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SUMMARY: An essential progress in astrophysics and CB evolution theory
started about 1970 thanks to the development of computer models enabling syn-
thesizing of the light curves and those of line-of-sight velocity. These models, based
physically on the Roche equipotentials, appear as substitutions for the traditional
geometrical models. Owing to this, the accuracy and efficiency of the observations
analysis has been significantly improved and consequently the studying of CB evo-
lution has become easier. It may be said that the progress in the understanding
of the physical processes in CBs is closely connected with the development of the
physical model for synthesizing of light curves and those of line-of-sight velocities.
The morphology of CB systems is full of physical models specialized for analyz-
ing some types of these systems over various phases of their evolution. If we have
for a given CB type an adequate, physically based model, by optimization of its
parameters one can achieve a good fit to the observations. In this way one can
obtain a realistic estimate of the orbital and physical parameters of a CB. The in-
terpretation of the observations is reduced to two crucial problems: one should first
develop an adequate model for synthesizing a light curve or that of line-of-sight
velocity (direct problem) and then by applying a corresponding optimization model
to estimate the parameters for which the chosen model yields the best fit to the
observations (inverse problem). These problems offer an exceptionally active field
of interest. In this way together with the development of the models for synthetic
generation of CB observables one also develops the methods for solving the inverse
problem. They are based on the minimization of the sum of squares of residuals

Z(O — C)2 between the real observations and the simulated ones generated in a
CB model. The solutions are obtained today by applying the method of Differential
Corrections (DC), by Steepest Descent, by the Simplex Algorithm, occasionally by
Iterative Minimization, by Controlled Random Search and by the Marquardt (1963)
algorithm.

The analyzing of the eclipse-CB observations offers an almost unique
possibility for estimating the orbital and physical system parameters. In this way
one obtains valuable information on the physical properties of stars at different
evolutionary stages of CBs. The wealth in evolutionary scenarios for CBs leads to
the developing of the models used in the interpretation of observations of different
morphological-type systems or of special kind of activities in the system.

In this review are stressed the models and methods for interpreting the
observations of active CBs which have been recently the topic in this country. As a
more comprehensive review comprising the activities in this subject throughout the
world, the present author recommends Wilson’s (1994) excellently written, invited
paper.
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1. INTRODUCTION

It is customary to emphasize the fundamental
importance of analysing the photometric and spec-
troscopic observations of CB systems for the purpose
of estimating the masses, the radii and the temper-
atures of the components, as well as a number of
other essential parameters. Conditionally, the pro-
cedure of the observation analysis can be divided
into several phases. The first thing to be done is
to conceive and realise a computer model used in
the synthesizing of light curves and line-of-sight ve-
locities which can simulate the real observations. In
the second step one develops a method of solving the
inverse problem yielding an optimal fit to the obser-
vations and an optimal estimate of the parameters of
a CB system. After more than fifty years of applica-
tion, the spherical and rectifiable models are quickly
ceding place to physical ones based on the Roche
equipotentials whereby one considers the eccentric
orbits, nonsynchronous rotations of the components
and other generalisations. These programmes for
synthetic generation of CB observables, began their
development about 1970. The principles on which
these models are based, given by Wilson and Devin-
ney (1971), constitute a new beginning and break
with the spherical and ellipsoidal models, whose ap-
plication is really rare today. The intention is in gen-
eralising the models which for various modes would
be adapted to the observation analysis of particular
types of CB-systems. But the diversity of the sys-
tems, the presence of activity on the components and
the gas dynamics in the system lead to the developing
of specialised models which with some amendments
can further be generalised.

The observed light curves in CB systems are
often asymmetric and deformed. In some cases this
appears as an indication for the presence of active
regions on stars in CBs of RS CVn and W UMa
types. The evolution followed by a mass exchange
between the CB components results in exotic phe-
nomena, such as the gas stream in the system, for-
mations of hot spots and of an accretion disc around
the star capturing the mass of its neighbour.

