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Abstract

In this article, we show that public key schemes based on multivariate
quadratic equations allow many equivalent, and hence superfluous private
keys. We achieve this result by investigating several transformations to
identify these keys and show their application to Hidden Field Equations
(HFE), C∗, and Unbalanced Oil and Vinegar schemes (UOV). In all cases,
we are able to reduce the size of the private — and hence the public —
key space by at least one order of magnitude. We see applications of our
technique both in cryptanalysis of these schemes and in memory efficient
implementations.
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1 Introduction

One way to achieve more variety in asymmetric cryptology are schemes based on
the problem of solving Multivariate Quadratic equations (MQ-problem). This
is very important to have alternatives ready if large scale quantum computing
becomes feasible. In particular, the existence of quantum computers in the range
of 1000 bit would be a threat to systems based on factoring, e.g., RSA, as there is
a polynomial time factoring algorithm available for quantum computers [Sho97].
The same algorithm would also solve the discrete log problem in polynomial time
— and therefore defeat schemes based on elliptic curves.
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In the last two decades, several such public key schemes were proposed,
e.g., [MI88, Pat96b, KPG99]. All of them use the fact that the MQ-problem,
i.e., finding a solution x ∈ F

n for a given system of m quadratic polynomial
equations in n variables each



















y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

for given y1, . . . , ym ∈ F and unknown x1, . . . , xn is difficult, namely NP-
complete (cf [GJ79, p. 251] and [PG97, App.] for a detailed proof)). In the
above system of equations, the polynomials pi have the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n
∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear,
and quadratic terms). This polynomial-vector P := (p1, . . . , pm) forms the
public key of these systems. Moreover, the private key consists of the triple
(S,P ′, T ) where S ∈ AGLn(F), T ∈ AGLm(F) are affine transformations and
P ′ ∈ MQm(Fn) is a polynomial-vector P ′ := (p′1, . . . , p

′
m) with m components;

each component is a polynomial in n variables x′
1, . . . , x

′
n. Throughout this

paper, we will denote components of this private vector P ′ by a prime ′. In con-
trast to the public polynomial vector P ∈ MQm(Fn), the private polynomial
vector P ′ does allow an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m.

At least for secure MQ-schemes, this is not the case if the public key P alone is
given. The main difference between MQ-schemes lies in their special construc-
tion of the central equations P ′ and consequently the trapdoor they embed into
a specific class of MQ-problems.

Having a large private (and consequently public) key space is a desirable
property for any public key scheme. In this paper, we will show that many
schemes based on multivariate quadratic polynomial equations have a large
number of “equivalent” private keys. Hence, they have many superfluous pri-
vate keys and consequently a smaller private and public key space than initially
expected. Our main tool for this purpose are so-called “sustaining transforma-
tions”, which will be formally introduced in Sect. 2.

1.1 Related Work

In their cryptanalysis of HFE, Kipnis and Shamir report the existence of “iso-
morphic keys” [KS99]. A similar observation for Unbalanced Oil and Vinegar
Schemes can be found in [KPG99]. In both cases, there has not been a sys-
tematic study of the structure of equivalent key classes. In addition, Patarin
observed the existence of some equivalent keys for C∗ [Pat96a] — however, his
method is different from the one presented in this paper, as he concentrated on
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modifying the central monomial. Moreover, Toli observed that there exists an
additive sustainer (cf Sect. 3.1) in the case of Hidden Field Equations [Tol03].
In the case of symmetric ciphers, [BCBP03] used a similar idea in the study of
S-boxes. The ideas of this paper are extended in [WP04b].

1.2 Outline

The remainder of this paper is organised as follows: first, we introduce the
necessary mathematical background and concentrate on useful properties of
linear and affine transformations. Second, we identify several candidates for
sustaining transformations. Third, we apply these candidates to the Hidden
Field Equations, the C∗ scheme, and Unbalanced Oil and Vinegar schemes.
Sect. 5 concludes this paper.

