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Abstract

Computing the order of the Jacobian of a hyperelliptic curve remains a hard problem. Itis
usually essential to calculate the order of the Jacobian to prevent certain sub-exponential
attacks on the cryptosystem. This paper reports on the viability of implementations of
various point-counting techniques. We also report on the scalability of the algorithms as
the fields grow larger.
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1 Introduction

In the late 1980s, Elliptic Curve Cryptography emerged as an alternative to finite-
field based Public Key Cryptosystems, such as RPAf EI-GamalB]. For ex-
ample, the EI-Gamal cryptosystem (as originally described) relies on the Discrete
Logarithm Problem over finite fields. A number of attacks called Index Calculus
Attacks[l] offered subexponential attacks against the Discrete Logarithm Problem
over finite fields, meaning that the field sizes had to be increased all the time to
maintain security levels. This led to slower encryption/decryption times, and in-
creased key-sizes.

The points on an elliptic curve form a group together with the "point addition”
group law. The Discrete Logarithm Problem is then defined using this group. The
Index Calculus Attacks mentioned previously do not apply to Elliptic Curves, due
to the difficulty in obtaining a factor base. This means that the group law of Elliptic

1 This author wishes to thank Enterprise Ireland for their support with this research under grant
IF/2002/0312/N
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Curve Cryptography is substantially faster than that of RpAds the defining field
Is a lot smaller. For example, it is reckoned that a 1024-bit RSA key is equivalent
In security terms to a 160-bit key for Elliptic Curved [

In recent years, people have begun to look at a richer source of groups than
Elliptic Curves, namely the Jacobian Variety of Hyperelliptic Curves. Researchers
began looking at Hyperelliptic Curve Cryptograpts} pecause the order of the
Jacobian of a Hyperelliptic Curve of geng®ver a field withg elements is~ ¢9.

This means that if you have an Elliptic Curve with a field sizey af 2!%°, then a
Hyperelliptic Curve of genus 2 and 3, can have field sZ8sand2°® respectively.
Smaller field sizes, lead to smaller power consumption, which is an advantage when
implementing Hyperelliptic Curve Cryptography on embedded devices, such as
smartcardgj].

Determining the group order is important for the security of the cryptosystem.
For example the order of the Jacobian must be divisible by a large prime to avoid
Shanks’ Baby-Step Giant-Step method and the Pohlig-Hellman mé&fhagipm-
puting the order of the Jacobian of a hyperelliptic curve remains a hard problem.
Gaudry presented a methdg] fo determine the group order for generic curves of
genus 2, which has a running time of about a week. This might be too slow for
researchers attempting to determine the security of a particular hyperelliptic curve
cryptosystem.

In this paper, we have implemented various point counting techniques for spe-
cific types of curves, or over specific fields. We have implemented two algorithms
over fields of characteristic 2, and four algorithms over prime fields. We detail these
algorithms, the running times of each algorithm, and comment upon their viability.
We also comment on the scalability of the algorithms as field sizes increase.

We focus on point counting algorithms for genus 2 curves in this paper, as they
seem to be less vulnerable to attack than genus 3 or 4 curves.

2 Brief Facts on Hyperelliptic Curves

A non-singular (imaginary quadratic) hyperelliptic cueof genusg over a field
I, is defined by an equation of the fornd! : v? + h(u)v = f(u), whereh, f €
k[u], f is monic, and the degree ¢f = 2g + 1, degh < g. Elliptic Curves are
Hyperelliptic Curves of genus 1, Hyperelliptic Curves exist from genus 1 to infinity.
For hyperelliptic curves of genys> 2, there is no natural group law @i K'), you
can’t "add” points like you do on an elliptic curve as the points on a hyperelliptic
curve don't form a group. A group law is defined via thecobian Variety of C
over a field, which is a finite abelian group.

