therefore, there are a total of qn−r.qr.(qn−r − 1).

∏n−1
i=n−r−1(q

n − qi)
possibilities for the transformation T without changing the public key equations. Multiplying out the
intermediate results for S and T yields the theorem. ¤

For q = 2, r = 7 and n = 107, the number of equivalent keys for each private key is ≈ 22129. In
comparison, the number of choices for S and T is ≈ 223,108. This special choice of parameters has
been used in the repaired version Quartz-7m of Quartz [CGP01, WP04].

4.1.2 HFEv

The following modification, due to [KPG99], uses a different form for the central equations P ′.

Definition 4.4 Let E be a finite field with degree n′ over F, the number of vinegar variables v ∈ N,
and P(X) a polynomial over E. Moreover, let (z1, . . . , zv) := sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn)
for si the polynomials of S(x) in multivariate representation and X ′ := φ−1(x′

1, . . . , x
′
n′), using the

canonical bijection φ−1 : F
n → E and x′

i := si(x1, . . . , xn) for 1 ≤ i ≤ n′ as hidden variables. Then
define the central equation as

P ′
z1,...,zv

(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
′qi+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)X ′qk

+A(z1, . . . , zv)

where































Ci,jX
′qi+qj

for Ci,j ∈ E are the quadratic
terms,

Bk(z1, . . . , zv)X ′qk

for Bk(z1, . . . , zv) depending
linearly on z1, . . . , zv and

A(z1, . . . , zv) for A(z1, . . . , zv) depending
quadratically on z1, . . . , zv
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and a degree d ∈ N, we say the central equations P ′ are in HFEv-shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in the zi at most) and
A(z1, . . . , zv) is a quadratic function over F ensures that the public key is still quadratic over F.

Theorem 4.5 For K := (S, P, T ) ∈ Aff−1(Fn)×E[X]×Aff−1(Fm) a private key in HFEv, v ∈ N the
number of vinegar variables, E an n′-dimensional extension of F where n′ := n − v = m we have

n′qn+n′+vm(qn′

− 1)2
v−1
∏

i=0

(qv − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. In contrast to HFE-, the difficulty now lies in the computation of a normal form for the
affine transformation S rather than the affine transformation T . For the latter, we can still apply the
big sustainer and the additive sustainer and obtain a total of qm.(qm − 1) = qn′

.(qn′

− 1) equivalent
keys for a given transformation T . Moreover, the HFEv modification does not change the “absorbing
behaviour” of the central polynomial P and hence, the proof from Theorem. 4.2 is still applicable.

Instead, we have to concentrate on the affine transformation S here. To simplify the following
argument, we apply the additive sustainer on S and obtain a linear transformation. This reduces the
key-space by qn. To make sure that we do not count the same linear transformation twice, we consider
a normal form for the now (linear) transformation S

(

Em Fm
v

0 Iv

)

with Em ∈ F
m×m, Fm

v ∈ F
m×v

In the above definition, we also have Iv the identity matrix in F
v×v. Moreover, the left-lower corner

is the all-zero matrix in F
v×m. The reason for this non-symmetry: we may not introduce vinegar

variables in the set of oil variables, but due to the form of the vinegar equations, we can introduce oil
variables in the set of vinegar variables. This is done by the following matrix. In particular, for each
invertible matrix MS , we have a unique matrix

(

Im 0
Gv

m Hv

)

with an invertible matrix Hv ∈ F
v×v.

which transfers MS to the normal form from above. Again, Im is an identity matrix in F
m×m.

Moreover, we have some matrix Gv
m ∈ F

v×m. This way, we obtain qvm
∏v−1

i=0 (qv − qi) equivalent keys
in the “v” modification alone. As said previously, the identity matrix Im ensures that the input of the
HFE component is unaltered. However, we do not have such a restriction on the input of the vinegar
part and can hence introduce the two matrices Gv

m and Hv: they are “absorbed” into the random
terms of the vinegar polynomials Bk(z1, . . . , zv) and A(z1, . . . , zv).

For the HFE component over E, we can now apply the big sustainer to S and obtain a factor
of (qn′

− 1). In addition, we apply the Frobenius sustainer to the HFE component, which yields
an additional factor of n′. Note that the Frobenius sustainer can be applied both to S and T , and
hence, we can make sure that it cancels out and does not affect the degree of the central polynomial
Pz1,...,zv

(X). Again, we can reverse all computations and therefore, obtain equivalence classes of equal
size for each given private key in normal form. ¤

For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each private is ≈ 21160.
In comparison, the number of choices for S and T is ≈ 221,652.
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4.1.3 HFEv-

Here, we combine both the HFEv and the HFE- modification to obtain HFEv-. In fact, the original
Quartz scheme was of this type.

