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Abstract

Computing the order of the Jacobian of a hyperelliptic curve remains a hard problem. It is
usually essential to calculate the order of the Jacobian to prevent certain sub-exponential
attacks on the cryptosystem. This paper reports on the viability of implementations of
various point-counting techniques. We also report on the scalability of the algorithms as
the fields grow larger.
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1 Introduction

In the late 1980s, Elliptic Curve Cryptography emerged as an alternative to finite-
field based Public Key Cryptosystems, such as RSA[2] or El-Gamal[3]. For ex-
ample, the El-Gamal cryptosystem (as originally described) relies on the Discrete
Logarithm Problem over finite fields. A number of attacks called Index Calculus
Attacks[1] offered subexponential attacks against the Discrete Logarithm Problem
over finite fields, meaning that the field sizes had to be increased all the time to
maintain security levels. This led to slower encryption/decryption times, and in-
creased key-sizes.

The points on an elliptic curve form a group together with the ”point addition”
group law. The Discrete Logarithm Problem is then defined using this group. The
Index Calculus Attacks mentioned previously do not apply to Elliptic Curves, due
to the difficulty in obtaining a factor base. This means that the group law of Elliptic
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Curve Cryptography is substantially faster than that of RSA[2], as the defining field
is a lot smaller. For example, it is reckoned that a 1024-bit RSA key is equivalent
in security terms to a 160-bit key for Elliptic Curves [4].

In recent years, people have begun to look at a richer source of groups than
Elliptic Curves, namely the Jacobian Variety of Hyperelliptic Curves. Researchers
began looking at Hyperelliptic Curve Cryptography [5] because the order of the
Jacobian of a Hyperelliptic Curve of genusg over a field withq elements is' qg.
This means that if you have an Elliptic Curve with a field size ofq ' 2160, then a
Hyperelliptic Curve of genus 2 and 3, can have field sizes280 and253 respectively.
Smaller field sizes, lead to smaller power consumption, which is an advantage when
implementing Hyperelliptic Curve Cryptography on embedded devices, such as
smartcards[6].

Determining the group order is important for the security of the cryptosystem.
For example the order of the Jacobian must be divisible by a large prime to avoid
Shanks’ Baby-Step Giant-Step method and the Pohlig-Hellman method[7]. Com-
puting the order of the Jacobian of a hyperelliptic curve remains a hard problem.
Gaudry presented a method [8] to determine the group order for generic curves of
genus 2, which has a running time of about a week. This might be too slow for
researchers attempting to determine the security of a particular hyperelliptic curve
cryptosystem.

In this paper, we have implemented various point counting techniques for spe-
cific types of curves, or over specific fields. We have implemented two algorithms
over fields of characteristic 2, and four algorithms over prime fields. We detail these
algorithms, the running times of each algorithm, and comment upon their viability.
We also comment on the scalability of the algorithms as field sizes increase.

We focus on point counting algorithms for genus 2 curves in this paper, as they
seem to be less vulnerable to attack than genus 3 or 4 curves.

2 Brief Facts on Hyperelliptic Curves

A non-singular (imaginary quadratic) hyperelliptic curveC of genusg over a field
Fk is defined by an equation of the form:C : v2 + h(u)v = f(u), whereh, f ∈
k[u], f is monic, and the degree off = 2g + 1, degh ≤ g. Elliptic Curves are
Hyperelliptic Curves of genus 1, Hyperelliptic Curves exist from genus 1 to infinity.
For hyperelliptic curves of genusg ≥ 2, there is no natural group law onC(K), you
can’t ”add” points like you do on an elliptic curve as the points on a hyperelliptic
curve don’t form a group. A group law is defined via theJacobian V ariety of C
over a field, which is a finite abelian group.

The Jacobian of the curveC is the quotient groupJ = D0/P , whereD0 is
the set of Divisors of degree zero, and P is the set of divisors of rational functions.
The equivalence classes of the Jacobian are each represented by a uniquereduced
divisor upon which we perform the group law. The Hyperelliptic Curve DLP is
then: LetFq be a finite field withq elements. Given two divisorsD1 andD2 in the
Jacobian, determine the integerm ∈ Z, such thatD2 = mD1.