The analyzing of light curves based on these
models and the methods of solving the inverse prob-
lem enable a realistic estimate for the physical and
orbital parameters of active CBs. The knowledge of
the component parameters in RS CVn and W UMa
CB types, as well as of the active regions which de-
form their light curves, contributes to a better un-
derstanding of physical processes on stars. The pos-
sibility of estimating the parameters of the compo-
nents and of the accretion disc with a hot-spot region
is of special interest in CBs with an intensive mat-
ter exchange between the components (type W Ser
and cataclysmic variable). The knowledge of these
parameters contributes to a better understanding of
stellar evolution in the conditions of mass transfer
between the components.
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2. THE MODELS OF ACTIVE CB
SYSTEMS

With regard to the current importance of in-
terpreting the asymmetric, deformed, light curves,
the present author has developed computer models
enabling a successful interpretation of photometric
observations: of the active CB with spots on the
components (Djurasevié¢, 1992a), of the CB with an
accretion disk being at the evolutional phase of an
intensive matter exchange between the components
(type W Ser) (Djurasevié¢, 1992b) and of the cata-
clysmic variable, as well as of active CB with ac-
cretion onto a white dwarf (Djurasevié, 1995; 1996).
After some amendments these models can be also
applied for calculating synthetic spectral line profiles
and radial velocity curves of CB systems.

The modelling of the CB systems is based on
the principles originated in the Wilson and Devin-
ney (1971) model (WD) for the synthesis of a light
curve. The shapes of the components correspond to
the equipotentials in the Roche model so that the
critical Roche lobes can be filled up to an arbitrary
degree. The dimensions of the stars in the model
are described by the filling coefficients for the criti-
cal lobes of the primary and secondary Si 2. For a
given mass ratio of the components and the nonsyn-
chronicity parameters, the shape and the size of stars
in a CB are unequivocally determined by the filling
coefficients of the critical lobes.

In a spherical coordinate system the surfaces
of the components are divided into a large number
of elementary cells whose intensity and angular ra-
diation distribution are determined by the star tem-
perature, limb-darkening, gravity-darkening and by
the effect of reflection in the system.

2.1. The Roche model of an active CB with
spots on the components.

In the first place, we present the model de-
veloped for the synthesis of asymmetric, deformed,
light curves of active CB with spots on their compo-
nents. The active regions are approximated by circu-
lar spots (Fig. 1), characterised by the temperature
contrast of the spot with respect to the surrounding
photosphere (As = Ts/Ty), by the angular size of
the spot (6), by the longitude (\) and by the lati-
tude (¢) of the spot centre. The presence of spots
(dark or hot) enables to explain the asymmetry and
depressions on the light curves of active CB.

The CB model, presented in details in Djura-
Sevié (1992a), is rich enough to be able to simulate
the basic properties of observed light curves in the
case of both ’classical’ CB (Roche geometry without
spots) and active systems with spots on their compo-
nents like RS CVn, W UMa, etc. The model can be
also used for the purpose of interpretation of systems
with hot spots which are due to a matter exchange
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Fig. 1. The Roche model of an active CB with spots on the components.

between the components, i.e., to processes connected
with gas dynamics in the system. If both system
components fill in the critical Roche lobes, they have
a physical contact near the Lagrangian neutral point
L1 which can also cause an exchange of thermal en-
ergy between the components with different temper-
atures. A confirmation may be found in the W UMa-
type systems containing main-sequence stars. Their
characteristic is that the temperatures of the stars
are approximately equal regardless of the mass dif-
ference. The explanation of the phenomenon is in
the overcontact configuration followed by a thermal-
energy exchange from the hotter primary towards the
secondary. The light curves possess the characteris-
tic asymmetry due to the presence of an enlarged-
temperature region on the cooler secondary to which
this transfer is directed.

These models, for the parameters given a pri-
ori, generate synthetic light curves with which real
observations can be fitted. Optimal parameters for
which the model yields the best fit to the observa-
tions one finds by solving the inverse problem. In
this way one can estimate the orbital and physical
parameters of a CB system, as well as those of active
regions on the components.

