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Abstract

Pointcheval and Stern introduced in 1996 some forking lemmas useful to prove
the security of a family of digital signature schemes. This family includes, for
example, Schnorr's scheme and a modi�cation of ElGamal signature scheme.

In this work we generalize these forking lemmas to the ring signatures' scenario.
In a ring signature scheme, a signer in a subset (or ring) of potential signers pro-
duces a signature of a message in such a way that the receiver can verify that the
signature comes from a member of the ring, but cannot know which member has
actually signed.

We propose a new ring signature scheme, based on Schnorr signature scheme,
which provides unconditional anonymity. We use the generalized forking lemmas to
prove that this scheme is existentially unforgeable under adaptive chosen-message
attacks, in the random oracle model.

1 Introduction

Group-oriented cryptography deals with those situations in which a secret task (sign-
ing or decrypting) is performed by a group of entities or on behalf of such a group.
Threshold cryptography is an approach to this situation. In a threshold scheme, some
participants have shares of the unique secret key of the group. Participation of some
determined subset of players is required to perform the corresponding secret task in a
correct way.

Two related but di�erent approaches are ring signatures and group signatures. In a
ring signature scheme, an entity signs a message on behalf of a set (or ring) of members
that includes himself. The veri�er of the signature is convinced that it was produced by
some member of the ring, but he does not obtain any information about which member
of the ring actually signed. The real signer includes in the signature the identities of
the members of the ring that he chooses, depending on his purposes, and probably
without their consent.

The idea behind group signature schemes is very similar to that of ring signatures,
but with some variations. First of all, there exists a group manager in charge of the
join and revocation of the members in the group. Therefore, a user cannot modify the
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composition of the group. And second, some mechanisms are added in order to allow
(only) the group manager to recover the real identity of the signer of a message, for
example in the case of a legal dispute. So group signatures are an appropriate tool
when members of the group have agreed to cooperate.

Although the formalization and the name of ring signatures schemes have been
recently given in [19], �rst proposals of such schemes can be found in [9, 10, 6]. Fur-
thermore, some eÆcient proposals of group signature schemes [8, 7, 2] are constructed
using as a basis the ring signature scheme that appears in De�nition 2 of [6], by adding
the necessary elements to achieve revocability of the anonymity on the part of the group
manager.

Analogously to individual signature schemes, the highest proposed level of security
exigible to ring signature schemes as well as group signature schemes is existential
unforgeability under adaptive chosen-message attacks. The recent proposals of ring
signature schemes in [19, 5] reach this level of computational security, based on the
hardness of the RSA problem, in the random oracle model [3].

In this paper, we extend to the ring signatures' scenario the forking lemmas intro-
duced in [17] to prove the security of the Schnorr signature scheme. We propose a new
ring signature scheme based on Schnorr signature scheme [20] which provides uncon-
ditional anonymity. We use the extended forking lemmas to prove that this scheme is
existentially unforgeable under adaptive chosen-message attacks, in the random oracle
model, assuming the hardness of the discrete logarithm problem in subgroups of prime
order.

A di�erent but related approach to ring signature schemes for discrete-log settings
can be found in [1]. They consider a scenario in which the discrete-log parameters of
each participant are di�erent. The resulting scheme is less eÆcient than ours. However,
they also propose a scheme for the particular case where the public parameters of all
the participants are equal, which is more eÆcient than our scheme. The security of
this last scheme is not explicitly proved, although the authors asserts that this can be
done using reduction techniques similar to those that we use here (i.e. extending to the
ring's scenario the techniques appeared in [17, 16] for individual signature schemes).

The paper is organized as follows. In Section 2, we explain the general characteristics
of a ring signature scheme, and the security properties that such a scheme must satisfy.
In Section 3 we extend to the ring signatures' scenario some techniques introduced by
Pointcheval and Stern in [17]. In Section 4 we propose our new ring signature scheme
and prove its security (unconditional anonymity and existential unforgeability under
adaptive chosen-message attacks). We compare this scheme with the previous proposals
of ring signature schemes in Section 5. Finally, we sum up the work in Section 6.

2 Ring Signatures

Following the formalization about ring signatures proposed in [19], we explain in this
section the basic de�nitions and the properties exigible to ring signature schemes, al-
though not rigorously.
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Each potential user Ai generates his pair of secret/public keys (ski; pki) by using a
key generation protocol that takes as input a security parameter. The public keys of
all the users are certi�ed via a public key infrastructure.

A regular operation of a ring signature scheme consists of the execution of the two
following algorithms:

Ring-sign: if a user As wants to compute a ring signature on behalf of a ring
A1; : : : ; An that contains himself, he executes this probabilistic algorithm with input a
message m, the public keys pk1; : : : ; pkn of the ring and his secret key sks. The output
of this algorithm is a ring signature � for the message m.