Theorem 4.6 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fm+v, Fm+r) a private key in HFEv,
v ∈ N vinegar variables, a reduction parameter r ∈ N and E an n′-dimensional extension of F where
n′ := n − v and n′ = m + r we have

n′qr+2n′+vn′

(qn′

− 1)2
v−1
∏

i=0

(qv − qi)

n′−1
∏

i=n′−r−1

(qn′

− qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. This proof is a combination of the two cases HFEv and HFE-. Given that the difficulty
for the HFE- modification was in the T -transformation while the difficulty of HFEv was in the S-
transformation, we can safely combine the known sustainers without any double-counting. ¤

For the case q = 2, r = 3, v = 4 and n = 107, n′ := 103, the number of redundant keys is ≈ 21258.
In comparison, the number of choices for S and T is ≈ 222,261. This special choice of parameters has
been used in the original version of Quartz [CGP01], as submitted to NESSIE [NES].

4.2 Matsumoto-Imai Scheme A

Definition 4.7 Let E be an extension field of dimension n over the finite field F and λ ∈ N an integer
with gcd(qn − 1, qλ + 1) = 1. We then say that the following central equation is of MIA-shape:

P ′(X ′) := X ′qλ+1 .

The restriction gcd(qn − 1, qλ + 1) = 1 is necessary first to obtain a permutation polynomial and
second to allow efficient inversion of P ′(X ′). In this setting, we cannot apply the additive sustainer,
as this monomial does not allow any linear or constant terms. Moreover, the monomial requires a
factor of one. Hence, we have to preserve this property. At present, the only sustainers suitable seem
to be the big sustainer (cf Sect. 3.2) and the Frobenius sustainer (cf Sect. 3.6). We use both in the
following
Remark. In the paper [MI88], MIA was introduced under the name C∗. Moreover, it used the
branching modifier [WP05c, 4.4] by default. As branching has been attacked very successfully, C∗

has been used without this modification for any later construction, e.g., [CGP00b, CGP02, CGP00a,
CGP03]. However, without the branching condition, the scheme C∗ coincides with the previously
suggested “Scheme A” from [IM85]. To acknowledge this historical development, we decided to use
the earlier notation and call the scheme presented in this section “MIA” for “Matsumoto-Imai Scheme
A”.

Theorem 4.8 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in MIA we have

n(qn − 1)

equivalent keys. Hence, the key-space of MIA can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in MIA. In particular, we con-
centrate on a normal form of the affine transformation S where S is in univariate representation. As
for HFE and w.l.o.g., let B := S(1) be a non-zero coefficient on position 1. Unlike HFE we cannot
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enforce that S(0) = 0, so we may have S(1) = 0. However, in this case set B := S(0). Applying
σ−1(X) := B−1X will ensure a normal form for S. In order to “repair” the monomial P (X), we have

to apply an inverse transformation to T . So let τ(X) := (Bqλ+1)−1X. This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B(qλ+1).(−1).Bqλ+1.Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ is in normal form. In contrast to HFE (cf Theorem. 4.2), we cannot chose the transformations
σ and τ independently: each choice of σ implies a particular τ and vice versa. However, the fix point 1
is still preserved by the Frobenius sustainer and so we can apply this sustainer on the transformation
S. As for HFE, we compute a normal form for a given generator and a total ordering of E; again, we

“repair” the monomial Xqλ+1 by applying an inverse Frobenius sustainer to T and hence have

(BXqc

, B−qλ−1Xqn−c

) • (S, P, T ) where B ∈ E
∗ and 0 ≤ c < n for c ∈ N

which leads to a total of n(qn − 1) equivalent keys for any given private key. Since all these keys form
equivalence classes of equal size, we reduced the private key space of MIA by this factor. ¤

Corollary 4.9 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in MIO [WP05c,
Sect. 7.1] we have

n(qn − 1)

equivalent keys. Hence, the key-space of MIO can be reduced by this number.

The above corollary can be proven in exactly the same way as Theorem 4.8. In particular, the fact
that MIO is defined over odd rather than even characteristic does not impose a restriction in this
context.
Remark. Patarin observed that it is possible to derive equivalent keys by changing the monomial P
[Pat96a]. As the aim of this chapter is the study of equivalent keys by chaining the affine transforma-
tions S, T alone, we did not make use of this property. A weaker version of the above theorem can be
found in [WP05b]; in particular, it does not take the MIO class into account.