2.2. The Roche model for the active CB with
accretion disk.

Recently the interest of astronomers in close
binaries which are in the phase of an intensive matter
exchange between their components, has been signif-
icantly increased. When in the course of its evolu-
tion, one of the CB components reaches the phase
of filling its critical oval, the star becomes unstable
and begins to loose the mass. This phenomenon of-
ten results in the formation of a gaseous disk around
the component which captures with its gravitation

field the matter flowing from the neighbouring star.
The existence of the disk is made possible due to the
gas stream from the component losing its mass. The
disk lies in the orbital plane and on its lateral side,
in the zone where the gas stream falls on the disk,
there is an intensive hot-spot radiation. A hot spot
causes deformations on a CB light curve which be-
comes asymmetric. On the light curves of some CB
a characteristic hump appears, which is due to the
intensive hot-spot radiation.

In the case of the active CB with an accre-
tion disk a model for light- curve synthesis has been
realised (Djurasevié¢, 1992b) where the attention is
given to systems like W Ser not sufficiently exam-
ined yet with regard to the fact that in them the ac-
cretion disk is formed around an ordinary star. The
model (Fig. 2) can successfully describe the essential
characteristics of the observed light curves due to ex-
istence of an accretion disk and a hot spot, as well
as those originated in the temperature distribution
along the disk radius. The system components are
considered in the framework of the nonsynchronous
Roche model and the accretion disk of a constant
thickness lies in the orbital plane around the star
capturing the matter of the neighbouring component.

The primary surrounded by the disk is situ-
ated relatively well within the Roche oval, and its ro-
tation can be significantly nonsynchronous. Near the
Lagrange equilibrium point L, flowing from the sec-
ondary (which fills the Roche limit) the gas stream
'nourishes’ the disk. The lateral sides of the disk are
approximated by a cylindrical surface. In the zone
where the stream touches the lateral side of the disk
a hot-spot is formed. In the model, the hot-spot is
described by the angular size of the spot, longitude
of the spot centre and by the temperature contrast of
a spot with respect to the unperturbed temperature
on the disk edge.
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Fig. 2. The Roche model for the active CB with accretion disk.

The model involves a Planck-type radiation
for the elementary cells into which the areas of the
components and of the accretion disk are divided.
In all details, the model and the synthesis procedure
concerning a light-curve are explained in Djuragevié¢
(1992b).

The proposed model of a CB containing an
accretion disk is rich enough to describe the funda-
mental observed phenomena on the light curves of
these systems, which are due to an intensive mat-
ter exchange between the component. Some ideal-
izations introduced here are necessary if one wants
to realise a sufficiently fast computer programme for
the light-curve synthesis based on this model. This
requirement is just the imperative appearing in the
applications of the model for the purpose of inter-
pretations of the observed light curves by solving the
corresponding inverse problem.

2.3. The Roche model for cataclysmic
variables.

In the modern theory of accretion in CB it is
important to determine from observations the phys-
ical characteristics of the system and accretion disk
for the cataclysmic variables such as the novae and
novae-like stars. The luminosity of majority of these
stars in the quiescent phase (between outbursts) is
due to the accretion disk located around the white
dwarf and the hot-spot on the disk edge.

The canonical model of a cataclysmic variable
is a Roche lobe-filling cool main sequence star, which
loses matter into the Roche lobe of the white dwarf.
The transferred material has too much angular mo-
mentum to fall onto the surface of the white dwarf.
Because of the tiny dimensions of the primary, this
material flies along its trajectory inside the white
dwarf’s Roche volume forming a ring around the cen-
tral object. As viscous forces are at work, the matter
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gradually loses its angular momentum, and this ring
spreads out to form a disk, which lies in the orbital
plane of the system, extending down to the white
dwarf. On the disk lateral side, in the zone where
the gas stream falls on the disk, there is an intensive
hot-spot radiation. The position, size, and temper-
ature of a hot-spot are dependent of the gas-stream
parameters, of the forces in the system and of the
disk size. On account of a relatively low accretion-
disk luminosity in the quiescent phase the hot-spot
in these systems contributes significantly, sometimes
dominantly, to the total system’s luminosity. For this
reason the light curves are significantly deformed and
they become asymmetric with a characteristic form
caused by the eclipse geometry, as well as by the ra-
dial and azimuthal temperature distributions in the
disk.

