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ABSTRACT

A theoretical analysis of haline convection induced by the freezing of sea water is made for a turbulent
ocean. The nonlinear equations for two-dimensional flow are solved using the mean field approximation and
expanding the variables in Fourier series. It is found that, when the depth of the mixed layer is sufficiently
large, the convective process is independent of depth. Expressions for the horizontal spacing of convection
cells, maximum vertical velocity, and time required for manifest convection to develop are derived for a
range of Schmidt numbers appropriate for the ocean. The analysis is applied to conditions that may be
typical of freshly frozen polynyas or leads in the Weddell Sea, and it is concluded that haline convection is
probably an effective process as a precursor to Antarctic Bottom Water formation.

1. Introduction

Though the formation of Antarctic Bottom Water is
not yet completely understood, it is now widely
believed from the work of Brennecke (1921) and
Mosby (1934) that a primary influence upon the
formation process is the increase in salinity of the
surface waters brought about by the freezing of sea
water. On the basis of water mass analysis Deacon
(1937) and Wiist (1938) have shown that Antarctic
Bottom Water is probably formed mainly in the
Weddell Sea. The only data from the Weddell Sea for
the southern winter were taken by the Deutschland.
Fig. 1 shows the temperature and salinity profiles
taken during the Deutschland’s drift across the Weddell
Sea during the winter of 1912. The data are strongly
influenced by the drift from about 73°50’S, 31°10'W
where the ship froze in on 8 March to about 63°40’S,
35°50'W on 28 November when the ship became free.
This can most clearly be seen in the temperature
profiles where the transition from surface to inter-
mediate water, commonly called the warm deep water,
varies in depth and gradient in a non-monotonic way.
The temperature of the surface water, however, did
not vary much and remained quite close to the freezing
point. The salinity of the surface water increased
monotonically up to station 70, on 26 August, after
which it started to decrease slowly. These data seem
to support the idea that purely haline convection
carries the brine excluded from the sea ice into the
isothermal surface water layer.

In the shallow shelf regions of the southwest Weddell
Sea this process can increase the salinity of the entire
water column, while in the deeper regions the warm
deep water evidently prevents the convection from

penetrating very deeply, as suggested in Fig. 1. When
the shelf water reaches a salinity of 34.51%p, it can
mix with the adjacent warm deep water and form a
mixture that is denser than the warm deep water.
This process is known as cabbeling and evidently was
first discussed by Witte (1902). The dynamics of
cabbeling for two water types in juxtaposition have
not been investigated so the effectiveness of the process
cannot be accurately evaluated, but rough calculations
seem to indicate that the process should be important
at the shelf edge. In the deep regions of the Weddell
Sea haline convection can again increase the salinity
of the surface water to 34.51%, providing a super-
position of the two water types. In this arrangement
cabbeling can cause an instability to develop since the
mixture of the two water types is denser than the
underlying warm deep water. Blobs of the dense mix-
ture may then fall through the warm deep layer and
produce bottom water (Foster, 1972). In either case
haline convection seems to be a necessary precursor to
Antarctic Bottom Water formation.

