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ABSTRACT

The propagation of small-amplitude internal gravity waves through a finite layer of varying Brunt-
Viisili frequency is analyzed. A two-scale analysis is used and it is shown that the amount of reflection a
wave undergoes is related to the correlation coefficient between the first harmonic of the wave and the
variations of the medium. Therefore, with proper care one can extend the usual WKB technique to account

for reflection.

1. Introduction

Stommel and Fedorov (1967) and, more recently,
Fedorov (1970) describe the complicated spatial fluctua-
tions found below the main thermocline—small in-
versions, extrema, and homogeneous layers separated
by sharp gradients of both temperature and salinity
have been observed at various depths, These thin,
quasi-stationary homogeneous layers, sometimes called
blinis, can extend from 2 to 20 km horizontally and
have depths ranging from a few meters to a few hundred
meters. Fedorov suggests that these step-like structures
are similar to the stratification steps found in the experi-
ments of Turner (1968). On the other hand, Phillips
(1966, p. 199) and Orlanski and Bryan (1969) argue
that internal gravity waves generate these structures.
Whatever their origin, the presence of a step-like
structure in the stratification could scatter and reflect
internal gravity waves incident on such a “pancake
stack” of these homogeneous layers.

Wave propagation in anisotropic inhomogeneous
media has been successfully investigated by using WKB
techniques. The application of these approximations
to the propagation of acoustic gravity waves in the
atmosphere has been discussed by Einaudi and Hines
(1970). In the context of a linear analysis, the crucial
assumption of these methods is that the wavelength
of the wave is small compared to the scale length of the
inhomogeneities. A physical consequence of this
assumption is our inability to describe wave reflection
(see Mahoney, 1967).

Although the WKB approximation is adequate when
the medium properties are slowly varying, it fails to
describe accurately two important classes of problems.
The first is the description of wave scattering and dis-
persion by a region of the medium in which the scale
length of the inhomogeneities is comparable to the
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wavelength of the incident wave, i.e., wave-scale
variation. The second is the determination of the
reflection of a wave train by a medium whose properties
are slowly varying.

In this paper, the properties of the medium change
significantly over a distance much larger than a wave-
length. Superimposed on this long variation is a small-
amplitude wave-scale variation. We shall see that many
small wave-scale scatterers can cause significant
reflection of a wave.

We can think of several other applications of the
theory to be presented. The propagation of small-
amplitude shallow water waves onto a region of variable
topography is governed by a similar equation, as are a
number of other physical problems in wave propagation
in a non-uniform medium.

2. Formulation

Consider the propagation of an internal gravity wave
in an unbounded, inviscid, stably stratified and in-
compressible fluid. Define y as the vertical coordinate
and «x as a horizontal coordinate. We allow variations
of the Brunt-Viisili frequency N with respect to y
and assume that the lifetime of the irregularities is
long compared to the wave period. We introduce the
Boussinesq approximation to simplify the mathe-
matics; if such an assumption were not made, we would
have a more complicated ‘“spring stiffness” in our
governing one-dimensional Helmholtz equation. If

¥ (x,3,6) =Re[¥ (y)eik=—at)] 2.1)

denotes the two-dimensional streamfunction, the equa-

tion for the complex amplitude ¥(y) in the linearized
Boussinesq approximation is

a2 N2(y) —w?
—_—t kﬂ[_____],p =0,
dy? 2

w

(2.2)
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where k£ is the horizontal wavenumber, w the wave
frequency, and N the Brunt-Viisild frequency based
on the basic density structures po, 1.e.,

d
N?=—g—(Inpo).
ay

We assume that N?>w? k>0, and w>0. We scale the
problem as follows. Let L be a characteristic vertical
scale of the internal gravity wave and write

z=vy/L
R =LV oY)

(2.3)

(2.4)

where, for convenience, we take A to be a positive
quantity. Eq. (2.2) becomes

ay

—+A%=0. (2.5)
dz?

Suppose A has wave-scale variation in a region
0<z<H, called the scattering region, and is constant
outside that region. We wish to find the reflection
coefficient of an upward propagating wave which is
generated somewhere in the region z<0. Let € be a
parameter characterizing the rate of change of A in
the scattering region, i.e., ¢ represents the fractional
change of A in a distance A™!; then,

dA
A2 —=0(e).
dy

2.6)

In the analysis that follows, we take ex1 and use
asymptotic methods to determine the solution.