Ring-verify: this is a deterministic algorithm that takes as input a message m and
a ring signature �, that includes the public keys of all the members of the corresponding
ring, and outputs \True" if the ring signature is valid, or \False" otherwise.

The resulting ring signature scheme must satisfy the following properties:

Correctness: a ring signature generated in a correct way must be accepted by any
veri�er with overwhelming probability.

Anonymity: any veri�er should not have probability greater than 1=n to guess
the identity of the real signer who has computed a ring signature on behalf of a ring
of n members. If the veri�er is a member of the ring distinct from the actual signer,
then his probability to guess the identity of the real signer should not have greater than
1=(n� 1).

Unforgeability: among all the proposed de�nitions of unforgeability (see [14]), we
consider the strongest one: any attacker must not have non-negligible probability of
success in forging a valid ring signature for some message m on behalf of a ring that
does not contain him, even if he knows valid ring signatures for messages, di�erent from
m, that he can adaptively choose.

The �rst proposals of ring signature schemes are previous to the formal de�nition
of this concept. They can be found in [9, 6] and they are used as a tool to construct
group signature schemes. They use zero-knowledge proofs and witness indistinguishable
proofs of knowledge for disjunctive statements (introduced in [10, 11]).

In [19], Rivest, Shamir and Tauman formalize the concept of ring signature schemes,
and propose a scheme which they prove existentially unforgeable under adaptive chosen-
message attacks, in the ideal cipher model, assuming the hardness of the RSA problem
[18]. This scheme also uses a symmetric encryption scheme and the notion of combining
functions.

Bresson, Stern and Szydlo show in [5] that the scheme in [19] can be modi�ed in
such a way that the new scheme can be proved to achieve the same level of security, but
under the strictly weaker assumption of the random oracle model. Furthermore, they
propose a threshold ring signature scheme, in which a set of t users sign a message on
behalf of a ring that contains themselves, in such a way that the veri�er is convinced of
the participation of t users in the generation of the signature, but he does not obtain
any information about which t users have in fact signed the message.
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Finally, in [1], Abe, Ohkubo and Suzuki give general constructions of ring signature
schemes for a variety of scenarios, including those where signature schemes are based
on one-way functions, and those where signature schemes are of the three-move type
(for example, Schnorr's signature scheme).

3 Forking Lemmas for Generic Ring Signatures

In this section we prove some lemmas that we will use later to demonstrate the security
of our proposal for a Schnorr ring signature scheme.

In [17], Pointcheval and Stern prove the security of a class of signature schemes,
that they call generic, which includes Schnorr [20] and a modi�cation of ElGamal [12]
schemes. They introduce the forking lemmas, which are based on a reduction technique
that they call oracle replay attack.

Our goal is to extend all these results to the ring signatures' scenario.

3.1 Generic Ring Signature Schemes

We de�ne a class of ring signature schemes that we call also generic, and for which the
results in this section are valid. Consider a security parameter k, a hash function which
outputs k-bit long elements, and a ring A1; : : : ; An of n members. Given the input mes-
sage m, a generic ring signature scheme produces a tuple (m;R1; : : : ; Rn; h1; : : : ; hn; �),
where R1; : : : ; Rn (randomness) take their values randomly in a large set G in such a
way that Ri 6= Rj for all i 6= j, hi is the hash value of (m;Ri), for 1 � i � n, and the
value � is fully determined by R1; : : : ; Rr; h1; : : : ; hn and the message m.

Another required condition is that no Ri can appear with probability greater than
2=2k, where k is the security parameter. This condition can be achieved by choosing
the set G as large as necessary.

The security proofs of this paper are valid in the random oracle model [3], in which
a cryptographic hash function is supposed to behave as a random and hidden function
that outputs values independently of the input (the only restriction is that equal inputs
must produce equal outputs). In the framework that we consider, the outputs of the
random oracle will be k-bit long elements.

The basic idea of the forking lemmas in [17] and in the ring forking lemmas that
we are going to introduce is the following: assuming that an attacker can forge a
generic ring signature, another attacker could obtain, by replaying enough times the
�rst attacker with randomly chosen hash functions (i.e. random oracles), two forged
ring signatures of the same message and with the same randomness. Then, these two
forged signatures could be used to solve some computational problem which is assumed
to be intractable. In this way, the corresponding ring signature scheme is proved to be
existentially unforgeable under no-message attacks. Some precautions must be taken
in order to achieve unforgeability under chosen-message attacks, which is the standard
level of security that a signature scheme can achieve (see [14]).
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3.2 No-Message Attacks

The following lemma is a generalization of Lemma 1 in [17] to the ring signatures'
scenario.