The Jacobian of the curveC is the quotient group/ = D°/P, whereD" is
the set of Divisors of degree zero, and P is the set of divisors of rational functions.
The equivalence classes of the Jacobian are each represented by aruiigué
divisor upon which we perform the group law. The Hyperelliptic Curve DLP is
then: LetF, be a finite field withy elements. Given two divisor®, andD; in the
Jacobian, determine the integerc 7Z, such thatD, = mD;.
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Theorem 2.1 Let J. be the Jacobian variety of a hyperelliptic curve C. The group
of F, rational points on.J¢ is denoted by/«(F,). Letx,(t) be the characteristic
polynomial of the;-th power Frobenius endomorphism of C. Then the order of the
Jacobian is given byt Jo(F,) = x,(1).

The following inequality, which is known as thgasse-Weilbound, bounds
#JC(Fq>:

[(V(@) = 1)*] < #Je(F,) < [(V(0) +1)%)

Definition 2.2 Consider a hyperelliptic curve of the form? = f(z), where the
degree of thef(x) polynomial is 5 (ie. a genus 2 curve), and defined over a field
F, = IF,;, wherep is a prime number not equal to 2. The characteristic polynomial
of the Frobenius endomorphism of C is then;

Xq(t) =t — 81t + s9t® — siqt + %, 5, € Z, |s1] < 4\/Zq), |so| < 6q

Due to Theorem 2.1 and Definition 2.2, the order of the Jacobian is then given

by:
#Jo(Fy) = ¢* +1—s1(q+ 1) + 59,

s1 = 14+q— DM, so = (My—1—q*+s7)/2, where); is the number oF ;i-rational
points on the curve. This equation reduces the problem of finding the order of the
Jacobian, to that of determining the number of points on the curve over the base
field and quadratic extension field (for genus 2 curves). This method is impractical
in general over large prime fields.

The following inequality provides a bound s

[2/(q)]s1] — 2¢] < 52 < |3/4 + 2]

3 Point Counting methods for Fields of Characteristic 2

Here we detail the point counting methods for hyperelliptic curves over fields of
characteristic 2 that have been implemented for this paper.

3.1 Koblitz method

Koblitz described a method.{] of calculating the number of points on the Jaco-
bian of a hyperelliptic curve of genus 2 and of small characteristic, by using zeta
functions.

Theorem 3.1 Let C be a hyperelliptic curve of genus g defined ad¥grand let
Zc(t) be the zeta-function of C. LB}~ be the degreerextension oF,, and letN,,
denote the order of the finite abelian group(F,-). Denote by\,, the number of
IF,»-rational points on C. Then we have the following theorem;

: P(t)
Zo(t) =
! . O
whereP(t) is a polynomial of degree 2g with integer coefficients. Moreover,
P(t) has the form:
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Pt) =1+ ait + ... + ag1t9 ' + ayt9 + qag_1t9"" + ¢*a, o972 + .. +
qg—lathQ—l +qgt29

(i) P(t) factors as

g
Pt) =[]t - ait)(1 — ait),
i=1
where eachy; is a complex number of absolute valy@ and «; denotes the
complex conjugate af;.

(i) N, = #Jo(F,») satisfies

g
No=]]h -
=1

where|| denotes the usual complex absolute value.

In order to computeV,,, it suffices to calculate the coefficients, as, ..., a, of
P(t), factor P(t) thus determining the;, and computeV,, by the above formula.
An algorithm to determine the points on the Jacobian of a hyperelliptic curve of
genus 2 is therefore;

Algorithm 1 Koblitz method
INPUT: A hyperelliptic curve C, of genus 2 over the fi&ld.
OUTPUT:#Jc(F,n), the order of the Jacobian of the fiely-.

(i) By exhaustive search, computg and M,
(i) The coefficients of-(t) are given byja; = M; — 1 —qgandas = (Ms — 1 —
q¢* +af)/2.
(iii) Solve the quadratic equatio¥i?+a; X + (as—2¢) = 0 to obtain two solutions
A and \,.
(iv) Solve the quadratic equatiaki? — \; X + ¢ = 0 to obtain a solution;, and
solveX? — \, X + ¢ = 0 to obtain a solutionys.
(v) Then#Jo(Fypn) = |1 — af|? - |1 — a2
This method is only suitable for genus 2 curves, as it gets too difficult to cal-
culate the coefficients of the Zeta function fpr> 2. As one has to calculaté/,

andM,, the number of points on the curve o¥&randFF 2, for genus 2 curves, the
characteristic of the field should be small.