A simple change of variable leads to a useful form
of (2.5). Let ¢ be a function of the phase {, where

= / A(Z)d7 .
0

dA\dy
+<A-2 —>-+¢=0.
dz/d¢

In (2.7) the spring stiffness is normalized to unity when
we use the phase variable {; the use of such a variable
is dictated by the slow change in the spring stiffness
with position.

Then
d*y

@.7)
dc?

3. Two-scale method

Consider A(z) having the functional form
A(2)=Ao(e2)F-eAr((,e2). 3.1)

The first term represents smooth long-scale variations
in the Brunt-Viisild frequency, while the second
represents the small-amplitude, wave-scale pertur-
bations; notice that the perturbations are modulated on
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the long-scale variations. In the ocean, A (z) is the quan-
tity that is measured and one could form Ay and Ay
in a variety of ways. It will be convenient here to choose
A1 to be periodic when { varies by 2.

We treat { and Z=ez as independent variables and
expand ¢ ({,Z; €) as

ll/(g‘,Z,6)=F0<§‘,Z)+EF1(§‘,Z)+. (3'2)
Substituting (3.2) into (2.7), we find
9%F,
—— 4 Fy=0, 3.3)
ag?
9%F,
P =—Gy, (3.4)
a?

where G, contains the forcing of Fy by Fy, namely

2\ 9%F, dAo OA1\9dF,
G= (—> +Ag? <~—+—“>—— 3.5)
Ao/ 3807 dZ 9t/ ot
The solution to (3.3) is
Fo(t,2)=A0(2)e¥+Bo(Z)e 5, (3.6)

where A,, By are the amplitudes of the waves having
group velocities pointing in the downward and upward
directions, respectively. When (3.6) and (3.5) are
substituted into (3.4), terms proportional to exp[+i¢]
appear on the right-hand side of (3.4). We remove the
possible secularities by requiring that the forcing Gi be
orthogonal to the complementary solutions exp{==i{ ],
ie.,

27
/ d¢Gr(§,2)ex =0, (3.7)
0

This condition yields two coupled equations for 4,
and By:

dAy AQI
———+<—>A0=Q*Bo, (3.8)
dzZ 2A¢
dBo Ad
——-|—<——>BO=QA0, 3.9
dzZ 2A0
where
1 2T QA
0(2)= /cw—@@wy (3.10)
47Ao Jo a¢

provided we choose A; such that A;(0,Z)=A,(27,Z).

In the usual WKB approach, A;=0 and Egs. (3.8)
and (3.9) are uncoupled; the amplitudes 4, By change
in such a way as to conserve 4oAqt and BoAot. We write

ap=A4 vo%, bo =BoA0';'-
Then
ddo
——=q*bo, (3.11)
dZz
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dbo
—=qay, (3.12)
dzZ
with
27
o(2)= / EME2)ES,  (.13)
7ron 0

representing the long-scale changes of the WKB in-
variants ao, bo. We see that reflection depends on there
being a correlation between the small-scale structure
A; and the first wave harmonic.

The solution of (3.11) and (3.12) requires the specifi-
cation of boundary conditions. Suppose we have a
wave incident at Z=0 with a known amplitude ,(0).
The radiation condition at Z=eH requires that
ao(eH)=0. Given A; we could calculate ¢(Z) and there-
fore ao(Z), bo(Z).

As an illustration, suppose ¢ is constant. It is a simple
matter to solve (3.11) and, (3.12) for the reflection
coefhcient ’

00(0)
bo(0)

=tanh(eH |q|). (3.14)

The correlation coefficient between the first harmonic
and the small oscillating irregularities provides the
coupling between a, and by, i.e., it is a measure of the
amount of reflection. If we write A? as

A?=§+ecos(2 \/Ez), §=constant,

our governing equation (2.5) reduces to Mathieu’s
equation. That equation was discussed in the context
of wave propagation by Brillouin (1953) and Benjamin
(1968). If we consider the (3,¢) plane (see, for example,
Cole, 1968), we find that a wedge centered at é=1
represents attenuation, i.e., the solutions decay with .
The problem being inviscid, the attenuation is not
dissipative; rather, it expresses the fact that the in-
coming wave amplitude decreases at the expense of
the reflected wave. Therefore, in the Mathieu equation