When the matter is approaching the white
dwarf it has to get rid of excess gravitational en-
ergy, half of which, according to the Virial Theorem,
is converted into the kinetic energy of the disk ma-
terial, while the other half is transformed into the
radiative energy, causing the disk to shine as a lu-
minous object. At the interface between the inner-
most disk area and the white dwarf (in the nonsyn-
chronous rotation) the motion of disk material will
have to be broken down to the velocity of the white
dwarf, in the process of which an additional radiative
energy will be liberated and the boundary layer will
be formed.

For the purpose of analysing light curves of
this active CB with an accretion disk around the
white dwarf, being at the evolutionary phase of an
intensive matter exchange between the components,
a model for light-curve synthesis has been realised by
modifying the model (Djurasevié, 1992b), developed
for the systems like W Ser. Since the basic elements
of this model have been already presented, here only
some specific properties will be given.
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Fig. 3. The Roche model for cataclysmic variables.

In order to achieve a successful fit of real ob-
servations for these CB systems with synthetic light
curves generated by the model, one should consider
the problem of the hot-spot-region structure, as well
as the one concerning the temperature distribution
along the accretion-disc radius.

The hot-spot region has a complex structure,
being represented by means of two components in
the model. At the point where the most dense part
of the gas stream touches the disk edge there is the
central part of the spot with a significant tempera-
ture contrast and of a relatively small size. About
this region the rarefied gas stream and the heating
through coming from the central region form another
spot, larger in size, but with somewhat lower tem-
perature (Fig. 3). In the model these spots are de-
scribed through their angular dimensions, centre lon-
gitude and the temperature contrast of a spot with
respect to the unperturbed temperature on the disk
edge. Due to the intensive gas-stream infall the disk
surface in the central part of the hot-spot can be
deformed resulting in a certain local radiation con-
centration which deviates from the global azimuthal
distribution. In the model this effect is described by
an angle ©,.,4 between the lines perpendicular to the
elementary cells and the corresponding azimuth. In
the extended spot, about the central part of the hot-
spot, this effect is negligible. The model does not
take into account the gas-stream radiation, nor the
possible stream penetration and the hot-spot influ-
ence towards the disk interior.

Without a model of the light distribution in
the disk, it is not possible to perform a correct anal-
ysis of the eclipse curves for deriving the geometric
properties of the system.

The viscosity of the disk material determines
how much energy is liberated at any point in the
disk, i.e., the temperature distribution along the disk
radius. With the assumption that the whole disk

is stationary, i.e., mass transfer rate M is constant
throughout the disk, the effective temperature dis-
tribution T ¢¢(r) can be described by a simple ana-
lytical formula (Verbunt, 1982):

Te4ff(7“) =

S8mor3

~ 3GM M (1 B
r

Bt}

where G and o are Newton’s and Stefan’s constants,
respectively, and R,,q is the inner radius of the disk.
The assumption is that the disk with its internal side
has a contact with the surface of the white dwarf.

The term in the parentheses accounts for the
transfer of angular momentum between the disk and
the white dwarf and imposes a certain, though in
practice probably unimportant, uncertainty on the
value of the effective temperature.