Lemma 1. Let �ring be a generic ring signature scheme with security parameter k,
and let n be the number of members of the corresponding ring. Let the forger A be a

probabilistic polynomial time Turing machine whose input only consists of public data

and which can ask Q queries to the random oracle, with Q � n. We denote as VQ;n the

number of n-permutations of Q elements, that is, VQ;n = Q(Q�1) � : : : �(Q�n+1). We

assume that, within time bound T , A produces, with probability of success " �
7 VQ;n
2k

,

a valid ring signature (m;R1; : : : ; Rn; h1; : : : ; hn; �). Then, within time T 0 �
16VQ;nT

" ,

and with probability "0 � 1
9 , a replay of this machine outputs two valid ring signatures

(m;R1; : : : ; Rn; h1; : : : ; hn; �) and (m;R1; : : : ; Rn; h
0
1; : : : ; h

0
n; �

0) such that hj 6= h0j, for
some j 2 f1; : : : ; ng and hi = h0i for all i = 1; : : : ; n such that i 6= j.

Proof. The Turing machine A, with random tape !, can ask Q queries to the random
oracle f . We denote by Q1; : : : ;QQ the Q distinct questions and by � = (�1; : : : ; �Q)
the list of the Q answers of the random oracle f . So we can see a random choice of the
random oracle f as a random choice of such a vector �.

Now, for a random choice of (!; f) and with probability ", the machine A outputs
a valid ring signature (m;R1; : : : ; Rn; h1; : : : ; hn; �). Since f is a random oracle and
its outputs are k-bit long elements, the probability that there exists some index i such
that A has not asked the query (m;Ri) to the random oracle, is less than n=2k, and
so negligible. We can assume therefore that A has asked all the queries (m;Ri) to the
oracle, for 1 � i � n, and so we have that Q � n is necessary.

With probability at least " � n
2k
, the machine A is successful in forging a ring

signature (m;R1; : : : ; Rn; h1; : : : ; hn; �) and besides it has asked to the random oracle
all the queries (m;Ri), for i = 1; : : : ; n. In this case, for all index i there exists an
integer `i 2 f1; 2; : : : ; Qg such that the query Q`i is precisely (m;Ri). Then, we de�ne
L(!; f) = (`1; `2; : : : ; `n) and �(!; f) = maxf`i j (`1; `2; : : : ; `n) = L(!; f)g. Note that,
since the forged ring signature is a valid generic one, we have that all the Ri's are
di�erent, and so the integers `i are also all di�erent.

In the unlikely case where A has not asked some of the pairs (m;Ri) to the random
oracle, then we say that `i =1, and so �(!; f) =1. Now we de�ne the sets

S = f(!; f) j A(!; f) succeeds and �(!; f) 6=1g ,

S~̀ = f(!; f) j A(!; f) succeeds and L(!; f) = ~̀g ,

for all the vectors ~̀ 2 Ln = f(`1; `2; : : : ; `n) j 1 � `i � Q and `i 6= `j 8i 6= jg. Note
that the cardinality of this set Ln is the number of n-permutations of Q elements, that
is, VQ;n = Q(Q� 1) � : : : � (Q� n+1). Furthermore, the set fS~̀ j ~̀ 2 Lng is a partition
of S. The pairs (!; f) in the set S are called the successful pairs. We can �nd the lower
bound � = Pr[S] � "� n

2k
� 6"

7 .
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Let I be the set formed by the most likely vectors, I = f~̀ 2 Ln j Pr[S~̀ j S] �
1

2VQ;n
g.

Probabilities are taken over the random choice of (!; f). The following lemma asserts
that, in case of success, the corresponding vector of indexes lies in I with probability
at least 1

2 .

Lemma 2. Pr[L(!; f) 2 I j S] � 1
2 .

Proof. Since the sets S~̀ are disjoint, we have that Pr[L(!; f) 2 I j S] =
P

~̀2I
Pr[S~̀ j S].

This probability is equal to 1 �
P

~̀=2I
Pr[S~̀ j S]. Since the complement of I contains

fewer than VQ;n vectors, this probability is at least 1 � VQ;n �
1

2VQ;n
= 1

2 .

The following lemma will be used in the same way as Pointcheval and Stern do (see
[17] for the proof):

Lemma 3. (The Splitting Lemma) Let A � X � Y such that Pr [(x; y) 2 A] � �. For

any � < �, de�ne

B = f(x; y) 2 X � Y j Pr
y02Y

�
(x; y0) 2 A

�
� �� �g

then the following statements hold:

1. Pr [B] � �.

2. for any (x; y) 2 B, Pry02Y [(x; y0) 2 A] � �� �.