2 Mathematical Background

After giving some basic definitions in the following section, we will move on to
observations about affine transformations.

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 2.1 We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ AGLm(F) ×MQm(Fn) × AGLn(F)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In the above definition, AGLn(F) denotes affine transformations (cf Sect. 2.2).
In order to find equivalent keys, we consider the following transformations:

Definition 2.2 Let (S,P ′, T ) ∈ AGLm(F) × MQm(Fn) × AGLn(F) where
σ, σ−1 ∈ AGLn(F) and τ, τ−1 ∈ AGLm(F). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ AGLn(F) × AGLm(F) “sustaining transformations”
for an MQ-system if the “shape” of P ′ is invariant under the transformations
σ and τ . For short, we write (σ, τ) • (S,P ′, T ) for (1) and (σ, τ) sustaining
transformations.

Remark. In the above definition, the meaning of “shape” is still open. In fact,
its meaning has to be defined for each MQ-system individually. For example,
in HFE (cf Sect. 4.1), it is the bounding degree d ∈ N of the polynomial P ′(X ′),
while it is the fact that the oil-variables do not mix with other oil-variables,
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while vinegar-variables do, in the case of the UOV (cf Sect. 4.3). However,
for σ, τ sustaining transformations, we are now able to produce equivalent keys
for a given private key by (σ, τ) • (S,P ′, T ). A trivial example of sustaining
transformations is the identity transformation, i.e., to set σ = τ = id.

Lemma 2.3 Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H :=
(τ, ◦) form a subgroup of the affine transformations, they produce equivalence
relations within the private key space.

Proof. We prove the statement for G := (σ, ◦). The proof for H := (τ, ◦) is
analogous. First, we have reflexivity as the identity transformation is contained
in G. Second, we have symmetry as a subgroup is closed under inversion. Third,
we also have transitivity as a subgroup is closed under composition. Therefore,
the groups G and H partition the private key space into equivalence classes. ¤

Remark. We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined
yet. In any case, instead of proving that sustaining transformations form a
subgroup of the affine transformations, we can also consider normal forms of
private keys.

After these initial observations over equivalent keys, we concentrate on bi-
jections between ground fields and their extension fields. Let F be a finite field
with q := |F| elements. Using a polynomial i(t) ∈ F[t], irreducible over F, we
generate an extension field E := F[t]/i(t) of dimension n. This means we view
elements of E as polynomials in t of degree less than n. Addition and multi-
plication are defined as for polynomials modulo i(t). In addition, we can view
elements from E as vectors over the vector-space F

n. We will therefore view
elements a ∈ E and b ∈ F

n as

a := αntn−1 + . . . + α2t + α1 and b := (β1, . . . , βn) ,

for αi, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define a bijection between E and F
n

by identifying the coefficients αi ↔ βi. We use this bijection throughout this
paper.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2.4 Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0 qn − qi invertible (n × n)-matrices over F.

Proof. We observe that we have full choice for the first row vector of our matrix
— except the zero-vector. With an inductive argument we see that we have full
choice for each consecutive row vector — except the span of the previous row
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vectors. Hence, we have qn − qj−1 independent choices for the jth row vector.
¤

Next, we recall some basic properties of affine transformations over the finite
fields F and E.

Definition 2.5 Let MS ∈ F
n×n be an invertible (n× n) matrix and vs ∈ F

n a
vector and let S(x) := MSx + vs. We call this the “matrix representation” of
the affine transformation S.

Definition 2.6 Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and
αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over
F

n. We call this the “multivariate representation” of the affine transformation
S.

Remark. The multivariate and the matrix representation of an affine transfor-
mation S are interchangeable. We only need to set the corresponding coefficients
to the same values: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the exten-
sion field E of the transformation S.

Definition 2.7 Let 0 ≤ i < n and A,Bi ∈ E. Moreover, let the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+ A be an affine transformation. We call this the “uni-
variate representation” of the affine transformation S(X).

Lemma 2.8 An affine transformation in univariate representation can be trans-
fered efficiently in multivariate representation and vice versa.