Badgley (1966) has pointed out that polynyas and
leads may be very important to the heat budget of
polar seas. This can be seen by considering the freezing
of a sheet of ice. The heat flux through the ice sheet is
given approximately by 2AT/I where k is the average
conductivity of the ice, AT the temperature difference
across the ice sheet, and 7 the thickness of the ice. The
heat flux is balanced by the latent heat given up by the
water when it freezes at the bottom of the ice sheet,
and is given by pLI where p is the density, L the latent
heat of fusion, and I the rate of freezing of the ice sheet.
Thus, the rate at which the ice freezes is approximately
kAT/(oLI). We see from this that ice formation in a
newly frozen lead or polynya with a 1 cm thick ice
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sheet will be two orders of magnitude faster than under
sea ice 1 m thick. In the Arctic it has been estimated
that the amount of open water is from less than 19,
(Badgley, 1966) to more than 109, (Wittmann and
Schule, 1966). What is needed is an estimate of not
only the amount of open water but also the amounts of
relatively thin ice where the heat transfer is also large.
In the Antarctic even less is known about the ice cover
in winter, and it may be quite different from the
Arctic since ice is rapidly advected away from the
continent to the north as evidence by the drifts of the
Deutschland and Endurance. From an examination of
satellite photographs Fletcher (1969) has surmised
that large semi-permanent polynyas may exist near
the Antarctic continent, in particular, in regions where
the coastline trends NE-SW as in the southeastern
Weddell Sea. Fig. 2 shows a photograph of a polynya
near the Filchner Ice Shelf. Though this was summer,
a cold strong katabatic wind with a temperature of
about —20C and a speed of about 10 m sec™® was
blowing off the ice shelf. Around 8 cm of ice formed in
8 hr, which is in good agreement with the rate that
would be estimated from heat flux considerations (like
above). It should be noted that despite the relatively
strong wind, the ice formed in very large, very flat
sheets. Thus, it appears that the amount of salt intro-
duced into the sea water by ice formation in leads and
polynyas forms an important, if not dominant, part of
the total salt flux into polar seas.

The analysis of haline convection under rapidly
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F1c. 1. Temperature and salinity profiles in the Weddell Sea
taken while the Deutschlond was frozen in and drifting with the
ice pack from March to December, 1912; numerals indicate series
number (data from Brennecke, 1921).

growing flat ice sheets in polynyas and leads crucially
depends upon the horizontal scale of the convective
flow. If the horizontal scale is large compared to the
width of a typical lead, then the convection will be
dominated by the horizontal inhomogeneity. This is
the situation considered by Coachman (1966). On the
other hand, if the horizontal scale is small compared

Fie. 2. ARA General San Martin in a large polynya just north of the Filchner Ice Shelf, February 1969,
The ice is forming in large, flat sheets at an average rate of about 1 cm hr—!. Wind was from the southeast
at about 10 m sec™), air temperature about —20C.
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to the width of the lead, then the convection will be
dominated by a hydrodynamic instability mechanism.
It will be shown later that the horizontal scale of the
haline convection is indeed in most cases small com-
pared to that of the width of most leads and polynyas,
and thus the analysis for horizontally homogeneous
conditions is appropriate.

Zubov (1943) has considered the mixing process
induced by haline convection from the point of view of
the static balance of layers. While this approach gives
some idea of the extent that haline convection can
penetrate in a stratified ocean it does not consider the
time dependence or the dynamics of the process.
Foster (1968a) has made a theoretical analysis of haline
convection with a time-dependent approach. The
prediction of cell spacing using this theory was verified
by laboratory experiments (Foster, 1969). This analysis,
however, used the linearized equations and thus cannot
determine the velocities of the convection after onset.
Another shortcoming of this theory is that, strictly
speaking, it is only appropriate for molecular exchange
coefficients since it uses an Infinite Schmidt number. It
is the purpose of the present paper to extend the
theoretical analysis to include nonlinear effects so that
velocities can be determined, and to consider a range
of Schmidt numbers that are appropriate for the eddy
exchange coefficients of a turbulent ocean. Then it will
be possible to estimate the effectiveness of haline con-
vection as a precursor to Antarctic Bottom Water
formation.

2. Theoretical model

When sea water with a salinity >24.7%, is cooled
from above, thermal convection will produce a layer
of water of nearly constant temperature until the
freezing point is reached. When sea ice begins to form,
the salinity of this isothermal layer will start to increase
as a result of the haline convection caused by the intro-
duction of dense, highly-saline brine, that is excluded
from the ice matrix, to the top of the layer. Since the
water undergoes a phase change on freezing, the liquid
phase will not change temperature until the entire
body of water is frozen, with the exception of the
boundary layer at the top where some slight super-
cooling may occur. Near the freezing point the coeffi-
cient of thermal expansion of sea water is very small,
and thus any thermally produced buoyancy effects will
be very much smaller than haline effects produced by
sea ice formation and can be neglected.