3. Pr [BjA] � �=�.

Now we run 2=" times the attacker A with random ! and random f . Since � =
Pr[S] � 6"

7 , with probability greater than 1� (1� 6"=7)2=" � 1� e�12=7 � 4
5 , we get at

least one pair (!; f) in S.
For each vector ~̀ 2 I, if we denote by �~̀ the maximum of the coordinates of ~̀, we

can apply the Splitting Lemma (Lemma 3). Following the notation of this lemma,
and if we see the oracle f as a random vector (�1; : : : ; �Q), then A = S~̀, X =
f(!; �1; : : : ; �(�~̀ �1))g!;f and Y = f(��~̀; : : : ; �Q)gf . We also refer to (�1; : : : ; �(��1))
as f�, the restriction of f to queries of index strictly less than �. Since Pr[S~̀] =
Pr[S] � Pr[S~̀ j S] �

�
2VQ;n

, we take � = �
2VQ;n

and � = �
4VQ;n

, and the Splitting Lemma

proves that there exists a subset 
~̀ of executions (!; f) such that, for any (!; f) 2 
~̀,

Pr
f 0
[(!; f 0) 2 S~̀ j f�~̀ = f 0�~̀] �

�

4VQ;n
(1)

and Pr[
~̀ j S~̀] �
1

2

Using again that the sets S~̀ are all disjoint, we have that

Pr
!;f

[9~̀2 I s.t. (!; f) 2 
~̀\ S~̀ j S] = Pr

�[
~̀2I

(
~̀ \ S~̀) j S

�
=
X
~̀2I

Pr[
~̀\ S~̀ j S] =
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=
X
~̀2I

Pr[
~̀ j S~̀] � Pr[S~̀ j S] �

�X
~̀2I

Pr[S~̀ j S]

�
=2 �

1

4
:

For simplicity, we denote by ~̀ the vector L(!; f) corresponding to the successful
pair (!; f) obtained in the �rst 2=" repetitions of the attack A with probability at least
4=5, and by � the corresponding index �(!; f). As we have seen, with probability at
least 1=4, we have that ~̀ 2 I and (!; f) 2 
~̀\ S~̀. Therefore, with probability greater
than 1=5, the 2=" repetitions of the attack have provided a successful pair (!; f), with
~̀= L(!; f) 2 I and (!; f) 2 
~̀\ S~̀.

If now we replay the attack, with �xed random tape ! but randomly chosen oracle
f 0 such that f 0� = f�, we can use inequality (1) and thus we obtain that

Pr
f 0
[(!; f 0) 2 S~̀ and �� 6= �0� j f

0
� = f�] � Pr

f 0
[(!; f 0) 2 S~̀ j f

0
� = f�]� Pr

f 0
[�� = �0� ] �

�
�

4VQ;n
�

1

2k
�

"

14VQ;n
;

where �� = f(Q�) and �0� = f 0(Q�). If we now replay the attack 14VQ;n=" times with
�xed ! and random oracle f 0 such that f 0� = f�, we will get another success (or forking)
(!; f 0) 2 S~̀ with probability greater than 3=5.

Summing up, after less than 2
" +

14VQ;n

" �
16VQ;n

" executions of the machine A,
and with probability greater than 1

5 �
3
5 � 1

9 , we obtain two valid ring signatures
(m;R1; : : : ; Rn; h1; : : : ; hn; �) and (m;R0

1; : : : ; R
0
n; h

0
1; : : : ; h

0
n; �

0) from two executions of
A with the same random tape ! (that is, with the same randomness R1 = R0

1; : : : ; Rn =
R0
n), but with two di�erent random oracles f and f 0, that we can see as two di�erent vec-

tors � = (�1; : : : ; �Q) = (f(Q1); : : : ; f(QQ)) and �
0 = (�01; : : : ; �

0
Q) = (f 0(Q1); : : : ; f

0(QQ)).
These two oracles verify, furthermore, that �t = �0t, for all t = 1; : : : ; ��1, and �� 6= �0�,
where � is the index �(!; f) corresponding to the �rst successful forgery performed by
A.

Therefore, if we denote as j the index such that (m;Rj) was the query Q�, then
we have that hj = f(Q�) 6= f 0(Q�) = h0j . However, the rest of pairs (m;Ri), for
i = 1; : : : ; n, i 6= j, have been asked before the query Q�, and so the values obtained
from the oracles f and f 0 have been the same. That is, hi = h0i, for all i = 1; : : : ; n
with i 6= j.

Theorem 1. (The No-Message Ring Forking Lemma). Let �ring be a generic ring

signature scheme with security parameter k, and let n be the number of members of the

corresponding ring. Let the forger A be a probabilistic polynomial time Turing machine

whose input only consists of public data. We denote by Q the number of queries that A
can ask to the random oracle. Assume that, within time bound T , A produces, with prob-

ability of success " �
7 VQ;n
2k

, a valid ring signature (m;R1; : : : ; Rn; h1; : : : ; hn; �). Then
there is another probabilistic polynomial time Turing machine which uses A and pro-

duces two valid ring signatures (m;R1; : : : ; Rn; h1; : : : ; hn; �) and (m;R1; : : : ; Rn; h
0
1; : : : ; h

0
n; �

0)
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such that hj 6= h0j, for some j 2 f1; : : : ; ng and hi = h0i for all i = 1; : : : ; n such that

i 6= j, in expected time T 0 �
84480TVQ;n

" .