Proof. This lemma follows from [KS99, Lemmata 3.1 and 3.2] by a simple
extension from the linear to the affine case. ¤

3 Sustaining Transformations

In this section, we give several examples for sustaining transformations. In
addition, we will consider their effect on the central transformation P ′. The
authors are not convinced that the transformations stated here are the only
ones possible but encourage the search for other and maybe more powerful
sustaining transformations.

3.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A,A′ ∈ E. Moreover, as long as they keep the shape of the central equations P ′

invariant, they form sustaining transformations.
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In particular, we are able to change the constant parts vs, vt ∈ F
n or VS , VT ∈

E of the two affine transformations S, T ∈ AGLn(F) to zero, i.e., to obtain a
new key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ GLn(F).
Remark. This is a very useful result for cryptanalysis as it allows us to “collect”
the constant terms in the central equations P ′. For cryptanalytic purposes,
we therefore need only to consider the case of linear transformations S, T ∈
GLn(F).

The additive sustainer also works if we interpret it over the vector space F
n

rather than the extension field E. In particular, we can also handle the case
n 6= m now. However, in this case it may happen that we have a′ ∈ F

m and
consequently τ : F

m → F
m. Nevertheless, we can still collect all constant terms

in the central equations P ′.
If we look at the central equations as multivariate polynomials, the additive

sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E:
in this case, the additive sustainer affects the additive constant A ∈ E and the
linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B,B′ ∈ E

∗. Again, we obtain a sustain-
ing transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ AGLn(F).

The big sustainer is useful if we consider schemes defined over extension
fields as it does not affect the overall degree of the central equations over this
extension field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have
σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the coefficients

b1, . . . , bn, b′1, . . . , b
′
m ∈ F

∗ and Diag(b) the diagonal matrix on a vector b ∈ F
n

and b′ ∈ F
m, respectively.

In contrast to the big sustainer, the small sustainer is useful if we consider
schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′

1, . . . , p
′
m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the cen-
tral equations while for the transformation τ , it permutes the polynomials of
the central equations themselves. As each permutation has a corresponding,
invertible permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine trans-
formations. The effect of the central equations is limited to a permutation of
these equations and their input variables, respectively.
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3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permu-
tations, multiplication of rows and columns by scalars from the ground field F,
and the addition of two rows/columns. As all these operations can be performed
by invertible matrices; they form a subgroup of the affine transformations and
are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

Remark. We want to point out that all five sustainers in this section form
groups and hence partition the private key space into equivalence classes (cf
Lemma 2.3).

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section
to several MQ-schemes. Due to space limitations in this paper, we will only
outline some central properties of each scheme. In particular, we will not explain
how they can be used to derive signatures but refer the reader to the original
papers for this purpose. We want to stress that the reductions in size we achieve
are only lower, no upper limits: as soon as new sustaining transformations are
identified, they will reduce the key space of the schemes in questions. At present,
we prefer not to attempt to give an upper limit for the reductions possible, as
the subject is far too new.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [Pat96b].

Definition 4.1 Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where







Ci,jX
qi+qj

for Ci,j ∈ E are the quadratic terms,

BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Using a generalisation of the Kipnis-Shamir Theorem (cf Lemma 2.8), we see
that we can express the univariate polynomial over E as multivariate polynomi-
als over F. Moreover, as the degree of the polynomial P is bounded by d, this
allows efficient inversion of the equation P (X) = Y for given Y ∈ E. So the
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“shape” of HFE is in particular this degree d of the private polynomial P . More-
over, we observe that there are no restrictions on its coefficients Ci,j , Bk, A ∈ E

for i, j, k ∈ N and qi, qi +qj ≤ d. Hence, we can apply both the additive and the
big sustainer (cf sect. 3.1 and 3.2) without changing the shape of this central
equation.

Theorem 4.2 For K := (S, P, T ) ∈ AGLn(F)×E[X]×AGLn(F) a private key
in HFE, we have

q2n.(qn − 1)2

equivalent keys. Hence, the key-space of HFE can be reduced by this number.

