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Abstract

We show how to recover the affine parts of the secret key for a certain class
of HFE-Cryptosystems. Further we will show that any system with branches
can be decomposed in its single branches in polynomial time on average. The
first part generalizes the result from [1] to a bigger class of systems and is
achieved by a different approach. Despite the fact that systems with branches
are not used anymore (see [11, 6]), our second result is a still of interest,
as it shows that branches belong to the list of algebraic properties, which
cannot be hidden by composition with the secret affine transformations. We
derived both algorithms by considering the cryptosystem as objects from the
theory of nonassociative algebras and applying classical techniques from this
theory. This general framework might be useful for future investigations of
HFE-Cryptosystems or to generalize other attacks known so far.

1 Introduction

At Eurocrypt’88 Imai and Matsumoto (see [7]) proposed a promising cryptosystem
called C* based on multivariate polynomials, especially useful for smartcards. To
speed up computation and to enhance security, they introduced the idea of branches.
C* was broken independently by Dobbertin in ’93 (unpublished, see [4, 5]) and by
Patarin in '95 (see [11]). To repair these systems Dobbertin studied bijective power
functions of higher degree, whereas Patarin introduced the HFE-Cryptosystem and
also variants of it with branches (see [11, 12, 13]). The disadvantage of the latter
systems is, if an attacker is able to separate the branches, he also benefits from the
speed up, because he can attack the single branches separately.
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In the beginning probabilistic polynomial time attacks to separate the branches
were only known for very special systems like C*. Later more general probabilistic
attacks with exponential running time (exponential in the size of the branches, see
[6, 11]) were discovered. As a consequence only systems with branches of moderate
size could be considered secure. Thus the speed up of computation was no longer
given and such systems were not used anymore. As only small branches could be
recovered in general, it was from a theoretical point of view still an open question,
if branches can be hidden by the HFE-principle, i.e. by composition with the secret
affine transformations. In Section 4 we consider this question from the perspective
of nonassociative algebras. This will yield to an algorithm to recover the branches
for an arbitrary system in polynomial time on average and thus proving that the
answer is no.

Section 3 of this paper is concerned with the secret affine transformations used
to construct the trapdoor. It is an open problem, if the security is affected when
linear mappings are chosen instead of affine mappings. At first we briefly describe
what we understand by eliminating the affine parts. Then by applying classical
techniques from the theory of nonassociative algebras we show, that the affine parts
can be eliminated for certain class of HFE-systems, including systems like Sflash.
This generalizes the result in [1], but we make use of a different approach.

2 Preliminaries

We assume that the reader is familiar with the theory of finite fields and multi-
variate polynomials as it can be found in [10] for example. In the following we
briefly sum up some facts about HFE-Cryptosystems and representations of map-
pings over finite fields. A detailed description about encryption and signing with
HFE-Cryptosystems can be found in [11, 13]. More details about representations of
mappings are given in [8] and in the extended version of this paper.

With I, ¢ = p™, we denote the finite field of characteristic p and with F» the
extension of degree n. We will often consider F;» as an n-dimensional F-vector space
and via a choice of a basis we will identify it with the vector space . Elements
(ay,...,a,) of [y will often be denoted by a. Any mapping over F,» can be uniquely
represented by a polynomial

q"—1
P(X) =) a;X’,
i=0
and of course every such polynomial P(X) induces a mapping by a — P(a),a € Fyn.
Any mapping from F into F7 can be uniquely represented by a vector of polynomials

(p1(z1,. s Tn)y ey Pal(T1, -y T0)),

with the property, that if a monomial ﬁxlf ---aln occurs in py, then [; < ¢ for

1=1,...,n. We will call such a vector reduced. Of course, as above, every such a
vector induces a mapping.



For any choice of a basis by, ..., b, of Fn, there exists for every mapping F' over
Fe» a unique mapping f = (fi,..., f.) over F; with

F(a) = F(Z a;b;) = Z fila)b;

and vice versa.

Thereby the unique polynomial P(X) of degree d < ¢" — 1 with F(a) = P(a) is
called the univariate representation of F'. The uniquely determined reduced vector
(p1(x),...,pn(z)) with f(a) = (p1(a),...,pn(a)) is called the multivariate represen-
tation of F.