Proof. The idea is to construct a speci�c expected polynomial time Turing machine
B that uses the Turing machine A as a sub-routine in order to obtain two valid ring
signatures of the same message and with the desired properties (same randomness and
all the hi's but one equal). And then we must calculate the expectation of the random
variable that counts the number of times that the machine A is invoked by B. The
design of B and the computation of this expectation can be performed exactly in the
same way as in [17], changing their valueQ by our value VQ;n. The resulting expectation
is less than 84480VQ;n=". If T is a time bound for the machine A, then a time bound

for the machine B will be
84480TVQ;n

" .

3.3 Chosen-Message Attacks

Now we consider another kind of attacks against a ring signature scheme, the chosen-
message attacks. They are the strongest ones usually considered, so if a ring signature
scheme is proved to be unforgeable against them, then we can say that the scheme
achieves the standard level of security.

In a chosen-message attack, an adversary is given the public data of the scheme
(including the members of the ring and their public keys). Then he can ask to some
real signers of the ring for valid ring signatures of a polynomial number of messages
of his choice. A same message can be asked more than once, and the choice of the
messages is adaptive, in the sense that the attacker can adapt his queries according to
previous message-signature pairs.

If the attacker obtains, after this interaction with the signers, with non-negligible
probability and in polynomial time a valid ring signature on a message that has not
been previously signed by the real signers, then we say that the attack is successful, or
that the ring signature scheme is existentially forgeable under chosen-message attacks.

If we want to prove the security of a ring signature scheme in the random oracle
model, then the considered attacker will be able to ask a polynomial number of queries
to the random oracle model, too.

The following theorem is a variation of Theorem 1 considering chosen-message at-
tacks. It can also be seen as an adaptation of Theorem 3 in [17] to the ring signatures'
scenario.

Theorem 2. (The Chosen-Message Ring Forking Lemma). Let �ring be a generic ring

signature scheme with security parameter k, and let n be the number of members of the

corresponding ring. Let A be a probabilistic polynomial time Turing machine whose in-

put only consists of public data. We denote by Q and W the number of queries that A
can ask to the random oracle and to some real signers of the ring, respectively. Assume

that, within time bound T , A produces, with probability of success " �
12 VQ;n+6(Q+Wn)2

2k
,

a valid ring signature (m;R1; : : : ; Rn; h1; : : : ; hn; �). Suppose that valid ring signatures

can be simulated with an indistinguishable distribution of probability, with time bound Ts
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and without knowing any of the secret keys of the ring. Then there is another probabilis-

tic polynomial time Turing machine which has control over the machine obtained from

A by replacing interactions with the real signers by simulation, and which produces two

valid ring signatures (m;R1; : : : ; Rn; h1; : : : ; hn; �) and (m;R1; : : : ; Rn; h
0
1; : : : ; h

0
n; �

0)
such that hj 6= h0j, for some j 2 f1; : : : ; ng and hi = h0i for all i = 1; : : : ; n such that

i 6= j, in expected time T 0 �
144823VQ;n(T+WTs)

" .

Proof. We consider a machine B that executes the machine A, in such a way that B
simulates all the environment of A. Therefore, B must simulate the interactions of
A with the random oracle and with real signers. Then we could see B as a machine
performing a no-message attack against the ring signature scheme.

We denote by Q1; : : : ;QQ the Q distinct queries of A to the random oracle, and
by m(1); : : : ;m(W ) the W queries (possibly repeated) to the real signers. Using the
simulator, B can simulate the answers of the real ring of signers without knowing
any of the secret keys of the ring. For a message m(j), the simulator answers a tu-

ple (m(j); R
(j)
1 ; : : : ; R

(j)
n ; h

(j)
1 ; : : : ; h

(j)
n ; �(j)). Then B constructs a random oracle f by

storing in a \random oracle list" the relations f(m(j); R
(j)
i ) = h

(j)
i . The attacker A re-

ceives this signature, assumes that f(m(j); R
(j)
i ) = h

(j)
i , where f is the random oracle,

for all 1 � i � n and 1 � j � W , and stores all these relations. When A makes a
query Qt = (m;R) to the random oracle, B looks for the value (m;R) in the random
oracle list. If the value is already in the list, then B returns to A the corresponding
f(m;R). Otherwise, B chooses a random value h, sends it to A and stores the relation
f(m;R) = h in the list.

There is some risk of \collisions" of queries to the random oracle. In the de�nition
of generic ring signature schemes, we made the assumption that no Ri can appear
with probability greater than 2=2k in a ring signature. If the simulator outputs ring
signatures which are indistinguishable of the ones produced by a real signer of the ring,

then we have that no R
(j)
i can appear with probability greater than 2=2k in a simulated

ring signature, too. Since the values h
(j)
i are the outputs of the random oracle, then

we have that a determined h
(j)
i appears in a ring signature (real or simulated) with

probability less than 1=2k.
Then, three kinds of collisions can occur:

� A pair (m(j); R
(j)
i ) that the simulator outputs, as part of a simulated ring signa-

ture, has been asked before to the random oracle by the attacker. In this case,

it is quite unlikely that the relation f(m(j); R
(j)
i ) = h

(j)
i corresponding to the

values output by the simulator coincides with the relation previously stored in
the random oracle list. The probability of such a collision is, however, less than
Q � nW � 2

2k
� "

6 .