2
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Theorem 2.1 LetJC be the Jacobian variety of a hyperelliptic curve C. The group
of Fq rational points onJC is denoted byJC(Fq). Let χq(t) be the characteristic
polynomial of theq-th power Frobenius endomorphism of C. Then the order of the
Jacobian is given by#JC(Fq) = χq(1).

The following inequality, which is known as theHasse-Weilbound, bounds
#JC(Fq):

d(
√

(q)− 1)2ge ≤ #JC(Fq) ≤ b(
√

(q) + 1)2gc
Definition 2.2 Consider a hyperelliptic curve of the form:y2 = f(x), where the
degree of thef(x) polynomial is 5 (ie. a genus 2 curve), and defined over a field
Fq = Fpl, wherep is a prime number not equal to 2. The characteristic polynomial
of the Frobenius endomorphism of C is then;

χq(t) = t4 − s1t
3 + s2t

2 − s1qt + q2, si ∈ Z, |s1| ≤ 4
√

(q), |s2| ≤ 6q

Due to Theorem 2.1 and Definition 2.2, the order of the Jacobian is then given
by:

#JC(Fq) = q2 + 1− s1(q + 1) + s2,

s1 = 1+q−M1, s2 = (M2−1−q2+s2
1)/2, whereMi is the number ofFqi-rational

points on the curve. This equation reduces the problem of finding the order of the
Jacobian, to that of determining the number of points on the curve over the base
field and quadratic extension field (for genus 2 curves). This method is impractical
in general over large prime fields.

The following inequality provides a bound ons2:

d2
√

(q)|s1| − 2qe ≤ s2 ≤ bs2
1/4 + 2qc

3 Point Counting methods for Fields of Characteristic 2

Here we detail the point counting methods for hyperelliptic curves over fields of
characteristic 2 that have been implemented for this paper.

3.1 Koblitz method

Koblitz described a method [10] of calculating the number of points on the Jaco-
bian of a hyperelliptic curve of genus 2 and of small characteristic, by using zeta
functions.

Theorem 3.1 Let C be a hyperelliptic curve of genus g defined overFq, and let
ZC(t) be the zeta-function of C. LetFqn be the degree-n extension ofFq, and letNn

denote the order of the finite abelian groupJC(Fqn). Denote byMn the number of
Fqn-rational points on C. Then we have the following theorem;

(i) ZC(t) =
P (t)

(1− t)(1− qt)
whereP (t) is a polynomial of degree 2g with integer coefficients. Moreover,

P (t) has the form:
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P (t) = 1 + a1t + ... + ag−1t
g−1 + agt

g + qag−1t
g+1 + q2ag−2t

g+2 + ... +
qg−1a1t

2g−1 + qgt2g

(ii) P (t) factors as

P (t) =

g∏
i=1

(1− αit)(1− ᾱit),

where eachαi is a complex number of absolute value
√

q and ᾱi denotes the
complex conjugate ofαi.

(iii) Nn = #JC(Fqn) satisfies

Nn =

g∏
i=1

|1− αn
i |2,

where|| denotes the usual complex absolute value.

In order to computeNn, it suffices to calculate the coefficientsa1, a2, ..., ag of
P (t), factorP (t) thus determining theαi, and computeNn by the above formula.
An algorithm to determine the points on the Jacobian of a hyperelliptic curve of
genus 2 is therefore;

Algorithm 1 Koblitz method
INPUT: A hyperelliptic curve C, of genus 2 over the fieldFqn .
OUTPUT:#JC(Fqn), the order of the Jacobian of the fieldFqn.

(i) By exhaustive search, computeM1 andM2

(ii) The coefficients ofZC(t) are given by;a1 = M1− 1− q anda2 = (M2− 1−
q2 + a2

1)/2.

(iii) Solve the quadratic equationX2+a1X+(a2−2q) = 0 to obtain two solutions
λ1 andλ2.

(iv) Solve the quadratic equationX2 − λ1X + q = 0 to obtain a solutionα1, and
solveX2 − λ2X + q = 0 to obtain a solutionα2.

(v) Then#JC(Fqn) = |1− αn
1 |2 · |1− αn

2 |2.
This method is only suitable for genus 2 curves, as it gets too difficult to cal-

culate the coefficients of the Zeta function forg > 2. As one has to calculateM1

andM2, the number of points on the curve overFq andFq2, for genus 2 curves, the
characteristic of the field should be small.