Moreover, we observed in this section that it is not possible for MIA to change the transformations
S, T from affine to linear. But in [GSB01] Geiselmann et al. showed how to reveal the constant parts
of these transformations. Hence, having S, T affine instead of linear does not seem to enhance the
overall security of MIA.

For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class. The number of
choices for S, T is ≈ 263,784 in this case. This special choice of parameters has been used in Sflashv3,
cf [CGP03].

4.2.1 MIA-

As we recall from the cryptanalysis section, MIA itself is insecure, due to a very efficient attack by
Patarin [Pat95]. However, for well-chosen parameters q, r, its variation MIA- (or C∗−−) is actually
secure: as in the case of HFE and HFE-, we use the original MIA scheme and apply the minus
modification.

Theorem 4.10 For K := (S, P, T ) ∈ Aff−1(Fn) × E[X] × Aff−1(Fn) a private key in MIA and a
reduction number r ∈ N we have

n.(qn − 1)qr

n−1
∏

i=n−r−1

(qn − qi)
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equivalent keys. Hence, the key-space of MIA- can be reduced by this number.

Proof. This proof is similar to the one of MIA, i.e., we apply both the Frobenius and the big
sustainer to S and the corresponding inverse sustainer to the transformation T . This way, we “repair”

the change on the central monomial Xqλ+1. All in all, we obtain a factor of n.(qn −1) equivalent keys
for a given private key.

Next we observe that the reduction sustainer applied to the transformation T alone allows us to
change the last r rows of the vector vT ∈ F

n and also the last r rows of the matrix MT ∈ F
n×n. This

yields an additional factor of qr
∏n−1

i=n−r−1(q
n − qi) on this side.

Note that the changes on the side of the transformation S and the changes on the side of the
transformation T actually are independent: the first computes a normal form for S while the second
computes a normal form on T . Hence, we may multiply both factors to obtain the overall number of
independent keys. ¤

For q = 128, r = 11 and n = 67, we obtain ≈ 26180 equivalent private keys per class. The number
of choices for S, T is ≈ 263,784 in this case. This particular choice of parameters has been used in
Sflashv3 [CGP03].

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE) and MIA that
Multivariate Quadratic systems allow many equivalent private keys and hence have a lot of redun-
dancy in this key space, cf Table 1 and Table 2 for numerical examples; the symbols used in Table 1
are explained in the corresponding sections. The MQ-scheme Unbalanced Oil and Vinegar (UOV) has
been discussed in [WP05b, Sect. 4.3]. A general overview of MQ-schemes can be found in [WP05c].

Table 1: Summary of the Reduction Results of this Paper

Scheme (Section) Reduction

MIA (4.2) n(qn − 1)

MIA- (4.2.1) n(qn−r − 1)qr
∏n−1

i=n−r−1(q
n − qi)

HFE (4.1) nq2n(qn − 1)2

HFE- (4.1.1) nqn(qn − 1)qn−r(qn−r − 1)
∏n−1

i=n−r−1(q
n − qi)

HFEv (4.1.2) n′qn+n′+vm(qn′

− 1)2
∏v−1

i=0 (qv − qi)

HFEv- (4.1.3) n′qr+2n′vn′

(qn′

− 1)2
∏v−1

i=0 (qv − qi)
∏n′−1

i=n′−r−1(q
n′

− qi)

We see applications of our results in different contexts. First, they can be used for memory efficient
implementations of the above schemes: using the normal forms outlined in this paper, the memory
requirements for the private key can be reduced without jeopardising the security of these schemes.
Second, they apply to cryptanalysis as they allow to concentrate on special forms of the private key: an
immediate consequence from Sect. 3.1 (additive sustainers) is that HFE does not gain any additional
strength from the use of affine rather than linear transformations. Hence, this system should be
simplified accordingly. Third, the constructors of new schemes may want to keep these sustaining
transformations in mind: there is no point in having a large private key space — if it can be reduced
immediately by applying sustainers.

We want to stress that the sustainers from Sect. 3 may not be the only ones possible. We therefore
invite other researchers to look for even more powerful transformations. In addition, there are other
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Table 2: Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 80 12,056 326
HFE- q = 2, r = 7, n = 107 23,108 2129
HFEv q = 2, v = 7, n = 107 21,652 1160
HFEv- q = 2, n = 107 22,261 1258

MIA q = 128, n = 67 63,784 469
MIA q = 128, n = 67 63,784 6173

multivariate schemes which have not been discussed in this paper, due to space and time limitations.
These schemes include (non-exhaustive list) enTTS [YC04], STS [WBP04]), and PMI [Din04]. We
also invite to apply the techniques used in this paper to these schemes to compare the effect of these
sustainers to different classes of MQ-schemes.
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