We will assume that sea water can be treated as an
incompressible fluid with constant properties, except
for density as it affects the buoyancy (the Boussinesq
approximation). We further assume that the layer of
sea water is at the freezing point and remains isothermal
during the course of the process. The equation of state
is then quite accurately represented by

p=pd 14+7(S—So], )
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where p is the density, v the salinity coefficient of
volume expansion, .S the salinity, and the subscript zero
indicates the reference state. We will take for a length
scale the depth of the fluid layer %, for a time scale
/D where D is the kinematic form of the diffusivity
of salt in sea water, and for a salinity scale Fi/(pDy)
where F is the rate of salt flux into the fluid layer. We
will assume that the motions in the ocean can be repre-
sented to a first approximation by a two-dimensional
model in which there are no variations in the horizontal
y direction. It is convenient to divide the salinity S
into a horizontal mean S(z,$) and a fluctuating part
s(x,3,t), so that S=84s and §=0. Under these con-
ditions the continuity equation becomes

Ju Jdw
dx 0z

and the diffusion equation

928
+-—. 3)
9z

The Navier-Stokes equations can be manipulated to
yield

19792 o2 107 9 O\ /0u Odw
o 0t\9x? dz* g 9x\ Ox dz/\dz Odx

a2 9%\? 9%
(o) ek, @

dx® 9z ax?
where

o=v/D (5)
is the Schmidt number,
R =gFh*/(D*vp) (6)

is the Rayleigh number, g the acceleration of gravity,
and v the kinematic viscosity. We have taken z to be
vertically downward so that the top surface is at =0
and the bottom at z=1.

- We will assume that the horizontal boundary surfaces
at top and botiom are flat but incapable of supporting
tangential stresses; thus,

4w
w=——=0 at

" z=0, 1. N
3

These so-called “free boundary conditions’” are not
realistic but the errors introduced should be small
(Foster, 1968b) and the behavior of the system should
be correctly represented, at least qualitatively. It will
be assumed that the fluid is infinite in horizontal extent
and thus no boundary conditions will be imposed in
the horizontal direction. The net salt flux will be taken
as a constant value at the top and zero at the bottom;
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thus, the boundary conditions for the horizontal mean
salinity become
a8 aS
—=—latz=0, —=0atz=1.
0z 9z

@)

We now assume that the flow is periodic in the
horizontal direction and that this periodicity can be
represented by a single dimensionless horizontal wave-
number a. In this pseudo two-dimensional model the
nonlinear interactions affect only the mean salinity
field and the solution of the equations is greatly simpli-
fied. This simplification has been called the ‘‘mean
field approximation,” and has been used successfully
by Herring (1963) for the investigation of thermal
convection. The basic difficulty with this simplification
is that it does not provide a mechanism for the selection
of the horizontal wavenumber; however, in many
examples of hydrodynamic instability, such as thermal
convection or Couette flow, maximum growth rate has
provided a good criterion for the selection of the hori-
zontal wavenumber. In laboratory experiments on
haline convection induced by the freezing of sea water
(Foster, 1969) it was found that the disturbance which
is largest at onset of convection dominates the subse-
quent flow, a theoretical assumption (Foster, 1968a)
which provided a good prediction of the horizontal
wavenumber. We will therefore investigate distur-
bances with a range of wavenumbers and select the
wavenumber of the disturbance which has the largest
amplitude at some fixed time just before onset of con-
vection as the wavenumber for the convection that
actually develops. Onset of manifest convection in this
nonbinear model can be designated as the time when
the velocity disturbance starts to significantly interact
with the mean salinity field (i.e., when the convective
terms, #ds/dx and wds/ 0z, become of the same order
of magnitude as the rest of the terms in the diffusion
equation).

When the mean field approximation and the free
boundary conditions (7) are used, a very efficient means
for solving the equations is expansion of the variables
in Fourier series. Thus, to satisfy the boundary con-
ditions (7) we let

w=3,4,(t) sin(nwrz) cos(ax).