3.2 Sakai and Sakurai method

Sakai and Sakurai gave a point-counting method[11] for curves of small character-
istic, but of arbitrary genus. Throughout this subsection,F denotes an algebraic
function field of genus g whose constant field is the finite fieldFq andP denotes
the set of places ofF/K.

Theorem 3.2 Let the polynomialL(t) = (1 − t)(1 − qt)Z(t) be called theL −
polynomial of the function fieldF/Fq, whereZ(t) denotes the zeta function of
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F/Fq. Then the following holds;

(i) L(t) ∈ Z[t] and degL(t) = 2g.

(ii) L(t) = qgt2gL(1/qt)

(iii) L(1) = h, the class number ofF/Fq.

(iv) We writeL(t) =
∑2g

i=0 ait
i. Then the following holds;

(a) a0 = 1 anda2g = qg

(b) a2g−i = qg−iai for 0 ≤ i ≤ g.
(c) a1 = N − (q + 1) where N is the number of placesP ∈ PF of degree one.

(v) L(t) factors inC[t] in the formL(t) =
∏2g

i=1(1− αit). The complex numbers
α1, ..., α2g are algebraic integers, and they can be arranged in such a way that
αiαg+i = q holds fori = 1, ..., g.

(vi) If Lr(t) = (1− t)(1−qrt)Zr(t) denotes the L-polynomial of the constant field
expressionFr = FFqr , thenLr(t) =

∏2g
i=1(1− αr

i t).

The order of the Jacobian of curves of small characteristic and of arbitrary genus
can thus be determined by the following algorithm;

Algorithm 2 Sakai and Sakurai method
INPUT: Hyperelliptic CurveC : v2 + h(u)v = f(u) overFqn

OUTPUT:#JC(Fqn)

(i) DetermineNr, the number of points on the curve overFqr for r = 1, ..., g.

(ii) Determine the coefficients ofLFq(t) =
∑2g

i=0 ait
i in the following way;

(a) a0 = 1
(b) for 1 ≤ i ≤ g : ai = (

∑i
k=1(Nk − (qk + 1))ai−k)/i.

(c) for g + 1 ≤ i ≤ 2g : ai = qi−ga2g−i.

(iii) ComputeLFqn (1) =
∏n

k=1 LFq(ζ
k) , whereζ runs over then-th root of unity

(iv) Return#JC(Fqn) = LFqn (1).

Note that it should be easy to countN1, ..., Ng if Fq is small, so this algorithm
is only suitable for fields of small characteristic.

3.3 Timings for Characteristic 2 Methods

Here we present timings for the curveC1 : v2 + v = u5 + u3 + u, overF2101 and
C2 : v2 + (u2 + u + 1)v = u5 + u + 1 overF289

Curve Koblitz Method (s) Sakai Method (s)

C1 0.057 26.335

C2 0.074 23.790

Clearly the Koblitz method is far superior to the Sakai and Sakurai method for
the two sample curves. The Koblitz method has the disadvantage though that it only
works for genus 2 curves, whereas the Sakai and Sakurai method extends easily to
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Ó hÉigeartaigh

arbitrary genus curves.
To illustrate the importance of determining the group order for the security of

the cryptosystem, consider curveC1 above. This curve isnot secure, as the order
of the Jacobian is:
#JC1(F2101) = 7∗607∗1512768222413735255864403005264105839324374778520631
853993

The largest prime factor of#J(C1)(F2101) divides(2101)3 − 1 , which makes it
vulnerable to the Frey-R̈uck attack[20].

4 Point Counting methods for Prime Fields

Here we detail the point counting methods for hyperelliptic curves over prime
fields, that have been implemented for this paper.

4.1 Hasse-Witt method

There is a method[12] to calculate the order of the Jacobian over a prime field
using the Hasse-Witt matrix[14], also known as the Cartier-Manin operator. The
following method only works for prime fields, not prime extension fields, and only
for a cryptographically-insecure prime (the algorithm is infeasible when p is greater
than around 100000).