Proof. To prove this theorem, we consider normal forms of private keys: we
first apply the additive sustainer to reduce the constant parts of the two affine
transformations S and T to zero. Second, we apply the big sustainer on the
univariate representation of S and T to reduce one of its coefficients to the
neutral element of multiplication. W.l.o.g., let B0 be the non-zero coefficient
of the lowest power in the univariate representation of S. Applying σ−1(X) :=
B−1

0 X will reduce this coefficient to one. Similar, we can reduce one coefficient
of the affine transformation T . Hence, we have now computed a unique normal
form for any given private key. Moreover, we can “reverse” these computations
and derive an equivalence class of size q2n.(qn − 1)2 this way as we have

(BX + A,B′X + A) • (S,P ′, T ) for B,B′ ∈ E
∗ and A,A′ ∈ E .

¤

Remark. The idea presented in this section also works against the variations
HFEv (adding vinegar variables) and HFE- (removing public equations). How-
ever, for HFE- we have to take into account that some rows of the private matrix
T do not influence the public key. Hence, the number of equivalent keys is even
larger. Due to space limitations in this paper, we just point out this fact and
refer to [WP04b] for more details.

For the case q = 2 and n = 107, the number of redundant keys is 2428. In
comparison, the number of choices for S and T is 223,108. This special choice of
parameters has been used in a repaired version of Quartz [CGP01, WP04a].

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [MI88], uses a finite field
F and an extension field E. However, the choice of the central equations is far
more restricted than in HFE as we only have one monomial here.

Definition 4.3 Let E be an extension field of dimension n over the finite field
F and λ ∈ N an integer with gcd(qn − 1, qλ + 1) = 1. We then say that the
following central equation is of C∗-shape:

P (X) := Xqλ+1 .
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The restriction gcd(qn−1, qλ +1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P (X). In this setting, we
cannot apply the additive sustainer, as this monomial does not allow any linear
or constant terms. Moreover, the monomial requires a factor of one. Hence, we
have to preserve this property. At present, the only sustainer suitable seems to
be the big sustainer (cf Sect. 3.2). We use it in the following theorem.

Theorem 4.4 For K := (S, P, T ) ∈ AGLn(F)×E[X]×AGLn(F) a private key
in C∗, we have

(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in C∗.
In particular, we concentrate on a normal form of the affine transformation S
where S is in univariate representation. As for HFE and w.l.o.g., let B0 be
the non-zero coefficient of the lowest power in the univariate representation of
S. Applying σ−1(X) := B−1

0 X will reduce this coefficient to one. In order to
“repair” the monomial P (X), we have to apply an inverse transformation to T .

So let τ(X) := (Bqλ+1
0 )−1X. This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B
(qλ+1).(−1)
0 .Bqλ+1

0 .Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ has its coefficient B0 reduced to one. In contrast to HFE (cf Thm. 4.2),
we cannot chose the transformations σ and τ independently: each choice of σ
implies a particular τ and vice versa. So we have

(BX,B−qλ−1X) • (S, P, T ) where B ∈ E
∗

and can hence compute a total of (qn − 1) equivalent keys for any given key.
Since all these keys form equivalence classes, we reduced the private key space
of C∗ by this factor. ¤

Remark. Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [Pat96a]. As the aim of this paper is the study of
equivalent keys by chaining the affine transformations S, T alone, we did not
make use of this property.

Moreover, we observed in this section that it is not possible for C∗ to change
the transformations S, T from affine to linear. In this context, we want to
point out that Geiselmann showed how to reveal the constant parts of these
transformations [GSB01]. Hence, having S, T affine instead of linear does not
seem to enhance the overall security of C∗.

Finally, we want to note that C∗ itself is insecure, due to a very efficient
attack by Patarin [Pat95]. However, due to space limitations in this paper, we
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will not investigate equivalent keys of the more secure version C∗−− but leave
this question to [WP04b].