©)
Similarly, to satisfy the boundary conditions (8) we let
S=2,B,(t) cos(nwz)+ (322 —624+2)/6+1.  (10)

We also can let
s=Z.C. (1) sin(nnz) cos(ax). (11)

Substituting {9) into the continuity equation (2) we
can solve for # and obtain

u=—2,4.() (nx/a) cos(nnz) sin(ax).

(12)
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These expansions for w, S, s and u are substituted
into the diffusion equation (3). If we then multiply
(3) by sin(rmz) cos(ax) and integrate from x=0 to
x=2x/a and from z=0 to =1, we obtain

Crl (t> =2nA n(t)[anr_]nr‘i'szm(t)Jnmr]

=C () (rr*+a?), (13)
where
[dnr/m2(n2—r)2 [ (—1)tr—1], if nsr,
["’z{ 3, if n=r,
and

1 1 1 1
]nmr‘_‘[ - + '—"]
nt+mt+r ntm—r n—mtr n—m—r

(__1)n+m+r_1
]

If we multiply (3) by cos(rrz) and integrate from x=0

to x=2x/a and from z=0 to z=1, we obtain

B/ ()= ~Z.Zurur [ A ) Cor () FAn()Cr(t) 1K yimr
—w2B.(1), (14)

where

Knmr=|:

I

1 1 1 1 ]
—_ + 1
n+mtr wntm—r n—mt+r n—m—r

L]

We also substitute these expansions into the momentum
equation (4), multiply by sin(rrz) cos(ex), and inte-
grate from x=0 to x=2n/a and from 2=0 to s=1; thus

47 () =—0cd.() FPr*+a?)+oRa?C.(8)/ (FPri+a?). (15)

The expansions are then truncated to &N terms each.
Consequently we have 3N coupled ordinary differential
equations for the Fourler coefficients 4, (2), B,({) and
C.(t) which can be solved numerically as an initial
value problem using the Runge-Kutta-Gill fourth-
order method (Romanelli, 1960).

3. Results

The behavior of the theoretical model was investi-
gated by starting with an ischaline fluid, represented
by setting the B,(0)=2/(n*z?), and introducing a small
‘“‘white noise” wvelocity disturbance, represented by
setting the 4,(0)=10"". The initial salinity disturbance
was assumed to be negligible and therefore the C, (0) =0.
The subsequent development of the system was
followed by calculating the mean salinity and the
vertical velocity profiles at regular intervals of time.
The growth of the disturbances was monitored by
calculating an rms average of the vertical velocity
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F16. 3. Development of the rms vertical velocity for R=107,
o=10 at optimum wavenumber, a=13.

defined as

L

1 i
w*=<f w%iz) ,
0

where w* is similar to @ used in the linear theory
(Foster, 1968a), but is not normalized with respect to
the initial disturbance. A CDC 3600 computer was
used in all calculations. Computer memory limited the
number of terms in the Fourier series that could be
handled economically to 27 and thus accurate calcula-
tions could only be carried out for Rayleigh numbers up
to about 108.

In the ocean the primary diffusive transport mech-
anism is turbulent stirring. Thus, the present analysis
can be applied to the oceanic convection if the coeffi-
clents of viscosity and salt diffusion are considered to
be eddy exchange coefficients. On theoretical grounds
one would expect that the transport of momentum and
salt by turbulence would be of the same order of
magnitude; however, observations of the time and
space variations of salinity in the ocean have shown
that the transport of salt is probably slower then the
transport of momentum. Defant (1961) has estimated
that the effective Schmidt number for turbulent stirring
in the ocean is of the order of 5~20. We will, therefore,
investigate our system for Schmidt numbers of 1, 10
and 20 so as to cover the entire probable range for the
ocean.