3.2 Sakai and Sakurai method

Sakai and Sakurai gave a point-counting methapifor curves of small character-
istic, but of arbitrary genus. Throughout this subsectibBrgjenotes an algebraic
function field of genus g whose constant field is the finite fi§Jdand P denotes
the set of places of / K.

Theorem 3.2 Let the polynomialL(t) = (1 — ¢)(1 — qt)Z(t) be called thel —
polynomial of the function fieldF'/F,, whereZ(t) denotes the zeta function of
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F/F,. Then the following holds;
() L(t) € Z[t] and degL(t) = 2g.
(i) L(t) = ¢*t*L(1/qt)
(i) L(1) = h, the class number df /F,.
(iv) We writeL(t) = Zfﬁo a;t*. Then the following holds;
(@) ap =1 anday, = ¢¢
(b) agg—; = ¢ *a; for0 <i < g.
() ay = N — (¢+ 1) where N is the number of placésc Pr of degree one.
(v) L(t) factors inC[t] in the formL(t) = %, (1 — a;t). The complex numbers
=1
aq, ..., (ip, are algebraic integers, and they can be arranged in such a way that
a0y = g holds fori =1, ..., g.

(vi) If L.(t) = (1—t)(1—q"t)Z,(t) denotes the L-polynomial of the constant field
expressiornF, = FF,., thenL,(t) = [[2%,(1 — ajt).

The order of the Jacobian of curves of small characteristic and of arbitrary genus
can thus be determined by the following algorithm;

Algorithm 2 Sakai and Sakurai method
INPUT: Hyperelliptic CurveC' : v? + h(u)v = f(u) over Fyn
OUTPUT: #Jc(Fyn)
(i) DeterminelN,, the number of points on the curve ogr forr =1, ..., g.
(i) Determine the coefficients af. (t) = Zfﬁo a;t" in the following way;
(a.) ag =1 4
(b) for1 <i<g:a;= (> (Nix — (" +1))a;x) /1.

(c) forg+1<i<2g:a;,=q 9ay_,.
(i) ComputeLy,, (1) = [,_, Lr,(¢*) , where( runs over the:-th root of unity
(iv) ReturngtJo(Fyn) = Lr . (1).
Note that it should be easy to couht, ..., N, if IF, is small, so this algorithm
is only suitable for fields of small characteristic.
3.3 Timings for Characteristic 2 Methods

Here we present timings for the cur@g : v? + v = u® + u® + u, overFy0 and
Co v+ (U2 +u+1)v =ud+u+ 1 overFyso

Curve | Koblitz Method (s)| Sakai Method (s
4 0.057 26.335
Cy 0.074 23.790

Clearly the Koblitz method is far superior to the Sakai and Sakurai method for
the two sample curves. The Koblitz method has the disadvantage though that it only
works for genus 2 curves, whereas the Sakai and Sakurai method extends easily to
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arbitrary genus curves.

To illustrate the importance of determining the group order for the security of
the cryptosystem, consider curgg above. This curve igot secure, as the order
of the Jacobian is:
#Jo, (Fyio1) = Tx607%1512768222413735255864403005264105839324374778520631
853993

The largest prime factor of.J c,)(Fz0r ) divides(2'91)* — 1, which makes it
vulnerable to the Frey-ick attackpQ].

4 Point Counting methods for Prime Fields

Here we detail the point counting methods for hyperelliptic curves over prime
fields, that have been implemented for this paper.

4.1 Hasse-Witt method

There is a methodP)] to calculate the order of the Jacobian over a prime field
using the Hasse-Witt matrifl], also known as the Cartier-Manin operator. The
following method only works for prime fields, not prime extension fields, and only
for a cryptographically-insecure prime (the algorithm is infeasible when p is greater
than around 100000).