For q = 128 and n = 67, we obtain 2469 equivalent private keys per class.
The number of choices for S, T is 263,784 in this case. This particular choice of
parameters has been used in Sflashv3 [CGP03].

4.3 Unbalanced Oil and Vinegar Schemes

In contrast to the two schemes before, we now consider a class of MQ-schemes
which does not mix operations over two different fields E and F but only performs
computations over the ground field F. Moreover, Unbalanced Oil and Vinegar
schemes (UOV) omit the affine transformation T but use S ∈ AGLn(F). To
fit in our framework, we set it to be the identity transformation, i.e., we have
T = τ = id. UOV were proposed in [KPG99].

Definition 4.5 Let F be a finite field and n,m ∈ N with n ≥ 2m. Moreover,
let α′

i, β
′
i,j , γ

′
i,j,k ∈ F. We say that the polynomials below are central equations

in UOV-shape:

pi(x
′
1, . . . , x

′
n) :=

m
∑

j=1

n
∑

k=1

γ′
i,j,kx′

jx
′
k +

n
∑

j=1

β′
i,jx

′
j + α′

i .

In this context, the variables x′
i for 1 ≤ i ≤ n − m are called the “vinegar”

variables and x′
i for n − m < i ≤ n the “oil” variables. Note that the vinegar

variables are combined quadratically while the oil variables are only combined
with vinegar variables in a quadratic way. Therefore, assigning random values to
the vinegar variables, results in a system of linear equations in the oil variables
which can than be solved, e.g., using Gaussian elimination. So the “shape” of
UOV is the fact that a system in the oil variables alone is linear. Hence, we
may not mix oil variables and vinegar variables in our analysis but may perform
affine transformations within one set of these variables. So for UOV, we can
apply the additive sustainer and also the Gauss sustainer (cf sect. 3.1 and 3.5).
However, in order to ensure that the shape of the central equations does not
change, we have to ensure that the Gauss sustainer influences the vinegar and
oil variables separately.

Theorem 4.6 Let K := (S, P, id) ∈ AGLn(F) × MQm(Fn) × AGLn(F) be a
private key in UOV. Then we have

qn

n−m−1
∏

i=0

(qn−m − qi)

m−1
∏

i=0

(qm − qi)

equivalent keys. Hence, the key-space of UOV can be reduced by this number.

Proof. As in the case of the schemes before, we compute a normal form for
a given private key. First, applying the additive sustainer reduces the affine
transformation S to a linear transformation. This gives us a factor of qn in
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terms of equivalent keys. Second, applying the Gauss sustainer separately within
vinegar and oil variables, we can enforce the following structure, denoted R ∈
F

n×n, on the matrix MS ∈ F
n×n of the (now only) linear transformation S:

R :=





Im 0 Am

0 In−2m Bn−2m
m

Im Cm
n−2m Dm



 .

In this context, the matrices Im, In−2m are the identity elements of F
m×m

and F
(n−2m)×(n−2m), respectively. Moreover, we have the matrices Am, Dm ∈

F
m×m, the matrix Bn−2m

m ∈ F
(n−2m)×m and Cm

n−2m ∈ F
m×(n−2m). For a given

central equation P ′, each possible matrix R leads to the same number of equiv-
alent keys. Let

E :=

(

Gn−m 0
0 Hm

)

be an (n×n)-matrix. Here, we require that the matrices Gn−m ∈ F
(n−m)×(n−m)

and Hm ∈ F
m×m are invertible (cf Lemma 2.4). This way, we define the trans-

formation σ(x) := Ex where x ∈ F
n. Note that these transformations σ form a

subgroup within the affine transformations. So we have

(Ex + a, id) • (S,P ′, id) for a ∈ F
n and E as defined above.