Fig. 3 shows the development of w* for a Rayleigh
number of 107 and effective Schmidt number of 10 from
the quiescent initial state to a state of fully developed
convection. The oscillations in the intermediate stages
of development should be noted. A number of investi-
gators (e.g., Townsend, 1959) have observed oscillatory
behavior in convective systems at high Rayleigh

(16)

numbers. In the case of an infinite Schmidt number
fluid, which is nearly realized for sea water with
molecular coefficients, an analysis similar to the one
presented here (Foster, 1971) showed that the system
did not settle down to a steady state but continued to
exhibit oscillations for Rayleigh numbers 2 107. The
onset of truly intermittent convection is associated with
the instability of the salinity boundary layer at the
top of the fluid. For decreasing values of the Schmidt
number the critical horizontal wavenumber @, increases,
and thus the horizontal spacing of the convection cells
decreases. Therefore, for Schmidt numbers in the range
1-20 the salinity boundary layer will have a smaller
lateral extent in each cell and have less of a tendency
to flow off impulsively than in the case of a fluid with
infinite Schmidt number. Thus, fully intermittent con-
vection probably requires larger Rayleigh numbers for
Schmidt numbers between 1 and 20 than could be
investigated using the present technique. Extrapolation
of the results of calculations for Rayleigh numbers less
than 108 to larger numbers, therefore, entails some
uncertainty, but it is believed that the cell sizes and
velocities predicted in this way would not be greatly
in error, certainly by less than an order of magnitude.
Depending upon the depth of the isothermal layer and
the freezing rate, the Rayleigh number in the ocean
ranges from about 10° to 10, The present analysis thus
covers the lower part of the range directly and the
higher part indirectly by extrapolation.

Fig. 4 shows the mean salinity profile for R=107
and ¢ =10 at t=10"2, which is typical of the oscillatory
regime, and at £=4X10"2, which is typical of a state
of fully-developed convection. At t=10"2 a dense,
highly saline blob has just broken away from the top
boundary layer and can be seen about halfway down,
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This type of salinity profile is similar to those found
for fully intermittent convection (see Fig. 2, Foster,
1971) and is to be expected for high Rayleigh numbers
at any time. At {=4X10"% the salinity profile is
characterized by a quasi-steady state with a thin,
high salinity boundary layer at top and the bulk of the
fluid nearly isohaline. This type of profile is to be
expected at low Rayleigh numbers, less than about 10°.

Fig. 5 shows the variation of horizontal wavenumber
for optimum growth as a function of Rayleigh number
for Schmidt numbers of 1, 10, 20 and c. It is seen
that, as the Rayleigh number increases, the horizontal
wavenumber tends to increase as R*. Since the Rayleigh
number is a function of the depth of the fluid layer to
the fourth power and the wavenumber is made di-
mensionless by the depth, the 4 power dependence shows
that for large R the dimensional wavenumber and,
thus, cell spacing become independent of depth. The
same is true for the vertical velocity which shows a
R! dependence for large R. The time that is required
for manifest convection to set in, shows a —3% power
dependence on Rayleigh number. Since time is made
dimensionless by a factor containing depth to the
inverse square power, the R™* dependence shows that
the dimensional critical time is also independent of
depth at large R.

Since it is apparent that for large Rayleigh numbers,
greater than about 107, the convective system does
not depend upon the depth of the fluid layer, it is
useful to derive expressions for the dimensional hori-
zontal wavelength A, the dimensional maximum vertical
velocity in the quasi-steady state, Wmax, and the dimen-
sional time required for manifest convection to set in,
tc, which show this depth independence explicitly.
Thus

A=C1(D%p/gF)}, 17
Fwmax=C2(l)2gF/l’p)%y (18)
1o=Coop/ gF). (19)

The constants Ci1, C; and C3 depend upon the Schmidt
number as shown in the following table:

(2 Cl C2 C3

1 24 4.9 28
10 27 5.2 17
20 31 6.1 15
® 48 6.3 14

These formulae should allow estimation of the param-
eters of haline convection in the ocean. It should be
cautioned that the approximations used in deriving
these formulae may have introduced inaccuracies in
the numerical constants. The maximum vertical
velocities [(18)] and times required for manifest con-
vection to set in [ (19)] should be viewed as accurate
only in an order-of-magnitude sense. The horizontal
spacing of convection cells calculated using (17) is
most likely more accurate, the error probably being
less than a factor of 2.
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F16. 4. Mean salinity profiles for R=107, ¢=10, ¢=13 in the
oscillatory regime, {=0.01, and in the quasi-steady state,
$=0.04.