We define the degree of a vector of polynomials as max{deg(p;)|i = 1,...,n}.
With this definition the above correspondence is degree preserving in the sense, that
if the univariate representation has degree d, then the multivariate representation
has degree ¢-weight of d. Thereby the ¢-weight is the number of non-zero elements
in the g-adic representation of d. Affine mappings on Fy will be as usual denoted
by Az + ¢, where A denotes an n x n-matrix, z = (z1,...,2,) and ¢ € Fy . To
keep the description in the rest of this paper as simple as possible, we consider the
result of a matrix-vector-multiplication as a row vector and thus as the multivariate
representation of an affine mapping.

Now we very briefly describe a basic HFE-Cryptosystem with branches. The
secret key consists of:

1. n=mny +--- 4+ ng, a partition of n.

2. Field extensions [Fyn, over a fixed base field F, for k = 1,...,[. The fields will
be represented by the choice of an irreducible polynomial F,[X] to construct
Fyn. and an F-basis, which determines the isomorphism between Fy* and Fn..

3. 1 HFE-polynomials of degree dj, that is polynomials of the form H;(X) =
Z?J_:lo Biju XY 437 0 X7,
where ﬁij,k, Qi € Fan Jk=1,...,L

4. Two affine bijective transformations S = Az +¢,T' = Bz + d of F.

This constitutes the secret key. The public key is derived by computing the multi-
variate representation for each of the H; denoted by

(hi(z1,. .., Tpy), coe hp(x1, o Ty)
(hm-l-l(xm-l—l? s 7xn1+ﬂ2)7 I hn1+n2 (xN1+17 s ,l‘n1+n2)) (1)
(hn—nl—l—l(xn—nl—f—la s 7xn)7 ey hn(xn—nl-i-la s 7xn))

Each of these n;-tuples constitutes a branch. Combining these n;-tuples gives an n-
tuple of polynomials (A4, ..., h,) in n variables. The public key (p1,...,p,) is given
by the composition 7" o (hy, ..., h,) oS and consists of n quadratic polynomials in n
variables. This implies that the base field I, is public. Note, that the polynomials
in different branches have different sets of variables and these are mixed up by S, 7.
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The following diagram describes the encryption scheme via composition of mappings
defined on the field extensions, i.e. computing (p;(a),...,p,(a)) is equivalent to ap-
plying the composition of the mappings in the diagram to a. This different point of
view is important for our analysis. Thereby W denotes the canonical isomorphism
from Iy into Fot x -+ X 7 and ¢; the canonical isomorphism from Fyt into Fyni
given by the chosen basis.

é1
IFZ“ — Fp1 — Feu — Fgl

[un

i

4
;o SN
Fy, — Fy o = : J F
Fro % Fpw B B % F

T
n n
q ]Fq

Now it becomes apparent, that if an attacker is able to recover the branches, he
is able to attack every branch separately.
A basic HFE-Cryptosystem is a system where [ = 1. The nowadays proposed
schemes are variants of this basic system as for example Sflash or Quartz (see [3, 2]).
In some descriptions the univariate polynomials have a constant term. Since these
can be captured by T', we skipped it in our description (see also the next section).
In the sequel the multivariate and univariate representations are considered with
respect to the bases chosen by the designer. For our attacks we do not need to know
these bases since we will show, that all necessary information can be computed from
the public key.

Now we are going to show how to construct a nonassociative [F -algebra from
an HFE-Cryptosystem. This will be the foundation for the algorithms presented
later. By a nonassociative I -algebra ¢/ we understand an [F -vectorspace with a
multiplication, which is so that

AMzy) = (Ax)y = x(A\y) for all X € F,z,y € U,

and which is also bilinear (i.e. (x+y)z = zz+yz, 2(x+y) = zz+ zy). The associa-
tive law is not being assumed. An introduction to this subject can be found in [14].
Given an HFE-Polynomial H(X) = Y071 3; X7+ 437" 1, X' we define a mul-
tiplication on F,» as follows:

M(a,b) == H(a+b) — H(a) — H(b).
Since M is given by the sum E?];lo 3:;(a?b? 4 b7 a) this multiplication induces
indeed an nonassociative and commutative algebra. Again we can derive n polyno-
mials m; in x1,...,2z, and y1,...,¥y,, which give the multivariate representation of

the mapping M. This is achieved similar to the univariate case, but here we have
the defining relation

=1 i=1 i=1
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where by,...,b, is a basis of Fyn. If Ly, Ly are linear mappings over F,, then
M'(a,b) := Ly(M(Ly(a), Ly (b)) induces a second algebra.