As this choice of σ partitions the private key space into equivalence classes of
equal size, and due to the restrictions on E, we reduced the size of the private
key space by an additional factor of

∏n−m−1
i=0 (qn−m − qi)

∏m−1
i=0 (qm − qi) . ¤

For q = 2,m = 64, n = 192, we obtain 220,668 equivalent keys per key — in
comparison to 237,054 choices for S. If we increase the number of variables to
n = 256, we obtain 241,212 and 265,790, respectively. This choice of parameters
has been used in [KPG03].

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations
(HFE), C∗ and Unbalanced Oil and Vinegar (UOV) that it is possible to reduce
the number of keys in these multivariate quadratic public key schemes by at
least one order of magnitude. For UOV, the reduction was the most drastic
one as it allowed to reduce the number of possible keys by more than half of
the number of possible affine transformations S, cf Table 1 and Table 2 for
numerical examples.

The results in this paper can be used in various contexts. First, it is possible
to employ them for implementing these schemes in a memory-efficient way:
instead of storing the original private key, one can reduce the key to its normal
form and omit storing the superfluous parts. Due to the fact that the sustaining
transformations in this paper form sub-groups of the affine transformation, this
reduction can be done without any loss of security. In addition, we can use the
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Table 1: Summary of the Reduction Results of this Paper

Scheme Reduction

Hidden Field Equations q2n(qn − 1)2

C∗ qn − 1

Unbalanced Oil and Vinegar qn
∏n−m−1

i=0 (qn−m − qi)
∏m−1

i=0 (qm − qi)

results of this paper in cryptanalysis by enforcing a special structure to either
the affine transformations S, T (as done here), or on the central equations P ′.
This way, it is possible to concentrate on the parts of the scheme which actually
contribute to the security of multivariate quadratic schemes and neglect others,
e.g., constant parts of the affine transformations in HFE or UOV. However, we
want to point out that the key space for any of these schemes is still far larger
than, e.g., in the case of RSA, cf Table 2 for the number of choices on S, T alone.
So even with the results in this paper, we are not able to break any of these
schemes by exhaustive key search. On the other hand, it is not clear at present
if the sustainers presented in this paper are the only ones possible. Therefore,
the existence of other sustaining transformations is stated as an open problem.

Table 2: Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 107 23,108 428
C∗ q = 128, n = 67 63,784 469
UOV q = 2,m = 64, n = 192 37,054 20,668

q = 2,m = 64, n = 256 65,790 41,212

Finally, we want to remark that the techniques in this paper are quite gen-
eral, see the list of possible sustaining transformations in Sect. 3. Hence, it
is not only possible to apply them on HFE, C∗, and UOV, but also on other
multivariate quadratic schemes, such as enTTS [YC04]. However, due to space
limitations in this paper, we needed to make a choice and decided to concentrate
on HFE, C∗, and UOV.

Acknowledgments

We want to thank Patrick Fitzpatrick (BCRI, University College Cork, Ireland)
for encouraging this direction of research. Moreover, we want to thank An
Braeken for helpful remarks and Micheal Quisquater for fruitful discussions
(COSIC, KU Leuven, Belgium).

This work was supported in part by the Concerted Research Action (GOA)

12



GOA Mefisto 2000/06, GOA Ambiorix 2005/11 of the Flemish Government and
the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT.

Disclaimer

The information in this document reflects only the authors’ views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

[BCBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Pre-
neel. A toolbox for cryptanalysis: Linear and affine equivalence
algorithms. In Advances in Cryptology — EUROCRYPT 2003, Lec-
ture Notes in Computer Science, pages 33–50. Eli Biham, editor,
Springer, 2003.

[BWP05] An Braeken, Christopher Wolf, and Bart Preneel. A study of the
security of Unbalanced Oil and Vinegar signature schemes. In The
Cryptographer’s Track at RSA Conference 2005, Lecture Notes in
Computer Science. Alfred J. Menezes, editor, Springer, 2005. 13
pages, cf http://eprint.iacr.org/2004/222/.

[CGP01] Nicolas Courtois, Louis Goubin, and Jacques Patarin. Quartz:
Primitive specification (second revised version), October 2001.
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/

submissions/quar%tzv21-b.zip, 18 pages.

