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SUMMARY: The application of the basic hydrodynamical equations to globu-
lar clusters is reconsidered. As usually, these stellar systems are assumed to be
spherically symmetric and in a steady state with an isotropic velocity distribution.
A system of differential equations with four independent functions describing a
globular-cluster model is developed. The obtained results show that it is possible to
find a solution with two input empirical functions describing the spatial distribution
of stars and the variation of the mean mass of a single star.

1. INTRODUCTION

As well known, the globular clusters have been
usually considered as spherically symmetric, self-con-
sistent, stellar systems in a steady state. A global
isotropy in the velocity space has been also assumed
(e.g. Lightman and Shapiro, 1978). In such a case,
as well known, a usual approach has been to form
a model with three descriptive functions: density,
potential and pressure. In the case of existing of
an additional relation connecting the pressure with
the density the number of independent descriptive
functions is reduced to two. Since there are only
two equations (Euler’s and Poisson’s), it is possi-
ble to solve the system purely theoretically, i. e.
without introducing any function based empirically.
A good example is the well-known polytrope model
(e.g. Ogorodnikov, 1958 - p. 460).

However, the stellar statistics for globular clu-
sters has demonstrated that the spatial distribution
of stars within them does not agree with the poly-
trope models though in the beginning of this century
the Plummer-Schuster model (polytrope of index 5)

was usually assumed for globular clusters. Instead
of it a new empirical formula for description of stars
spatial distribution was offered (King, 1962). The
same author extended his concept including also the
velocity distribution (King, 1965, 1966) finally form-
ing in this way the well-known King model for glob-
ular clusters. In later years King’s formulae have
been often used in modelling both real and imagi-
nary globular clusters with some modifications, such
as: introducing the time varying of the King param-
eters, rotation of a globular cluster and small de-
viations from the spherical symmetry and velocity
isotropy, dividing the total star populations into sev-
eral subpopulations with different masses, etc. (e.g.
Pryor et al. 1986; Meylan and Mayor, 1986; Chernoff
et al. 1986; Meylan, 1988). In principle, the isotropy
in the velocity space has been practically always as-
sumed and the deviations have concerned only some
parts of a globular cluster (for example, the periph-
ery due to the tidal field). This assumption is based
on the fact that the globualr clusters (at least those
belonging to the Milky Way) are old enough to have
suffered a significant relaxation. However, another,
well-known and expected, consequence of the relaxa-
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tion is the mass segregation. In the existing models
this problem has been solved in some cases by intro-
ducing various mass classes, or several subpopula-
tions as said above, where stars within a given class
have the same velocity distribution (e.g. Davoust,
1977). However, it is clear that the mass distribu-
tion is a continuous function as it is the velocity one
so that, evidently, a mass-velocity correlation arises.
Something similar was applied in King’s (1965) paper
but seems to have been abandoned later on (King,
1966).

Bearing in mind such a state of the problem
the present author’s intention is to present his own
point of view where the crucial moment is the intro-
ducing of a generalised stellar distribution function
involving the mass as well. In such a case the set
of usual equations can be rewritten in a somewhat
different way where one can look for a solution. It
should be noted that some special phenomena, such
as the core collapse, the tidal forces, the deviations
from the spherical symmetry towards the more gen-
eral axial symmetry, etc, are not considered in the
present paper because their intensity is, nevertheless,
low.

2. EQUATIONS

The first step is to introduce a new distribu-
tion function (number density within phase space).
This function corresponds to a generalised phase spa-
ce involving the mass, as well. Therefore, the follow-
ing relations are valid – for the ordinary phase-space
density

Ψ =
∫

Ψmdm ,

for the number density within a mass interval (m,
m + dm)

Fm =
∫

Ψmd3V ;

the former integral is taken over the entire mass
space, the latter one over the entire velocity space.
Finally, the number density of stars (of all masses)
will be given as

n =
∫

Fmdm =
∫

Ψmd3V dm .

The idea of including the mass among the phase co-
ordinates is not a new one. It can be found, for exam-
ple, in von der Pahlen’s (1947 - p. 43-44) textbook.
Since throughout the rest of the present paper the
spherical symmetry and the isotropy in the velocity
space will be assumed, the dependence on the spa-
tial coordinates will be reduced to the radius (r) only
and the volume element in the velocity space will be
equal to 4πv2dv (v is the modulus of the residual
velocity, equal to the total velocity of a star with
respect to the cluster centre because the assumed
spherical symmetry implicates no centroid velocity).

The number of the independent descriptive
functions will be enlarged to four now because the
mean mass of a single star - m(r) - is no longer con-
stant. It is defined as

m =
∫ Fmmdm

n

and it is for obvious reasons equal to the ratio of the
mass density, ρ, (further on density) and the number
one, n. Therefore, as for the Poisson equation there
will be no changes. On the other hand the Euler one
will be transformed into the following form

ρ
dΠ
dr

=
1
3

d
dr

(n mv2) , (1)

where Π is the potential. The essence of the change is
in the appearance of the mean double kinetic energy
of a single star – mv2 – instead of the specific one
(per unit mass) because now there is the correlation
between the mass and velocity. In view of the Poisson
equation relation (1) becomes

−G

4π

dM(r)
dr

M(r)
r4

=
dn

dr

mv2

3
+

n

3
d(mv2)

dr
, (2)

where G is the universal gravitation constant and
M(r) is the cluster mass within the radius r.

As seen, in equation (2) there are three un-
known functions of r. This is not surprising with
regard that the model description is performed with
four independent functions and there are only two
equations. Clearly, the possibilities are either to in-
troduce additional equations or to assume suitable
(say, of empirical origin) forms for two functions from
this set. This problematics will be discussed in more
details in the next section.