We will see, that the multivariate representation of M’ can be calculated from the
public key by computing p;(z +y) — pi(z) — pi(y), even when the secret transforma-
tions S, T are affine (see Section 4).

3 Eliminating the Affine Parts of S,T

Recall that a polynomial ¢(xi,...,x,) is called homogeneous of degree d, if all
monomials that occur have degree d. We start with a lemma, which is crucial for
our algorithm. It shows that the affine parts of S, T are not mixed up properly by
the application of S, T, when the polynomial H (X) is also homogenous in the sense,
that all monomials have the form §;; X717,

Lemma 1. Let F, # Fy. Further let S(z) = Az + ¢, T(x) = Bz + d be bijective
affine mappings over Fyn with univariate representation Ly + ¢, Ly +d and H(X) =
Z?];lo By X1+,

Ifpy, ..., p, denotes the public key of the resulting cryptosystem, then p;(z) = q;(z)+
li(z) + a;, where a; is a constant, l; is linear and q; is homogeneous of degree 2.
Furthermore (q1, ..., qy) is the multivariate representation of Ly o H o L.

Remark 2. The restriction for fields with ¢ = 2™ is necessary, as otherwise the
equality 2 = z would destroy the graduated structure and the representation of
Ly o H o L; could not be recovered.

Proof. The proof is given in the full version of this paper. O

In this extended abstract we restrict to a simple case with one branch, i.e. a basic
HFE-Cryptosystem with a simple hidden polynomial. The details for the general
case will be given in the full version of this paper. We will state the general result
of the full version at the end of this section.

We will show how to eliminate the affine parts of S, T, if the base field is Fom, where
m > 2 and H(X) = X497 i # j. By eliminating we understand that we will
compute d and A~1(c). From this it is easy to transform the system T'o(hy, ..., h,)oS
into B o (hy,...,h,) o A. Note, that if (y,z) is a plaintext/ciphertext pair of the
first system, then (y —d, 2+ A~'(c)) is the corresponding pair of the second one and
vice versa. This implies, that plaintext/ciphertext-attacks can be carried out over
the second system. '

Without loss of generality we assume that H(X) = X7*! i # 0. Otherwise consider
((Ly+d)o(BX))o(X9" 7 o(X9%))o(L;+c), which gives an equivalent system, i.e.
a system with different S, T but exactly the same public key and a hidden polynomial
of the desired form. From the latter composition it is easy to see, why we could skip
the constant in the general description of HFE-systems.

We have M (a,b) = a?b+b? a. A natural question in the theory of nonassociative
algebras is to look for all annihilating elements, i.e. for all mappings M(a,-) or
M(-,a) (the so called left or right multiplications), which vanish on F .. We begin
with a simple lemma. As M and M’ are commutative we only have to consider left
multiplications.



Lemma 3. Let i & {0,n}.
1. If M(a,b) = a®b+b"a =0 for all b € Fyn, then a = 0.

2. If the characteristic of Fpn is 2, then the kernel of the mapping M(a,-) is
alFf jgeaim) for a # 0.

3. If M'(a,b) = 0 for all b € Fyn, then a = 0 for all bijective linear mappings
Ly, Ly over Fyn.

4. If the characteristic of Fyn is 2, then the kernel of the mapping M'(a,-) is
LN (L1 (a)F yoeatim)) for a # 0.

Proof. The proof will be given in the full version of this paper. O

Now we will show for our special case how to relate the problem of eliminating
the translations to the problem of finding annihilating elements.

The public polynomials are the multivariate representation of P(X) := (L +
d)o X7 X o (Ly + ¢). Hence we can compute the multivariate representation of

P(X+Y)+P(X) = Ly(Ly(X)* Ly(Y)+L1 (V)7 L1 (X)+L1 () Ly(Y)+Li (V)7 L1 (c))

+La(La (V)" Ly ().