[CGP03] Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFlashv3, a
fast asymmetric signature scheme — Revised Specificatoin of SFlash,
version 3.0, October 17th 2003. ePrint Report 2003/211, http://
eprint.iacr.org/, 14 pages.

[GJ79] Michael R. Garay and David S. Johnson. Computers and Intractabil-
ity — A Guide to the Theory of NP-Completeness. W.H. Freeman
and Company, 1979. ISBN 0-7167-1044-7 or 0-7167-1045-5.

[GSB01] W. Geiselmann, R. Steinwandt, and Th. Beth. Attacking the affine
parts of SFlash. In Cryptography and Coding - 8th IMA Interna-
tional Conference, volume 2260 of Lecture Notes in Computer Sci-
ence, pages 355–359. B. Honary, editor, Springer, 2001. extended
version: http://eprint.iacr.org/2003/220/.

13



[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil
and Vinegar signature schemes. In Advances in Cryptology — EU-
ROCRYPT 1999, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 206–222. Jacques Stern, editor, Springer, 1999.

[KPG03] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil
and Vinegar signature schemes — extended version, 2003. 17 pages,
citeseer/231623.html, 2003-06-11.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE
public key cryptosystem. In Advances in Cryptology —
CRYPTO 1999, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 19–30. Michael Wiener, editor, Springer, 1999. http:

//www.minrank.org/hfesubreg.ps or http://citeseer.nj.nec.

com/kipnis99cryptanalysis.html.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-
tuples for efficient signature verification and message-encryption.
In Advances in Cryptology — EUROCRYPT 1988, volume 330 of
Lecture Notes in Computer Science, pages 419–545. Christoph G.
Günther, editor, Springer, 1988.

[Pat95] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai pub-
lic key scheme of Eurocrypt’88. In Advances in Cryptology —
CRYPTO 1995, volume 963 of Lecture Notes in Computer Science,
pages 248–261. Don Coppersmith, editor, Springer, 1995.

[Pat96a] Jacques Patarin. Asymmetric cryptography with a hidden mono-
mial. In Advances in Cryptology — CRYPTO 1996, volume 1109
of Lecture Notes in Computer Science, pages 45–60. Neal Koblitz,
editor, Springer, 1996.

[Pat96b] Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms
of Polynomials (IP): two new families of asymmetric algorithms. In
Advances in Cryptology — EUROCRYPT 1996, volume 1070 of Lec-
ture Notes in Computer Science, pages 33–48. Ueli Maurer, editor,
Springer, 1996. Extended Version: http://www.minrank.org/hfe.
pdf.

[PG97] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations
and multivariate polynomials. In International Conference on Infor-
mation Security and Cryptology 1997, volume 1334 of Lecture Notes
in Computer Science, pages 356–368. International Communications
and Information Security Association, Springer, 1997. Extended Ver-
sion: http://citeseer.nj.nec.com/patarin97trapdoor.html.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, October 1997.

14



[Tol03] Ilia Toli. Cryptanalysis of HFE, June 2003. arXiv preprint server,
http://arxiv.org/abs/cs.CR/0305034, 7 pages.

[WBP04] Christopher Wolf, An Braeken, and Bart Preneel. Efficient crypt-
analysis of RSE(2)PKC and RSSE(2)PKC. In Conference on Se-
curity in Communication Networks — SCN 2004, Lecture Notes in
Computer Science, pages 145–151, September 8–10 2004. extended
version: http://eprint.iacr.org/2004/237.

[Wol04] Christopher Wolf. Efficient public key generation for hfe and vari-
ations. In Cryptographic Algorithms and Their Uses 2004, pages
78–93. Dawson, Klimm, editors, QUT University, 2004.

[WP04a] Christopher Wolf and Bart Preneel. Asymmetric cryptography: Hid-
den Field Equations. In European Congress on Computational Meth-
ods in Applied Sciences and Engineering 2004. P. Neittaanmäki,
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