4. Application to the ocean

The foregoing analysis can be directly applied to
the ocean only where there is an isothermal layer that
is initially isohaline. These conditions are very nearly
met in the uppermost layer of the surface water in the
Weddell Sea in winter. Fig. 1 shows that the isothermal
layer is generally 100 m thick and that this layer is
also usually isohaline in the top 50-100 m. The theory

4 4 4 — 3 4
T —+ L + ¥
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PR S

Fi6. 5. Variation of horizontal wavenumber as a function of
Rayleigh number for various Schmidt numbers.
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can easily be extended to cases where the initial
salinity profile is not isohaline by changing the initial
conditions, i.e., by starting with different B, (0). The
theory for such cases would not be general and formulae,
such as (17)-(19), would have to be derived for each
unique set of initial conditions. The inclusion of cases
where the initial temperature profile is not isothermal
would involve a major revision to the theory, as then
the equation of state would involve two variables.

For a rough approximation let us assume that the
conditions observed in the polynya of Fig. 2 are typical
and that an average of 1 cm of ice forms in 1 hr. If the
sea ice has a salinity 30% less than the sea water from
which it forms, then for each cubic centimeter of sea
ice formed 0.027 gm salt will be introduced to the water
layer just beneath the ice. For the above average ice
growth rate the salt flux would thus be F=7X10"%
gm cm? sec’. Munk (1966), in agreement with other
investigators, estimated that the eddy diffusivity fcr
the deep ocean is on the order of 1 cm? sec™ . Since
the ice cover of polar regions would restrict surface
waves, the eddy exchange coefficients under the ice
sheet might be similar to the deep ocean. So for lack
of any measurements let us take the value 1 cm® sec™!
for both the viscosity and diffusivity; the Schmidt
number is thus unity. The horizontal cell spacing under
such conditions calculated using (17) is about 80 cm;
the maximum vertical velocity (18) is about 1.4 cm
sec!; and the time needed for the onset of manifest
convection (19) is about 5 min. Thus, since the hori-
zontal scale of the convective flow is less than 1 m,
we would expect that the conditions of horizontal
homogeneity we assumed would be attained for leads
wider than about 10 m. The present analysis should,
therefore, be applicable to most leads and polynyas.

In a previous theoretical paper on haline convection
(Foster, 1968a) it was speculated that a cascade, or
hierarchy, of larger and larger convection cells might
form due to successive instabilities. A tendency for
haline convection to exhibit a secondary instability
was observed during the course of laboratory experi-
ments (Foster, 1969). Previously, we could only guess
as to how the hierarchy of convective eddies developed
since only the case for infinite Schmidt number was
treated and velocities could not be determined as the
theory was linear. We can now use the present, more
general, nonlinear theory to make a better estimation
of the possible development of convective eddies. To
begin let us assume that a smooth ice sheet starts to
form on the sea surface as is regularly observed in open
leads and polynyas which are not greatly disturbed by
surface waves. The molecular coefficients of viscosity
and diffusivity are then appropriate. For sea water of
34%, salinity at the freezing point the kinematic
viscosity is about 2)X10~ cm? sec™?, and the diffusivity
about 7X107% cm? sec™!; this gives a Schmidt number
of about 3X10? which is for the present theory effec-
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tively infinite. If we use the same typical freezing rate
for a polynya as before, the salt flux is 7X10~% gm
cm~2 sec™!; the horizontal spacing of cells then becomes
about 0.2 cm, and the maximum vertical velocity about
0.01 cm sec™'. This convection would take about
20 sec to develop.