Using Lemma 1 gives the multivariate representation of the last term Ly(Ly (V)4 Ly (Y))
from the public key. So we can eliminate this term by subtracting it. This way we
get the multivariate representation of

Lo(L (V)" (Ly(X) +¢) + L1 (X + )T Ly (Y)) = M'(X + L7'(¢), Y).

From Lemma 3 we have that M’'(a + L;'(c),Y) is the zero mapping iff a = L (c).
This yields straightforward to the following algorithm to eliminate the translations:

1. Compute the multivariate representation of M'(a + L;'(c),Y) by computing
pi(r1 + Y1, .o, Tp + yn) + pi(x1, ..., x,) and then eliminate the multivariate
part describing Lo(L1(Y)? L (Y)). This gives n polynomials
(1, Ty Y1y e ey Yn)-

2. Compute ¢;(z,eq) for i = 1,...,n, where e; denotes the first canonical basis
vector e; = (1,0,...,0). This gives an inhomogeneous system of n linear
equations. If it has rank n, the unique solution is A~!(c). If the rank is < n,

add the next n equations ¢;(z,e2) and so on, until rank n is reached. The
unique solution is the vector A~!(c).

3. Once ¢ := A7'(c) is computed, compute p}(z) = p;(z+¢) for all ;. This gives
the multivariate representation of (L + d) o X7 X o L.

4. Compute p}(0) for all i. This gives the vector d and d can as well be eliminated.
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Obviously this algorithm is dominated by the running time for the Gaussian
elimination. We have to solve a system with at most n? linear equations in n
variables. Hence the running time is O(n?).

This idea generalizes to an attack for base fields of arbitrary characteristic (details
are given in the full version) and yields to the following result.

Theorem 4. Given an arbitrary HFE-Cryptosystem, or a "—"-system like Sflash,
over a field F, # Fy with secret affine transformations S = Az +c and T = Bx +d,
then c,d can be eliminated with O(n?) field operations on average.

4 A Fast Algorithm for Separating the Branches

In [11] and [12] a probabilistic polynomial time algorithm to separate the branches
is described assuming the underlying HFE-polynomials admit special syzygies. The
algorithm is based on the Coppersmith-Patarin attack on Dragon-Schemes (see [12]).
If again S(z) = Az +¢, T(x) = Bz +d denote the affine transformations, the crucial
step of the attack is the computation of matrices C = AAA™! and ¢’ = B~ !'AB,
where

Al O o --- 0
0 A, 0O --- 0
A= D0 A 0
00 0
o 0 --- 0 N

Thereby [ denotes the number of branches and A, denotes the representation matrix
of a linear mapping x — A\yz, Ay € Fyn., where F . is the field belonging to the
k-th branch and k € {1,...,1}.

Then from C' a matrix G is derived, such that

Wy 0 0 0
0 Wy 0 0
AG = : 0 W;s 0 , where W; is a block matrix.
: S0 .0
0 0 --- 0 W

From this the separation is rather straightforward. We present here a variant, which
makes no use of C'. The reason for this is given in Remark 6 and 8. As mentioned
in Section 2, for all [ branches there exists a unique set of variables

Vk = {ng?;llnfrl’""$Z§:1nj}’k: = 1,...,[.
At first compute pi(z) := p;(Gz) for i = 1,...,n. The polynomials p; have the
property, that if z,x; is a monomial occuring in p; then z,, x; are elements of a
set Vi. Thus the monomials in p; reveal the different sets of variables and can be
grouped by using a proper monomial order. After that apply Gaussian elimination
to py,...,p, to derive the desired polynomials, where the first n,; polynomials have
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only variables from V7, the next ny polynomials have variables from the set 1V, and
so on. This completes the separation.

It might happen that the composition with G does not reveal all branches, but more
clusters of branches. In this case the clusters are attacked separately afterwards, and
the separation is refined step by step. To compute G classical linear algebra related
to the theorem of Cayley-Hamilton is needed. In this extended abstract we skip the
details, but refer the reader to Shamir’s attack on the Oil&Vinegar-Schemes [9] and
to [11, 12| for a nice introduction to the tools needed to overcome this task.