� A pair (m(j1); R
(j1)
i1

) that the simulator outputs, as part of a simulated ring signa-

ture, is exactly equal to another pair (m(j2); R
(j2)
i2

) also output by the simulator.

The probability of this collision is less than (nW )2

2 � 2
2k
� "

6 .
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� Two answers h1 and h2 of the random oracle chosen at random by B are exactly
equal, while the two corresponding inputs (m(1); R1) and (m(2); R2) are di�erent.

The probability of such an event is less than (Q+nW )2

2 � 1
2k
� "

12 .

Altogether, the probability of collisions is less than 5"=12. Now we can compute:

Pr
(!;f)

[B succeeds] = Pr
(!;f)

[no-collisions in the simulations and A succeeds] �

� Pr
(!;f)

[A succeeds j no-collisions in the simulations ]� Pr
(!;f)

[collisions in the simulations]

� "�
5"

12
=

7"

12
:

Summing up, we have a machine B that performs a no-message attack against
the ring signature scheme with time bound T +WTs and with probability of success
greater than 7"

12 �
7VQ;n
2k

. So we can use Theorem 1 applied to the machine B, and we

will obtain two valid ring signatures in expected time bounded by
84480(T+WTs)VQ;n

7"=12 �
144823VQ;n(T+WTs)

" .

In the next section we show an example of how these extended forking lemmas can
be applied to prove the security of a speci�c ring signature scheme. In fact, we think
that the these Ring Forking Lemmas are of independent interest, because they could
be useful to prove the security of future ring signature schemes.

4 Schnorr Ring Signature Scheme

In this section we present a ring signature scheme based on Schnorr signature scheme
[20]. The proposed scheme is unconditionally anonymous, and it achieves the highest
level of computational security, in the random oracle model. Namely, we prove that an
existential forgery of our scheme under an adaptive chosen-message attack is equivalent
to solving the discrete logarithm problem in subgroups of prime order.

4.1 Schnorr Signature Scheme

Let p and q be large primes such that qjp � 1 and q � 2k, where k is the security
parameter of the scheme. Let g be an element of Z�p with order q, and let H() be a
collision resistant hash function which outputs elements in Zq.

A signer has a private key x 2 Z�q and the corresponding public key y = gx mod p.
To sign a message m, the signer:

1. Chooses a random a 2 Z�q.

2. Computes R = gamod p and � = a+ xH(m;R) mod q.

3. De�nes the signature on m to be the pair (R; �).

10



The validity of the signature is veri�ed by the recipient by checking that g� =
RyH(m;R)mod p.

In [17], Pointcheval and Stern proved that, in the random oracle model, an existen-
tial forgery under an adaptive chosen-message attack of Schnorr's scheme is equivalent
to solving the discrete logarithm problem in the subgroup < g > generated by the
element g. The input of this problem is a tuple (p; q; g; y) such that y 2 < g >, where
g is an element of order q in Zp, and q is a prime that divides p � 1 (where p is also
a prime number). The solution of the problem is the only element x 2 Zq such that
y = gxmod p. The discrete logarithm problem in subgroups of prime order is supposed
to be computationally intractable.

4.2 The Proposed Scheme

As in the Schnorr signature scheme, let p and q be large primes with qjp� 1 and such
that q � 2k, where k is the security parameter of the scheme. Let g be a generator of a
multiplicative subgroup of Z�

p with order q and H() a collision resistant hash function
that outputs elements in Zq.

Consider a set, or ring, of potential signers A1; : : : ; An. Every potential signer Ai

has a private key xi 2 Z
�
q and the corresponding public key yi = gxi mod p.

Ring-sign: to sign a message m on behalf of the ring A1; : : : ; An, a signer As,
where s 2 f1; : : : ; ng, acts as follows:

1. For all i 2 f1; : : : ; ng, i 6= s, choose ai at random in Z�q, pairwise di�erent.
Compute Ri = gai mod p, for all i 6= s.

2. Choose a random a 2 Zq.

3. Compute Rs = ga
Q
i6=s

y
�H(m;Ri)
i mod p. If Rs = 1 or Rs = Ri for some i 6= s, then

go to step 2.

4. Compute � = a+
P
i6=s

ai + xsH(m;Rs) mod q.

5. De�ne the signature of the message m made by the ring A1; : : : ; An to be
(m;R1; : : : ; Rn; h1; : : : ; hn; �), where hi = H(m;Ri), for all 1 � i � n.