Theorem 4.1 Theorem. Let y2 = f(x) with deg f = 2g + 1 be the equation
of a genus g hyperelliptic curve. Letci be the coefficient ofxi in the polynomial
f(x)(p−1)/2. Then the Hasse-Witt matrix is given byA = (cip−j)1≤i,j≤g.

Lemma 4.2 Let ci be the coefficient ofxi in f(x)(p−1)/2 as detailed in the above
theorem. Therefore,si in the formula for#JC(Fq) given in section 2 is;s1 ≡
cp−1 + c2p−2 (mod p) ands2 ≡ cp−1c2p−2 + cp−2c2p−1 (mod p).

Since|s1| ≤ 4
√

(p), if p > 64 thens1 is uniquely determined by the formula
in the above lemma. Also, there are at most 5 possibilities fors2, due to the bound
given in section 2. The algorithm is defined as follows;

Algorithm 3 Hasse-Witt Method
INPUT: A polynomialf(x) defined overFp, p a prime,64 < p < 100000, and
degf(x) = 5.
OUTPUT:#JC(Fp)

(i) Raise f(x) to the power of(p− 1)/2.

(ii) Extract the 4 coefficientscip−j, 1 ≤ i, j ≤ g

(iii) Puts1 = cp−1 + c2p−2 (mod p)

(iv) Determine the 5 possible values S fors2;
s2 ← cp−1c2p−2 + cp−2c2p−1 (mod p).
if s2 even: S← {s2 + 2mp | 2√p|s1| − 2p ≤ s2 + 2mp ≤ s2

1/4 + 2p},
else S← {s2 + (2m + 1)p | 2√p|s1| − 2p ≤ s2 + (2m + 1)p ≤ s2

1/4 + 2p}.
6
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(v) Determine the list L of candidates for#JC(Fp);
L ← {1 + p2 − s1(p + 1) + s2| s2 ∈ S}.

(vi) If #L = 1, then return the unique element of L,
else determine#JC(Fp) by multiplying a random point D onJC(Fq) by each
element of L.

It is difficult to calculatesi (mod p) by this method, even whenq = p , and
g = 2, which is why it is only suitable for smallp. Here is a set of timings for the
curveC1 : v2 = u5 + 3u over the prime fieldFp

Prime FieldFp #JC(Fp) Time (s)

10433 110699362 1.822

20201 414268018 4.125

40577 1657567138 8.756

This method is too slow and consumes too many system resources! Notice that
the time to compute the order of the Jacobian roughly doubles when the prime
field doubles, which will lead to unacceptably long times as the prime reaches
cryptographic size. Seeing as thef polynomial of the curve is being raised to the
power of(p − 1)/2, this method will take up a very large amount of memory and
is infeasible for a largep.

4.2 Furukawa, Kawazoe, Takahashi method

This is a point-counting method [12] for curves of typeC : y2 = x5 + ax (hence
the curve is of genus 2), over a prime fieldFp. p must be greater than64 and
congruent to1 mod 8. The jacobi symbol(a|p) must also be equal to−1. Two
variants of this method exist, a recent paper [13] removed some of the steps in the
algorithm, and replaced them with an explicit formula. When the preconditions of
these algorithms are met, there is a fast way to evaluates1 ands2 without having to
calculatef(x)(p−1)/2 as in the Hasse-Witt method.

Theorem 4.3 Let a be an element ofFp, C a hyperelliptic curve defined by the
equationy2 = x5 + ax andχp(t) the characteristic polynomial of thep-th power
Frobenius endomorphism of C. Ifp ≡ 1 (mod 8), thens1, s2 in χp(t) are given as
follows;

s1≡ (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p)

s2≡ 4c2a(p−1)/2 (mod p)

where c is an integer such thatp = c2 + 2d2, c ≡ 1 (mod 4) andd ∈ Z.

An algorithm to count points on the Jacobian of a curve of this special type is
as follows;

Algorithm 4 Furukawa Method (1)

7
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INPUT: a ∈ Fp, wherep ≡ 1 (mod 8) andp > 64
OUTPUT:#JC(Fp) (C: a hyperelliptic curve of genus 2 defined byy2 = x5 + ax).

(i) Calculate an integer c such thatp = c2 +2d2, c ≡ 1 (mod 4), d ∈ Z by using
Cornacchia’s algorithm.