In our model the temperature on the edge of
the disk Ty(r = R4) appears as a parameter. Ex-
pressed through this quantity, the temperature dis-
tribution in steady-state models for optically thick
black body disks, based on (1), has the form:

T, / R\ 7. 1/4
Teff(r)_c—;r<7d) (1— Td) , (2

where

Rwd 1/4
Crr=11—4/— .
d ( Rq )

A model with the temperature distribution
along the accretion-disk radius defined in this way
can be used in the case of dwarf novae in the out-
burst phase. In the quiescence phase the radial tem-
perature profile is much flatter than that of a steady-
state, optically thick, accretion disk. This deviation
from a steady state configuration may be a low-vis-
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Fig. 4. Radial disk-temperature profiles for various ar values.

cosity manifestation in the quiescent state. In order
to offer an approximate description of this tempera-
ture distribution along the disk radius the former of
the exponents in (2) is assumed as a free parameter
of ar, so that its form is:

T R ar Rw 1/4
Teff(r)_c—;<7d> <1— Td> ;o (3)

This parameter has a dominant role in the
radial-disk-temperature-profile determining. For rel-
atively small ap values, about 0.15, the temperature
is nearly constant, whereas with ar increasing the
temperature gradient becomes steeper, to achieve the
steady-state configuration for the case apr = 0.75.
The latter term with the exponent value of 1/4 de-
scribes the temperature distribution in the white-
dwarf immediate surroundings so that its influence
on the global picture is insignificant. Fig. 4 gives
a few temperature profiles yielded by (3) for various
values of the parameter ar.

In order to include this temperature distribu-
tion in the CB-light-curve-synthesis model, the disk
is divided into concentric isothermal annuli (of con-
stant area), whose temperature is determined by re-
lation (3). Each of the isothermal annuli is char-
acterised by its mean radius dividing the annulus
area into two equal parts. Such a choice enables an
efficient realisation of the light-curve-synthesis pro-
gramme. The area of the elementary cells is con-
stant and with the temperature changing along the
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disk radius, the corresponding radiation fluxes are
calculated for each annulus separately. The model
involves a Planck-type radiation for the elementary
cells into which the areas of the components and of
the accretion disk are divided. The details of the
synthesis procedure concerning a light curve have
been given elsewhere (Djurasevié¢, 1992b), where the
model was considered for the W Ser-type systems.

Such a model concept enables light-curve syn-
thesizing for the parameters given a priori where the
obtained light curve can describe all the essential el-
ements of the observed ones for the case of dwarf
novae. By varying the free model parameters it is
possible to achieve a good fit to real observations
and consequently to estimate the system parameters.
The independent method of light-curve analysis for
dwarf novae based in this way is useful for the pur-
pose of verifying the results yielded by other meth-
ods. The idealisations involved in the model are ba-
sically acceptable so that its application to the light-
curve analysing for cataclysmic variables followed by
a corresponding method of solving the inverse prob-
lem is justified.

3. THE INVERSE PROBLEM AND
PARAMETER ESTIMATION

The interpretation of photometric observati-
ons is based on the choice of optimal model parame-
ters yielding the best agreement between an observed



light curve and the corresponding synthetic one. So-
me of these parameters can be determined a priori
in an independent way, while the others are found
by solving the inverse problem. In this way meth-
ods of solving the inverse problem and models for
synthetic generation of CB observables are simulta-
neously developed. Some of the earlier direct models
were fitted by trial and error, whereas now we have
applications of several good algorithms for solving
this problem iteratively. Most of the ideas and meth-
ods for parameter adjustment are from the mathe-
matical literature. Solutions are done today by ap-
plying the method of Differential Corrections (DC),
by Steepest Descent, by the Simplex algorithm, oc-
casionally by Iterative Minimization, by Controlled
Random Search and by the Marquardt (1963) algo-
rithm. All of them strive to_minimize the sum of
squares of residuals (O — C)? between the real ob-
servations and the simulated ones generated by the
CB model. The optimal parameters, for which the
model yields the best fit, correspond to the minimum
¥(O — C)%. The parameters of an adequate, physi-
cally based, model enable a realistic estimate of the
orbital and physical characteristics of the observed
system. Here are mentioned some of the optimisa-
tion methods offering for the inverse problem to be
solved more or less successfully.