Ring-verify: the validity of the signature is veri�ed by the recipient of the message
by checking that hi = H(m;Ri) and that

g� = R1 � : : : �Rn � y
h1
1 � : : : � yhnn mod p:

The property of correctness is satis�ed. In e�ect, if the ring signature has been
correctly generated, then the veri�cation result is always \True":

R1 � : : : � Rn � y
h1
1 � : : : � yhnn = gayhss

Y
i6=s

Ri = ga+xshs+
P

i6=s ai = g� mod p:

11



4.3 Anonymity of the Scheme

In order to prove that our ring signature scheme is unconditionally anonymous, it
is enough to prove that any ring signature produced with the method described in
Section 4.2 could have been computed by any of the n members of the ring with the
same probability.

Let Sig = (m;R1; : : : ; Rn; h1; : : : ; hn; �) a valid ring signature of a message m. That
is, hi = H(m;Ri) and g

� = R1 � : : : �Rn � y
h1
1 � : : : � yhnn . Let As be a member of the ring.

We now �nd the probability that As computes exactly the ring signature Sig, when he
produces a ring signature of message m by following the method explained in Section
4.2.

The probability that As computes the correct Ri 6= 1 of Sig, pairwise di�erent for
1 � i � n, i 6= s, is 1

q�1 �
1

q�2 � : : : �
1

q�n+1 . Then, the probability that As chooses exactly
the only value a 2 Zq that leads to the value Rs of Sig, among all possible values for
Rs di�erent to 1 and di�erent to all Ri with i 6= s, is 1

q�n .
Summing up, the probability that As generates exactly the ring signature Sig is

1

q � 1
�

1

q � 2
� : : : �

1

q � n+ 1
�

1

q � n
=

1

Vq�1;n

and this probability does not depend on As, so it is the same for all the members of
the ring. This fact proves the unconditional anonymity of the scheme.

4.4 Unforgeability of the Scheme

Proposition 1. The ring signatures produced by the scheme proposed in Section 4.2

can be simulated in polynomial time, without knowing any of the secret keys of the ring,
and with distribution of probability indistinguishable of ring signatures produced by a

legitimate signer, in the random oracle model.

Proof. The simulation of a Schnorr ring signature for a message m goes as follows:

1. Choose at random an index s 2 f1; : : : ; ng.

2. For all i 2 f1; : : : ; ng, i 6= s, choose ai at random in Z�q, pairwise di�erent.
Compute Ri = gai mod p, for all i 6= s.

3. Choose at random h1; h2; : : : ; hn, pairwise di�erent in Zq.

4. Choose at random � 2 Zq.

5. Compute Rs = g��
P

i6=s aiy�h11 : : : y�hnn . If Rs = 1 or Rs = Ri for some i 6= s,
then go to step 4.

6. Return the tuple (m;R1; : : : ; Rn; h1; : : : ; hn; �).

12



It is easy to see that this simulation runs in polynomial time. We denote by Ts the
time bound for an execution of each simulation. Note that, if we assume H(m;Ri) = hi
(we are in the random oracle model), for all i 2 f1; : : : ; ng, then the returned tuple is
a valid Schnorr ring signature of the message m.

The distribution corresponding to ring signatures generated by using the protocol
explained in Section 4.2, and the distribution corresponding to ring signatures simulated
with the method explained in this section can be proved to be statistically indistinguish-
able, and so polynomially indistinguishable, as desired (the complete proof will appear
in the extended version of this paper).

Now we prove the existential unforgeability of our proposed ring signature scheme
under adaptive chosen-message attacks. The proof is valid in the random oracle model,
and the security of the scheme is reduced to the intractability of the discrete logarithm
problem in subgroups of prime order.

Theorem 3. Let A be a probabilistic polynomial time Turing machine which obtains

an existential forgery of the Schnorr ring signature scheme presented in Section 4.2,

within a time bound T and under an adaptive chosen-message attack, with probability

of success ". Let n be the number of members of the ring. We denote respectively by Q
and W the number of queries that A can ask to the random oracle and to the signing

oracle. Assuming that " �
12 VQ;n+6(Q+Wn)2

2k
(otherwise, " would be negligible), then

the discrete logarithm problem in subgroups of prime order can be solved within expected

time less than
144823VQ;n(T+WTs)

" .

Proof. Let (p; q; g; y) the input of an instance of the discrete logarithm problem in the
subgroup < g > of Zp of order q, where q is a prime that divides p� 1.