3. SOME EXAMPLES

In this section some examples concerning equ-
ation (2) are given assumning some particular forms
for two arbitrary functions of the given set.

Example No 1: the potential follows the Plu-
mmer-Schuster law, i. e.

Π =
GM

(r2 + b2)1/2
, M = const , b = const .

As well known, then for the density is valid

ρ ∝ (r2 + b2)−5/2

yielding for the pressure

p ∝ (r2 + b2)−3 .

With regard that the pressure is equal to

p =
1
3
n mv2 ,

10



one can look for various solutions concerning n and
mv2. For example any solution of the type mv2 =
const is not acceptable because it yields an increas-
ing function of the radius for m. The classical case,
treated in the polytrope theory corresponds to a con-
stant mean mass of a single star. Of course, mo-
notonously decreasing functions of the type m ∝
(r2 + b2)−q/2, where q > 0, are also possible and,
as easy to see, they yield mv2 ∝ (r2 + b2)−(q+1)/2.

Example No 2: the density is given as

ρ = ρ(0)(1 + x2)−1 , x =
r

rc
, rc = const .

As easy to see, the corresponding expression for the
mass inside an arbitrary radius r will be

M(r) = 4πρ(0)r3
c (x − arctanx) .

Among the various possibilities it will be considered
mv2 = const. It yields

n = C − 12πG
ρ2(0)rc

2

mv2
(
1
2
arc2tanx +

arctanx

x
) ,

C = const

This solution yields a decreasing function m.
Example No 3: ρ ∝ r−2 (the classical isother-

mal distribution).
This time nothing new is obtained, i. e. both m and
mv2 are constant.

Example No 4: the density follows a power
law, i. e. ρ ∝ r−3/2.
(As easy to see, M(r) will follow also a power law,
but the exponent is equal to +3/2. If the mean dou-
ble kinetic energy of a single star were constant, the
number density would follow a power law (r−1), as
well as the mean mass of a single star, however with
a different exponent (r−1/2).

All these examples indicate that it is possible
to obtain physically based solutions. They all offer
analytical solutions, but this is due to their simplicity
which, on the other hand, appears as a significant
limitation to their applicability to real globular star
clusters. Thus in order to obtain a better fit to the
real situation, models using numerical solutions seem
inevitable.

4. DISCUSSION AND CONCLUSIONS

In the present author’s opinion the basic ad-
vantage of the procedure proposed above is in intro-
ducing a generalised distribution function adding the
mass to the usual phase coordinates (components of
radius and velocity vectors). The reason is, firstly,
that the star distribution is a continuous mass func-
tion and, secondly, that the number of coordinates

in such a generalised phase space, on which the gen-
eralised distribution function in this case depends, is
only three due to the assumptions of spherical sym-
metry and velocity isotropy. Therefore, any com-
plication arising in connexion with the phase-space
generalisation is small compared to those appearing
in the case of many functions describing the distribu-
tion in the velocity space (also in the ordinary one)
for different mass classes when one attempts to ex-
plain the mass distribution (basically continuous) by
applying discontinuity approximmations.

It may be concluded that in the process of
solving equation (1) (more precisely the system for-
med by it and the Poisson equation) the best way,
if achieving of a reasonable fit to the observations
is required, is to use some empirical functions as
the input ones. No doubt, the best known empir-
ical function used in the case of globular clusters
is that describing the spatial distribution, proposed
by King (1962, formula (27)). Though nominally
used for representing the spatial mass density, it is
not clear whether it, in fact, yields the mass den-
sity or the number density because as an empirical
formula it was obtained by interpreting star counts.
On the other hand, due to the observational selec-
tion the information based on star counts is severely
restricted for some categories of star masses. For ex-
ample, very low-mass stars are always problematic
because of their low luminosities. In the case of glob-
ular clusters (at least when those of the Milky Way
are concerned) very massive stars are also problem-
atic because their evolution was finished long ago by
converting them into dark bodies. Therefore, obtain-
ing of a reliable information concerning the variation
of the mean mass of a single star with radius within
a globular cluster is connected with difficulties.

On the other hand, a suitable approach may
be to use two functions of the King type (formula
(27) or (14) - King, 1962) with different rc parame-
ters where one of them represents the number den-
sity and the other one the mass one (as for the other
two parameters of formulae (14) and (27) of King’s
paper, K must be different because ρ and n have
different dimensions, whereas rt should be equal be-
cause both densities are expected to vanish at the
same distance). The ratio of rc parameters for the
two densities would correspond to the dependence of
the mean mass of a single star on the radius.

However, it should be aware of a disadvantage,
from the mathematical point of view, concerning the
application of King’s formula. Namely, it yields no
analytical solution for the potential (Poisson’s equa-
tion). Hence any solving of the equation system ((1)
+ Poisson) with input functions of the King type
should be numerical.
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MODEL ZA ZBIJENA ZVEZDANA JATA SA PROMENǈIVOM SREDǋOM
MASOM JEDNE ZVEZDE

S. Ninkovi�

Astronomska opservatorija, Volgina 7, 11000 Beograd, Jugoslavija

UDK 524.47
Originalni nauqni rad

Primena osnovnih hidrodinamiqkih je-
dnaqina na zbijena zvezdana jata je ponovo ra-
zmotrena. Kao i obiqno, za ove zvezdane si-
steme se usvajaju sferna simetrija, staciona-
rno staǌe i izotropna raspodela brzina. Ra-
zvijen je jedan sistem diferencijalnih jedna-

qina sa qetiri nezavisne funkcije koji opisu-
je model jednog zbijenog zvezdanog jata. Do-
bijeni rezultati pokazuju da je mogu�e na�i
rexeǌe sa dve ulazne empirijske funkcije koje
opisuju prostornu raspodelu zvezda i promenu
sredǌe mase jedne zvezde.
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