The Tterative Minimization (e.g., Horak, 1970)
looks for a least-squares minimum simply through a
cyclical adjustment of one parameter at a time, and
thus avoids a possible divergence due to correlations
among the parameters. Since it cycles through the
entire parameter set a very large number of times, it
is slow.

The Controlled Random Search (Price, 1976;
Barone et al., 1988) belongs to very slow methods be-
cause the search is carried out over the entire param-
eter space in order to avoid local minima and guar-
antee the convergence to the global one (O — C)2.

The Steepest Descent computes and follows
the local negative gradient of (O — )2, which is a
vector whose components are the partial derivatives
of (0 — C)? with respect to the various parameters.
In its practical applications this method also shows
slowness in the iterative-process convergence which
makes it unsuitable to the observational analysis in
the framework of the considered models.

The Method of Differential Corrections (DC)
has found a relatively ample application in the frame-
work of the WD model. In the case of models with a
higher number of free parameters this method with-
out a solid initial approximation cannot guarantee
the convergence of the iterative process in the 3(O —
C)? minimisation. Through different variants of the
programme organising one can adapt this method to
the requirements of complicated models. Among the
possibilities one is to divide the set of the parameters
in which the optimisation is done into subsets solved
alternatively or sequentially (Wilson and Biermann,
1976). In this way one solves some of the problems
connected with the iterative-process convergence for
a higher number of parameters. At the same time
such a procedure can diminish the mutual correla-
tion of the influence of some parameters on synthetic

model curves. During recent years this method has
been combined with other approaches to the optimi-
sation problem, such as Simplex Algorithm (Plewa,
1988). This leads to a higher robustness and reliabil-
ity of the method. In the framework of the present
author’s models the DC method has shown some
weak points. Hence the solution has been looked
for in the nonlinear methods of optimisation.

In order to enable a successful application of
the realised CB models in the analysing of the ob-
served light curves an efficient algorithm is proposed
unifying the best properties of the gradient method
and of the differential-corrections into a single one.
This method (Djurasevié¢, 1992c) is realised by mod-
ifying the Marquardt (1963) algorithm. The inverse
problem, based on a nonlinear least-square method
is solved in an iterative cycle of corrections of the
model elements. The Marquardt algorithm essen-
tially strikes a compromise between the corrections
provided by DC and those of Steepest Descent. It
does not compute the two kinds of corrections sep-
arately, but incorporates a parameter, A\, which will
lead to the DC results if set to zero and to the Steep-
est Descent results if set to very large values. At
each iteration, A is set according to rules designed to
avoid the possible divergence of DC for small A and
the possible slow convergence of Steepest Descent at
large A. In all details, the method is explained in
Djuragevié¢ (1992c¢).

The present author performs a special adap-
tion of the programmes solving the inverse problem
to a particular model for the purpose of obtaining an
optimal solution which requires a minimum of com-
puter time. This is very important because of the
exceptional scope of calculating operations necessary
in solving problems of this kind. Sometimes also in
the framework of the same model, depending on the
analysed observational material, one can save much
of the computer time by modifying the programme
organisation. Due to its efficiency and to the relia-
bility in the convergence of the iterative process the
Marquardt algorithm acquires a steadily increasing
application in solving the problems of observation
analysing of CBs systems.