(ii) Determines1:
s ← (−1)(p−1)/82c(a3(p−1)/8 + a(p−1)/8) (mod p) (0 ≤ s ≤ p− 1)
If s < 4

√
(p), thens1 ← s, elses1 ← s− p.

(iii) Determine the listS of candidates fors2;
t ← 4c2a(p−1)/2 (mod p) (0 ≤ t ≤ (p− 1)
if t even:S ← {t + 2mp | 2√p|s1| − 2p ≤ t + 2mp ≤ s2

1/4 + 2p},
elseS ← {t + (2m + 1)p | 2√p|s1| − 2p ≤ t + (2m + 1)p ≤ s2

1/4 + 2p}.
(iv) Determine the list L of candidates for#JC(Fp);

L ← {1 + p2 − s1(p + 1) + s2|s2 ∈ S}.
(v) If #L = 1, then return the unique element of L,

else determine#JC(Fp) by multiplying a random pointD onJC(Fq) by each
element ofL.

The second variant does not need to calculates1 ands2. Integersc andd are
calculated using Cornacchia’s algorithm as above, with the extra condition that
2d ≡ −(af + a3f )c (mod p), wheref = (p− 1)/8. The characteristic polynomial
of the p-th power Frobenius map for C is then given by;

χ(t) = t4 + (−1)f4dt3 + 8d2t2 + (−1)f4dpt + p2

and therefore;

|JC(Fp)| = 1 + (−1)f4d + 8d2 + (−1)f4dp + p2

Here are a set of timings for the curveC1 : y2 = x5 + 3x over the field
F1208925819614629175095961;

Curve Furukawa 1 (s) Furukawa 2 (s)

C1 0.034 0.031

As can be seen, both variants of this method are extremely quick, but are very
specific in terms of the curve and the prime field. This possible disadvantage will
be discussed later on in this paper.

4.3 Koblitz method

Koblitz gave a solution [10] for curves of the formy2 + y = xn, n = 2g + 1,
p ≡ 1 mod n, that relies on evaluating jacobi sums. Letα ∈ Fp be a fixed non-n-th
power (as we’re dealing with genus 2 curves,α will be a fixed non-quintic-power).
There is a unique multiplicative mapχ onF∗p such thatχ(α) = ζ.

Definition 4.4 Jacobi Sum:Jr(χ, χ) =
∑

t∈Fpr
χ(t)χ(1− t)

Then#JC(Fp) =
∏n−1

i=1 σi(J(χ, χ) + 1), whereσ is an automorphism of the
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fieldQ(ζ) such thatσi(ζ) = ζ i. Evaluating the jacobi sum is very inefficient using
the formula given above, as it requires iterating through every element in the field,
which is obviously impractical for a large prime field.

4.3.1 Mersenne Primes
There is a quick way [10] of evaluating the jacobi sum if the primep is a generalised
Mersenne Prime, ie. of the formp = an−1

a−1
. If α, the non-n-th power mentioned

earlier is chosen such thatα(p−1)/n ≡ a (mod p); the Jacobi Sum can then be
evaluated as;

J(χ, χ) = ±ζk

g∏
i=1

(a− σ−1
i (ζ))

±ζk is chosen such thatJ(χ, χ) ≡ −1 (mod(ζ − 1)2) in the ringZ[ζ] [17].
±ζk is uniquely determined by the value ofa mod n. In the casen = 5, this root
of unity is given by;

a mod 5 0 2 3 4

±ζk −ζ −ζ4 ζ2 ζ3

Here are timings for the curveC1 : v2 + v = αu5, which is a twist of the curve
v2 + v = u5, overFp, using the Mersenne Prime Method;

Prime FieldFp a Time (s)

100013000640014200121100003 0.357

Clearly this method is very efficient. The order of the Jacobian of the above
curve and field is;

#JC(Fp) = 5 ∗ 2000520059203862158324190070180683302981

4.3.2 LLL algorithm
If p is not a generalised Mersenne Prime, it is still possible[18] to evaluate the jacobi
sum by using the LLL[16] algorithm. LLL is used to find a short vector in the lattice
in Rn−1 corresponding to the ideal generated overZ[ζ] by the two elementsp and
(ζ − a), where the integera is ann-th root of unity modulop described earlier.
We leave out the theory in the following section for briefness, for a more complete
description of the algorithm see [18]. The prime idealP hasZ-basis;