Theorem 4.1 Theorem. Let y* = f(z) with deg f = 2g + 1 be the equation
of a genus g hyperelliptic curve. Letbe the coefficient of’ in the polynomial
f(2)P=Y/2_ Then the Hasse-Witt matrix is given Hy= (c;, ;)1<ij<y-

Lemma 4.2 Let ¢; be the coefficient of’ in f(z)®~1/2 as detailed in the above
theorem. Therefores; in the formula for#.J.(F,) given in section 2 is;s; =
Cp—1 + Cop—o (mod p) andsy = ¢,—1¢2p—2 + ¢p—2¢9p—1 (mod p).

Sincels;| < 4\/Zp), if p > 64 thens; is uniquely determined by the formula
in the above lemma. Also, there are at most 5 possibilitiesfodue to the bound
given in section 2. The algorithm is defined as follows;

Algorithm 3 Hasse-Witt Method
INPUT: A polynomialf(x) defined ovetf,, p a prime,64 < p < 100000, and

degf(x) = 5.
OUTPUT: #Jc(F,)

() Raise f(x) to the power @p — 1)/2.
(i) Extract the 4 coefficients,_;,1 <i,7 <g
(i) Puts; = ¢y + cop—2 (mod p)
(iv) Determine the 5 possible values S for
Sg — Cp_1C2p—2 + Cp_2C2p_1 (Mod p).
if 5o even: S— {sy +2mp | 2,/pls1| — 2p < so + 2mp < s7/4 + 2p},
else S— {sy + (2m + 1)p | 2/p|s1| —2p < so + (2m + 1)p < s7/4 + 2p}.
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(v) Determine the list L of candidates fgt.J-(F,);
L—{l1+p*—si(p+1)+sass€ S}

(vi) If #L = 1, then return the unique element of L,
else determinétJ-(IF,) by multiplying a random point D o (F,) by each
element of L.

It is difficult to calculates; (mod p) by this method, even whep = p , and
g = 2, which is why it is only suitable for smafl. Here is a set of timings for the
curveC : v? = u® + 3u over the prime field,

Prime FieldF, #Jo(F,) | Time (s)
10433| 110699362 1.822
20201, 414268018 4.125
40577| 1657567138  8.756

This method is too slow and consumes too many system resources! Notice that
the time to compute the order of the Jacobian roughly doubles when the prime
field doubles, which will lead to unacceptably long times as the prime reaches
cryptographic size. Seeing as tfigopolynomial of the curve is being raised to the
power of (p — 1)/2, this method will take up a very large amount of memory and
is infeasible for a large.

4.2 Furukawa, Kawazoe, Takahashi method

This is a point-counting method g] for curves of typeC : y?> = 2° + ax (hence

the curve is of genus 2), over a prime fidlg. p must be greater thaéd and
congruent tol mod 8. The jacobi symbola|p) must also be equal te1. Two
variants of this method exist, a recent pad]j femoved some of the steps in the
algorithm, and replaced them with an explicit formula. When the preconditions of
these algorithms are met, there is a fast way to evakjaeds, without having to
calculatef (x)»~1/2 as in the Hasse-Witt method.

Theorem 4.3 Let a be an element of,, C' a hyperelliptic curve defined by the
equationy® = x° + az and x,(t) the characteristic polynomial of theth power
Frobenius endomorphism of C.jdf= 1 (mod 8), thens, s, in x,(t) are given as
follows;

s = (_1)(p—1)/820(a3(p—1)/8 + CL(p—l)/S) (mod p)
so = 4c2a® /2 (mod p)
where c is an integer such that= ¢? + 2d?, ¢ = 1 (mod 4) andd € Z.
An algorithm to count points on the Jacobian of a curve of this special type is
as follows;
Algorithm 4 Furukawa Method (1)