Another possibility for estimating the param-
eters of a CB based on analyses of observations in the
framework of given models is offered by the Simplex-
algorithm application. This algorithm was applied
by Kallrath and Linnel (1987) in the framework of
WD model, pointing to the efficiency and reliability
of the method. In the case of the present models
the application of this algorithm in Torczon’s (1991)
variant has shown some advantages, but also essen-
tial disadvantages due to the slowness of the algo-
rithm. The advantage is in the fact that it does
not require the light-curve partial derivatives in the
model parameters to be calculated. The algorithm
calculates (O — C)? in the parameter space for the
vertices of the geometric figure called simplex. The
simplex will be a triangle on a two-dimensional sur-
face, a tetrahedron in a three-dimensional volume,
etc. In general the simplex has one more vertex than
the dimension of the parameter space in which it lies.
The dimensions of the parameter space, within which
the minimum (O — C)? is looked for, are determi-
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ned by the number of free model parameters. By
means of the operations of contraction, expansion
and reflexion the simplex moves through the param-
eter space guaranteeing the minimisation of (O —
C)2. Finally it should contract down to a very small
size surrounding the least-squares minimum. The
model parameters corresponding to this minimum
yield an optimal inverse-problem solution for the an-
alysis of observations. By applying this algorithm
one can carry out the organising of the observational-
analysis programme relatively easy. Minimal correc-
tions are needed in order to adapt the algorithm to
the requirements of the particular models of CBs.
However, this algorithm constructed to solve the in-
verse problem requires a long computer time being a
serious disadvantage. The Marquardt one is by far
more efficient. In the case of complicated models, like
this, requiring a very long time for the synthetic gen-
eration of CB observables, the speed of carrying out
the programme is very important. For other kinds
of similar astrophysical problems, where the obser-
vations can be fitted with more simple models, be-
cause of the robustness and simplicity of application
the Simplex algorithm is recommended.

4. CONCLUSION

The models proposed and the inverse-problem
method enable one to estimate the basic orbital and
physical parameters for a large number of active CBs.
Therefore, they provide an important direction for
the future research. By including the network of au-
tomatic telescopes used, above all, in photoelectric
observations, the necessity of developing the com-
puter models of CBs and methods for their analysing
is increasing. This is a very dynamic research field,
giving its contribution to the development of new ob-
serving programmes. In addition to photometry and
line-of-sight velocities the radiation polarisation and
the analysis of the photospheric-spectral-line profiles
also become of interest. An adequately based proce-
dure of spectral-line-profiles synthesis can allow the
analysing of the effects affecting the spectral-line pro-
files due to the gas dynamics in the system and to
the active-regions presence (dark or hot spots, ac-
cretion disk, etc). For the purpose of analysing these
observations specialised models of CB systems are
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developing so that in this field a further progress is
expected. Once a programme for synthesizing light
curves of CB systems is formed, it can be generalised
by means of certain improvements and modifications
to become usable in a number of other problems.
In these generalisations one has to endeavour to de-
scribe the considered problem with a number of free
model parameters as low as possible in order to en-
able the solving of the inverse problem. The speed of
the programme realisation is very essential. Only a
sufficiently rapid programme, for generation of simu-
lated observations, makes it possible for the inverse-
problem solving to take a reasonable computer time.
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MOJEJIVN AKTUBHMNX TECHUX JIBOJHVX CUCTEMA (TIC) 1 METOIE
3A MHTEPIIPETAIINJY #OTOMETPMNJCKNX IIOCMATPAIHA