To generalize this attack, we consider the key idea from the perspective of nonas-
sociative algebras. From this point of view the crucial step is to determine a mized
multiplication centralizer of a proper multiplication, i.e. the mixed centralizer of
this multiplication has to contain many pairs of matrices (C’, C'), where C' has prop-
erties as above. In the following we show how the multiplications M and M’ from
Section 2 extend to systems with branches. Then we introduce the notion of mized
centralizer and show, that the multiplication is proper.

For every field F» we have a multiplication M (a,b),k = 1,...,I. We get the
desired multiplication M (a,b) on F,» as follows. We consider the multiplication on

[1._, Fyre defined by

((al, .. .,al), (bl, . -7bl)) (g (M1<CL1,Z)1), ceuy Mb(al, bl))

The multiplication M on F,. is given by ™' o M; X -+ x M; o ¥, where VU is
the embedding of F,» into the product of fields. With (m4,...,m,) we denote
the multivariate representation of M. The multiplication M’ on Fg is given by
M'(a,b) :== Lo(M(L1(a), Ly(b))). The polynomials

mi(z,y) = pi(z+y) — pi(z) — pi(y)

are the multivariate representation of M’. If S,T are affine it is easy to see, that
we get the representation by skipping the constant parts after the computation of
pi(z + y) — pi(x) — pi(y). This becomes apparent, if one computes P(X +Y) —
P(X) — P(Y) as in section 3.

A well known object in the theory of nonassociative algebras is the multiplication
centralizer. In our situation we have to generalize this notion. We consider the mized
multiplication centralizer, which is given by all linear mappings C, C’ fulfilling

C'(mh(z,y),. .., my(z,y) = (M (z, Cy), ..., m,(z,Cy)).
This can also be written as
C'B(mi(Az, Ay), . ..,ma(Az, Ay)) = B(mi(Az, ACy),. .., ma(Az, ACy)).  (2)

From this it is easy to see, that if C', C” solve the equation (2), then ACA™!, B~1C'B
solve

Z'((ma,...,my)) = (mi(z, Zy), ..., mu(z, Zy)), (3)

and if Z, Z' solve (3), then A='ZA, BZ'B~! solve equation (2). Hence the solutions
are conjugated to each other. The centralizer of M’ can be computed from the public
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key with Gaussian elimination, when the elements c;;, c;j are set as unknowns and
plaintext /ciphertext pairs are plugged in to get equations in the unknowns. Now we
analyze the mixed centralizer and show that it has the desired property. We start
with a special case.

Theorem 5. Given the base field Fom. Let M be the multiplication as above derived
from univariate polynomials Hy = X?""* 1 where i), & {0,ny} and ged(2m*+1, 27—
1) =1 fork=1,...,1. Then the centralizer consists of all pairs (A~*ZA, BZB™1),
where Z is the representation matriz of the mapping

a— U H(AL - U(a), ..., N - Pla))),
a € Fpn and N\, € Fymgediiyny) for k=1,...,1.
Proof. The proof is simple but rather technical, so we skip the details here. O

Understanding the centralizer of an arbitrary HFE-Cryptosystem with branches
is a hard problem. But it is easy to see, that all block matrices Z, where every block
Ay represents a multiplication with an element from the base field I, lie in the
centralizer of M. It is very likely and confirmed by our experiments, that these are
the only elements when H(X) is not as simple as above. Thus we have the following
reasonable conjecture.

Conjecture 1. The elements C' of the centralizer for an arbitrary system with [
branches are the matrices A~'ZA with

Ay 00 0
0 A, O -+ 0
Z = 0 A 0
o0 .0
o 0 -+ 0 N

Thereby Aj denotes the representation matrix of a multiplication with A\, € F,.

Remark 6. The conjecture does not state anything about C'. As C” is only needed
to compute C' but not to complete the actual separation, no further knowledge about
the structure is necessary.

The separation requires the factorization of the characteristic polynomial of C.
Assuming Conjecture 1 the matrices C' can be diagonalized with only a few possible
Eigenvalues. Consequently the factorization is feasible.

The number of recovered branches depends on the number of different Eigenvalues.
If only clusters of branches are recovered, the algorithm can be applied separately
to the different clusters. We have the following result.

Theorem 7. The branches for an arbitrary system can be recovered with O(n®) field
operations on average.

Remark 8. For base fields Fom a faster variant of the algorithm is possible, because
in this case it is possible to compute C' without C’. The details can be found in the
full version.
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