The laboratory experiments showed that haline con-
vection takes the form of long streamers or filaments,
which could be traced for more than 10 cm. In the
ocean, the limitation to the depth to which these
streamers could penetrate in a coherent manner is
determined by their diameter and the salt diffusivity.
The time required for the salt in the center of the
streamer to diffuse away significantly is on the order
N2/ (4D). Thus, for the above example, the streamers
would be coherent to a depth on the order of 10 cm.
We would expect that the convection would cease to
transport salt in a coherent cell-like structure to depths
much greater than this. The overall transport would
then again become diffusive but with turbulence pro-
viding random motion analogous to irregular molecular
motion. If we assume that the depth that the streamers
are coherent is the analog of the molecular mean free
path, a very rough estimate of the eddy exchange
coefficients is the product of this depth and the vertical
velocity of the streamers. Thus, for the example being
considered, we obtain eddy coefficients on the order of
0.2 cm? sec™™. Since the transport is now diffusive,
penetration would proceed like (Af)* where 4 is the
eddy coefficient. Thus, a new unstable salinity boundary
layer could be produced, though considerably thicker
than the one due to molecular diffusion. Using the
constants appropriate for a Schmidt number of unity
in Eqs. (17)-(19) we find that the secondary convection
would have a horizontal cell spacing of about 20 cm, a
maximum vertical velocity of about 0.9 cm sec™, and
would take about 2 min to develop after the primary
convection became fully developed (~153 min). The
difference in effectiveness as a transport mechanism
between organized convection and turbulent diffusion
can be seen from the above example. Turbulent dif-
fusion with an eddy coefficient of 0.2 cm? sec™* would
require about d%/4 =5X10* sec to penetrate a distance
d=1 m; while convection with a vertical velocity of
0.9 cm sec™ would require d/w= 10? sec to penetrate
the same distance, or more than two orders of mag-
nitude faster.

Tt seems very difficult to even speculate as to what
might be the next stage in the convective process. The
depth to which organized convection might penetrate
before turbulent diffusion would dissipate the streamers
would now be on the order of 6 m. The secondary
convection should generate eddy coefficients on the
order of 500 cm? sec™!. The tertiary convection would
then have a horizontal cell spacing of about 90 m, a
maximum vertical velocity of about 6 cm sec™ and
would take about 2 hr to develop. This tertiary con-
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vection could penetrate over 2 km before it would be
dissipated by diffusion. However, it is not at all clear
that the eddy coefficient would still be 0.2 cm? sec™ in
the fluid through which the streamers are falling except
in the top layer. Thus, it also seems possible that the
secondary convection might not take the form of
streamers, such as those that have been observed in
the primary convection, where the Schmidt number is
effectively infinite, but rather the convection might
occur in the form of intermittent blobs of dense, saline
fluid breaking away from the diffusive boundary layer
under the ice sheet. This seems to be the form that
turbulent convection takes in the atmosphere and is
usually given the name “thermals.” These dense saline
blobs, a kind of inverted thermals, might penetrate to
the bottom of the isohaline, isothermal layer under a
growing ice sheet. In this case a higher order instability
might not develop. Recent studies, however, of large-
scale convection in the Mediterranean (Stommel
et al., 1971) seem to indicate that the convection is
intermittent and takes place through a hierarchy of
scales. It seems obvious that further observations are
necessary in order to determine the form that the process
of haline convection takes in the ocean.

We can conclude that in polynyas and in most leads
the haline convection induced by the freezing of sea
water will take place by an instability of the salinity
boundary layer with horizontal scales generally less
thai a meter. If a hierarchy of convection scales
develops, horizontal scales larger than the width of
most leads may occur; in this case the horizontal
inhomogeneity at the ice boundary may become impor-
tant. In any case, haline convection would appear to
be an effective vertical transport mechanism and is
probably an important precursor to Antarctic Bottom
Water formation in the Weddell Sea.
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