I'. Bypamesuh

Acmponomcra oncepeamopuja, Boazuna 7, 11000 Beoepad, Jyzocaasuja

YK 524.387
Ilpezaednu waanax

Buran manpenak y acrpodusnnu u teopuju
epoaymuje TJIC je ormoueo oko 1970, passojem
KOMIIjyTEPCKUX MOJeja, Koju omMoryhaBajy CuH-
Te3y KPUBUX Cjaja ¥ KPUBUX PaAUjaJHUX Op3-
nra. OBU (U3MUYKM 3aCHOBAHU MOJAEIN, Da3upaHU
va Roche ekBumorennujannMa, 3amMemyjy Tpaiau-
NUOHAJHE TeOMeTpHjcKe Mogmene. To moBomm mO
OMTHOI HANOpPETKA y TAYHOCTU U e(PUKACHOCTU
aHaJM3e MOoCMaTpama, mTo oMoryhasa 0ome ca-
riuenaBame esoaynuje TIC. Mowxe ce pehu na je
HaOpenak y mBaTamy ¢usmukux npomeca y TIC,
HEepa3ABOJHO Be3aH Ca Pa3BOjeM (U3WUKUX MOI-
ejla 3a CUHTE3y KPUBUX Cjaja M KPUBUX paluja-
auux 6p3uHa. Mopdomoruja TIC je nmporkana
(GU3MIKIM MOIEeInMa, CIENUjalIln30BaHIM 38 aHa-
Iu3y mocMaTrpama oapeheHux THUIOBa OBUX CHC-
TeMa y pa3HuM (aszaMa €BOJYOUOHOT pa3Boja.
Axo 3a ompebenu Ttun TIIC mmamo amekBarad,
(U3MYKM 3aCHOBAH MOJEJ, ONTUMU3AIN]OM HEro-
BUX Iapamerapa MOKeMO IocTuhu mobpo ¢uro-
Bame IOCMaTpama. 1akKo ce MOy PeajiHO IpPOo-
neHuTH opburtasau u ¢usuuku napamerpu TJIC.
WMuTepuperanuja mocmMarpama Ce CBOOA HA OBA
KJby4Ha IpobieMa: TpBo Tpeba pa3BUTH alCK-
BaTaH MOJZEJ 3a CUHTe3y KPUBUX Cjaja WU pa-
nujanHux 6p3uHa (AUpPEKTaH 3aJaTak), a 3aTHUM,
IPUMEHOM OaroBapajyher Meroma ONTUMU3AIN]e
OPONEHUTH apaMeTpe, OPU KOjuMa wu3abpaHu
Mozea Hajbome puryje nocMaTpama (0OpHyTH 3a-

narak). OBu npobieMu IpencTaBibajy U3y3€THO
aKTUBHO IOJbe paja. Tako ce mapasesHO ca pas-
BOjeM MOJeJIa 38 CUHTETUYKO '€HEePUCAHE TOCMa-
tpanux Besuunna kox TJIC, passujajy u meromxe
3a pemaBame O0OpHyTor 3amarka. OHe Gasupajy
Ha MUHUMU3AINUAjA CyMe KBaapaTa OACTYIABha
$(0 - C)? usmeby peanHux mocMaTpama U CUMY-
JIMpaHuX, Koja remepumie Momnena. Jlamac ce oBaj
npobieM peniaBa IPUMEHOM METOIE AU(EpPEHIN-
JAJTHUX KOpEKIUja, TPAANjeHTHOM METOIOM, Sim-
plex anropuTMoM, IOHEKaI WTEPATUBHOM MUHU-
MM3AaMjoOM, METOAOM KOHTDOJINCAHE NMpEeTpare u
Marquardt-oBuM aJaropuTMOM.

Ananusa nocmarpama ermuncaux TIIC
HYIU 'OTOBO je AMHCTBEHY MOTYNHOCT 3a IPOILeHy
opbuTasHNX ¥ PU3NYKAX IapaMeTrapa CHUCTeMA.
Tako ce nobujajy aparounese nHpopmanuje o pus-
WYKUM OCOOMHAMA 3Be31a HA PA3JIUYUTUAM CTa,AU-
jymuma esoayuuje y TIIC. ER)I‘&TCTBO €BOJIYIU-
OHOT CIleHApUja y TyﬂC, JIOBOM 1O Pa3B0ja MOJ-
ejla HAMEHEHUX WHTEPIPETANU]j! HOCMATPABA
onpebhernx MOPQOIOMKNAX TUIOBA CUCTEMA, WA
CcHenuGpUUHUX BPCTA AKTUBHOCTU Y CUCTEMY.

Y OBOM Iperjieny je akleHAT CTABLEH Ha
MOJEJIMa W METOIY WHTEPIPETANN)E MOCMATPA-
wa aktuBHux TJIC ma rojuma je konx Hac pabheno
HOCJeNHUX TOANHA. 3a MUPU MPErjes aKTUBHO-
CTU y OBOj OBJIACTH Y CBETY, IPENOPYUY]EMO U3y~
3eTHO Jseno HamucaH Wilson-o (1994) nossanu
IperieHu YWiaHaK.
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