O HEIGEARTAIGH

INPUT: a € F,, wherep = 1 (mod 8) andp > 64
OUTPUT: #.J¢(F,) (C: a hyperelliptic curve of genus 2 definedigy= 2° + ax).
(i) Calculate an integer c such that= ¢? +2d?, ¢ = 1 (mod 4), d € Z by using
Cornacchia’s algorithm.
(i) Determines;:
5« (—=1)P=1/82¢(g3P~D/8 1 qP=D/8) (mod p) (0<s<p—1)
If s < 4\/fp), thens; « s, elses; < s — p.
(i) Determine the list of candidates fos,;
t—4c2aP~V/2(modp) (O<t<(p—1)
if t even:S «— {t +2mp | 2,/p|s1| — 2p < t + 2mp < 57 /4 + 2p},
elseS — {t + (2m+ L)p | 2\/p|si| — 2p <t + (2m + 1)p < s3/4 + 2p}.
(iv) Determine the list L of candidates fe.J(F,);
L—{14+p*—si1(p+1)+sa|sy € S}
(V) If #L = 1, then return the unique element of L,
else determinet.J(F,) by multiplying a random poinb on J.(F,) by each
element of_.

The second variant does not need to calculatands,. Integersc andd are
calculated using Cornacchia’s algorithm as above, with the extra condition that
2d = —(a’ + a®*/)c (mod p), wheref = (p — 1)/8. The characteristic polynomial
of the p-th power Frobenius map for C is then given by;

x(t) = t* + (—1)74dt® + 8d°* + (—1) ddpt + p
and therefore;
|Jo(F,)| = 1+ (—1)74d + 8d* + (—1)74dp + p?

Here are a set of timings for the curvg : y?> = 2° + 32 over the field

IF1208925819614629175095961 ;

Curve | Furukawa 1 (s) Furukawa 2 (s
4 0.034 0.031

As can be seen, both variants of this method are extremely quick, but are very
specific in terms of the curve and the prime field. This possible disadvantage will
be discussed later on in this paper.

4.3 Koblitz method

Koblitz gave a solutionJQ] for curves of the formy? +y = 2", n = 2g + 1,
p = 1 mod n, that relies on evaluating jacobi sums. ket F, be a fixed nons-th
power (as we're dealing with genus 2 curvesyill be a fixed non-quintic-power).
There is a unique multiplicative maponIF; such thaty(«) = ¢.

Definition 4.4 Jacobi Sum:J,(x, x) = Zterr X(t)x(1—1)

Then#Jo(F,) = 1= 0:(J(x, x) + 1), wheres is an automorphism of the
8
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field Q(¢) such that;(¢) = ¢*. Evaluating the jacobi sum is very inefficient using
the formula given above, as it requires iterating through every element in the field,
which is obviously impractical for a large prime field.

4.3.1 Mersenne Primes

There is a quick wayl[(] of evaluating the jacobi sum if the primds a generalised
Mersenne Prime, ie. of the formp = % If «, the nonn-th power mentioned
earlier is chosen such that?~Y/" = 4 (mod p); the Jacobi Sum can then be
evaluated as;

T0ux) = ¢ Ja =070
=1
+¢* is chosen such that(y, x) = —1 (mod(¢ — 1)?) in the ring Z[¢] [17].

+¢* is uniquely determined by the value @fnod n. In the caser = 5, this root
of unity is given by;

amod5| O 2| 3| 4
+CF | ¢ | ¢t ¢ ¢

Here are timings for the cur@, : v? + v = au®, which is a twist of the curve
v? + v = u®, overfF,, using the Mersenne Prime Method;

Prime FieldF, a| Time (s)
100013000640014200121100003| 0.357

Clearly this method is very efficient. The order of the Jacobian of the above
curve and field is;

#Jo(F,) = 5 % 2000520059203862158324190070180683302981

4.3.2 LLL algorithm

If pis not a generalised Mersenne Prime, it is still possildo evaluate the jacobi
sum by using the LLLL6] algorithm. LLL is used to find a short vector in the lattice

in R"~! corresponding to the ideal generated d¥gj] by the two elementg and

(¢ — a), where the integet is ann-th root of unity modulop described earlier.