{p, ζ − a, ζ2 − a2, ..., ζ
n−2 − an−2}

whereak = (ak mod p). The Gram matrix with respect to this basis is given by;

< p, p > (n− 1)p2

< p, ζk − ak > −p− (n− 1)pak

< ζk − ak, ζ
l − al > δkln− 1 + ak + al + (n− 1)akal

9
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whereδkl = 1, if k = l, andδkl = 0 otherwise. Seeing as all the entries of
the Gram matrix are integral, we need to pass the Gram matrix through as input to
the integral LLL-algorithm, and a transformation matrix will be obtained as output.
To obtain the generatorβ of P , we multiply the transformation matrix that LLL
outputs, with theZ-basis defined earlier.

We then set;J̃ =
∏g

i=1 σ−1
i (β). J̃ is equal toJ(χ, χ) up to a root of unity, ie.

J(χ, χ) = rζsJ̃ ≡ −1 (mod(ζ − 1)2). This congruence can be easily solved by
findingr ∈ {±1} such thatr ≡ −∑

aj( mod n), and then findings ≡ r
∑

jaj ( mod
n).

An algorithm to find the order of the Jacobian for curves of this type is as
follows;

Algorithm 5 Koblitz Method
INPUT: C : v2 + v = u5 overFp, wherep ≡ 1 (mod 5)
OUTPUT:#JC(Fp)

(i) Find an integer a such thatα(p−1)/5 ≡ a (mod p), whereα is a fixed non-
quintic-power.

(ii) Evaluate theZ-basisb = (b0, b1, b2, b3).

(iii) Construct a gram matrix G for theZ-basisb.

(iv) Get a transformation matrixH = (hij) from the integral LLL algorithm for G

(v) Find the generator of the prime ideal,β =
∑3

i=0 bih0i

(vi) EvaluateJ̃ =
∏g

i=1 σ−1
i (β)

(vii) EvaluateJ(χ, χ) = rζsJ̃

(viii) Evaluate#JC(Fp) =
∏n−1

i=1 σi(J(χ, χ) + 1)

Here are timings for the curveC1 : v2 + v = u5 overFp;

Prime FieldFp a Time (s)

100013000640014200121 10000600009 0.3636

1000130006400142001211000090002700027 0.3727

Despite having to find a reduced basis using the LLL algorithm, this algorithm
compares well with the previous algorithm. Both the above methods can also cal-
culatetwists of the curve by non-n-th powers and by non-squares.

5 Commentary

As remarked earlier, Gaudry’s point-counting algorithm [8] runs in about a week
for a genus 2 curve defined over an 80-bit field. Most of the algorithms detailed
in this paper are significantly faster than this; a researcher trying to determine the
security of a curve over a particular field might not want to wait a week to find out.

On the other hand, the efficient prime-field algorithms detailed in this paper are
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constrained to particular types of curves. It can be a bad idea in terms of security
to focus in on one particular class of curve. For example, it is now known that no
secure curve exists with genus 2 among those defined overF2 andh(u) = 1.

There is little difference between the running times of the Prime Field and
Fields of Characteristic 2 algorithms, both are fast. The characteristic 2 algorithms
though are restricted to curves defined overF2, not those overF2n. New algorithms
[19] can handle curves overF2n efficiently, there is a lot of ongoing research in this
area. However, many curves exist defined overF2 which have no known weakness.

As commented earlier, increased field size equates to increased security. Im-
proved attacks are an ongoing reality, leading to ever increasing field sizes being
used. For example, Gaudry recently presented an attack [9] on genus 3 curves,
which means key sizes must be increased by 12% to maintain security levels. It
is therefore important when assessing point-counting algorithms, that scalability in
terms of field size is taken into account. The algorithms presented in this paper
scale easily over bigger fields, with the obvious exception of the Hasse-Witt matrix
method.

6 Addendum

All timings were conducted on an 800mhz Duron processor with 756 megabytes
of ram, running Debian GNU/Linux, kernel 2.4.26. The code was written in C++,
using the MIRACL [15] library. The code used for this paper is released under the
GNU General Public License, and is available at;
http://www.computing.dcu.ie/˜coheigeartaigh/crypto.html
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