We choose at random �i 2 Z
�
q pairwise di�erent, for 1 � i � n, and de�ne yi =

y�i mod p. Then we initialize the attacker A with a ring of membersA1; : : : ; An and cor-
responding public keys y1; : : : ; yn. Since our Schnorr ring signature scheme can be sim-
ulated, we can apply Theorem 2, and so we can obtain from a replay of attacker A two
valid ring signatures (m;R1; : : : ; Rn; h1; : : : ; hn; �) and (m;R1; : : : ; Rn; h

0
1; : : : ; h

0
n; �

0)
such that hj 6= h0j , for some j 2 f1; : : : ; ng and hi = h0i for all i = 1; : : : ; n such that
i 6= j. Then we have that

g� = R1 � : : : � Rn � y
h1
1 � : : : � y

hj
j � : : : � yhnn

g�
0

= R1 � : : : �Rn � y
h01
1 � : : : � y

h0j
j � : : : � yh

0
n

n

Dividing these two equations, we obtain that g���
0
= y

hj�h0j
j = y�j(hj�h

0
j), and so

we have that

y = g
���0

�j (hj�h
0
j
) mod p:

Therefore, we have found the discrete logarithm of y in base g, which is logg y =

(� � �0)��1j (hj � h0j)
�1 mod q.
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5 Comparing Ring Signature Schemes

The ring signature scheme proposed in Section 4 runs in a discrete-log scenario in which
there are some public parameters (the primes p and q, and the element g) common to all
the entities involved in the scheme. This fact also happens in some previous proposals
of ring and group signature schemes [6, 8, 7, 2] de�ned in a discrete-log setting. In
[1], the authors propose ring signature schemes (for di�erent scenarios) that avoid this
problem, allowing each entity of the scheme to have di�erent public parameters. The
proposals in [19, 5] for an RSA scenario also enjoy this property.

All the ring signature schemes in the discrete-log scenario require in the generation
of a ring signature a linear number of exponentiations with respect to the size of the ring
of possible signers. The general proposal in [1] produces ring signatures shorter than
the ones produced by our scheme. However, the O(n) exponentiations (in the signature
generation as well as in the veri�cation) of their scheme depend on the previous ones,
and so cannot be computed in a parallel way, as it happens in our scheme.

The authors of [1] also propose a more eÆcient scheme for the particular case
in which the discrete-log parameters are common to all the entities. This scheme is
more eÆcient than ours, in terms of the length of the signatures and the number of
exponentiations, which can be parallelized in their scheme, too. No explicit proof of
the security of this particular scheme is given in [1], although the authors remark that
this security could be proved extending to the ring signatures' scenario (supposedly in
a similar way as we have done in this work) the techniques introduced in [17, 16] in the
context of individual signatures.

The signature scheme in De�nition 2 of [6] can be seen as a Schnorr ring signature
scheme, too. It derives from the witness indistinguishable proofs of knowledge intro-
duced in [10, 11]. But this fact does not ensure, to the best of our knowledge, that the
resulting ring scheme would be existentially unforgeable under chosen-message attacks
(similarly to what happens in the case of individual Schnorr's scheme). Therefore, an
explicit and rigorous proof of security for this ring signature scheme would be desirable.
We suppose that the idea is to extend to the ring's scenario the results of [16], as we
have done in this work with the results of [17]. Anyway, this ring signature scheme is
less eÆcient than our scheme, because the resulting signatures are longer, and twice
the amount of exponentiations is needed in the veri�cation of a ring signature.

The proposals for an RSA scenario [19, 5, 1] are in some way more eÆcient because
the ring signature generation protocol requires only one modular exponentiation, and
the veri�cation protocol requires no modular exponentiations. However, this is true only
if the public RSA keys ei of all the entities Ai are very small numbers (for example,
ei = 3 for all Ai).

Finally, in [5] the authors propose a threshold ring signature scheme. In such a
scheme, t entities take part in the generation of the ring signature for a certain ring
containing these t entities. The veri�er of the signature must be convinced that t
di�erent entities of the ring took part in the generation of the signature, but must have
no information about which t users actually signed the message.

As it has been pointed out in [4], the ring signature scheme in De�nition 2 of [6],
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as well as all the group signature schemes [6, 8, 7, 2], which are based on it, can
be extended to enable generation of threshold ring/group signatures. How to do this
extension in the case of our scheme or the schemes proposed in [1] remains as an open
problem.

6 Conclusions

We have proposed a new ring signature scheme for the discrete-log setting, which we
have proved to be unconditionally anonymous and existentially unforgeable, in the
random oracle model, under adaptive chosen-message attacks, assuming the hardness
of the discrete logarithm problem in subgroups of prime order. For proving these results,
we have extended to the ring signatures' scenario some security lemmas introduced by
Pointcheval and Stern in [17] to prove the security of some generic signature schemes.

The forking lemmas in [17] can be applied in any signature scheme obtained from
a honest-veri�er zero-knowledge identi�cation protocol (also known as three-move sig-
nature schemes), for example the ones by Schnorr [20], Fiat-Shamir [13], or Guillou-
Quisquater [15]. Analogously, our extension of the forking lemmas to the ring signa-
tures' scenario, that we have applied to a particular Schnorr ring signature scheme,
could be used to prove the security of future ring signature schemes constructed from
these three-move signature schemes.
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