()-(m)()

. < H‘i) explid (z;—zj) ] < 1—

where

41

T =—

? <1— Y >eXP[7"Aj(Zj—Zf—1)] <1+

J+1

Here 3,=2,=0. We can approximate any wave-scale
variation in 0<z<H by a stepwise varying function
by dividing the scattering region into a large number M

PHYSICAL OCEANOGRAPHY

<T11(i)
791

VoLuME 2

formulation the wedge near §=1 denotes a region in

which reflection is important. From the classical results

pertaining to the solution of Mathieu’s equation, we

can represent the bounding lines for the first few wedges

in the (3,¢) plane for which reflection is important as
wedge near §=0

—2e,
6={1:F2e, wedge near §=1
4—e2/3, 4+5¢2/3, wedge near 5=4.

For infinitesimal €, only the wedge near §=1 is im-
portant, all others having higher order contacts at
their apex.

Finally, wave trapping can occur if a wave of fre-
quency close but smaller than the local Brunt-Viisild
frequency is generated inside the scattering region.
For such a wave 6 is negative and small and, if §< —2¢€,
the wave considered could propagate unattenuated in
the scattering region. If N?is equal to the same constant
for <0, 2> H and if §<0, that wave cannot propagate
outside the scattering region and the scattering layer
then acts as a waveguide.

4. Numerical method

The principal assumption made in the preceeding
section concerns the form of A, in Eq. (3.1). The
two-scale method tells us to decompose A; into its
Fourier components in each region where the phase
changes by 27. We have tacitly assumed that the
Fourier coefficients are functions of Z, i.e., the corre-
lation coefficients do not change appreciably from one
cycle of the wave to the next. There are functions Ay
that do not satisfy this property.

However, for a stepwise varying A in 0<z<H, Eq.
(2.5) can be solved exactly within each step. The
solution in the ith step with A=A; can be matched to
that of the ({—1)th step, and can also provide initial
conditions for the (i-41)th step. Hence, the solution at
any step can be related to the incident and reflected
components in the region z<<0 (denoted by subscript

1) by
oG
7229/ \By/)’

Aj

(4.1)

> exp[ —14;(z;—3%-1) ]

J+1

A

> exp[—1A;(zj—2-1) ]

i+l

of small steps. Since only the transmitted waves can be
observed at the Mth step, the reflection coefficient is
found by setting Ady=7uPA;+7.?B; equal to
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F16. 1. An example of a pseudo-random “continuous’ A.
The associated reflection coefficient is 0.23.

zero, 1.e.,
7120

710

Ay

!By

. (4.2)

‘When A satisfies the restrictions of the previous section,
the results obtained from (3.14) and (4.2) are in good
agreement.

Next, we generate a pseudo-random continuous
function for A as follows. Suppose A= (1) and divide
the interval [0,H] into many small intervals of width
k; typically, we take 2=0.1 so that there are over 60
sub-intervals per wavelength. The function A is defined
in each interval by means of a random walk, At z=0
we take A=1, The change in A from one interval to the
next is e#*R, where R is a pseudo-random number
uniformly distributed between —1 and +1; notice that
the change in A over one wavelength is O () since there
are about 2w/k steps in our random walk over this
distance. The incident wave sees a continuous A such
as that shown in Fig. 1. The reflection coefficient
computed by using (4.2) is 0.23. As expected, this is
considerably smaller than we would obtain from (3.14)
using e=0.1, H=100, ¢=1. Although the generation
of such a A does not pretend to model the actual
Brunt-Viisild frequency found in the oceans, this
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example contains many features of the actual step-like
structure found by Fedorov (1970; see Fig. 2 therein).

5. Summary

If an internal gravity wave impinges onto a region
containing wave-scale irregularities superimposed upon
large-scale variations of the Brunt-Viisili frequency,
one could obtain significant reflection if that region
is of considerable extent. Care must be exercised when
using the WKB approximation in wave propagation
problems. One should estimate the correlation coeffi-
cient between the wave’s first harmonic and the medium
and, if small, the “usual” WKB technique can be used.
Otherwise, reflection must be accounted for, say, in the
manner described here.
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