We leave out the theory in the following section for briefness, for a more complete
description of the algorithm se&§]. The prime idealP hasZ-basis;

{p7 C - CL,C2 — G2, “'7<n—2 - an—Z}

wherea;, = (a* mod p). The Gram matrix with respect to this basis is given by;

<p,p > (n —1)p?*
<p,CF—ap> —p — (n — 1)pay,

<Ck—ak,Cl—al> (5kln—1—|—ak—i—al—|—(n—1)akal

9
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whered,, = 1, if k£ = [, andd,; = 0 otherwise. Seeing as all the entries of
the Gram matrix are integral, we need to pass the Gram matrix through as input to
the integral LLL-algorithm, and a transformation matrix will be obtained as output.
To obtain the generatg? of P, we multiply the transformation matrix that LLL
outputs, with theZ-basis defined earlier.

We then setJ = []7_, o; 1(3). J is equal toJ(x, x) up to a root of unity, ie.
J(x,x) = r¢*J = —1 (mod(¢ — 1)?). This congruence can be easily solved by
findingr € {£1} suchthat = — ) a;( mod n), and thenfinding = ja; ( mod

An algorithm to find the order of the Jacobian for curves of this type is as
follows;

Algorithm 5 Koblitz Method
INPUT: C': v? + v = u” overF,, wherep = 1 (mod 5)
OUTPUT: #J¢(F,)

(i) Find an integer a such that»~"/5 = 4 (mod p), wherea is a fixed non-
quintic-power.
(i) Evaluate theéZ-basisb = (by, by, ba, b3).
(i) Construct a gram matrix G for th&-basisb.
(iv) Get a transformation matri¥ = (h,;) from the integral LLL algorithm for G
(v) Find the generator of the prime ideat,= Z?:o biho;
(vi) Evaluate] = [, o; '(3)
(vii) EvaluateJ(x,x) = r¢5J
(viiy Evaluate#Je(F,) = 17, o:(J(x, x) + 1)
Here are timings for the curng, : v? + v = v° overF,;

Prime FieldF, a| Time (s)
100013000640014200121 10000600009 0.3636
1000130006400142001211000090002700027 0.3727

Despite having to find a reduced basis using the LLL algorithm, this algorithm
compares well with the previous algorithm. Both the above methods can also cal-
culatetwists of the curve by nom:-th powers and by non-squares.

5 Commentary

As remarked earlier, Gaudry’s point-counting algoriti8hruns in about a week

for a genus 2 curve defined over an 80-bit field. Most of the algorithms detailed

in this paper are significantly faster than this; a researcher trying to determine the

security of a curve over a particular field might not want to wait a week to find out.
On the other hand, the efficient prime-field algorithms detailed in this paper are

10
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constrained to particular types of curves. It can be a bad idea in terms of security
to focus in on one particular class of curve. For example, it is now known that no
secure curve exists with genus 2 among those definediovemdh (u) = 1.

There is little difference between the running times of the Prime Field and
Fields of Characteristic 2 algorithms, both are fast. The characteristic 2 algorithms
though are restricted to curves defined dégrmot those oveF,.. New algorithms
[19] can handle curves ové. efficiently, there is a lot of ongoing research in this
area. However, many curves exist defined dsewhich have no known weakness.

As commented earlier, increased field size equates to increased security. Im-
proved attacks are an ongoing reality, leading to ever increasing field sizes being
used. For example, Gaudry recently presented an at@adn[genus 3 curves,
which means key sizes must be increased by 12% to maintain security levels. It
Is therefore important when assessing point-counting algorithms, that scalability in
terms of field size is taken into account. The algorithms presented in this paper
scale easily over bigger fields, with the obvious exception of the Hasse-Witt matrix
method.

6 Addendum

All timings were conducted on an 800mhz Duron processor with 756 megabytes
of ram, running Debian GNU/Linux, kernel 2.4.26. The code was written in C++,
using the MIRACL [L5] library. The code used for this paper is released under the
GNU General Public License, and is available at;
http://www.computing.dcu.ie/"coheigeartaigh/crypto.html
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