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Abstract. A classical model is used for the power consumption of cryp-
tographic devices. It is based on the Hamming distance of the data han-
dled with regard to an unknown but constant reference state. Once val-
idated experimentally it allows an optimal attack to be derived called
Correlation Power Analysis. It also explains the defects of former ap-
proaches such as Differential Power Analysis.
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1 Introduction

In the scope of statistical power analysis against cryptographic devices, two his-
torical trends can be observed. The first one is the well known differential power
analysis (DPA) introduced by Paul Kocher [2,3] and formalized by Thomas
Messerges et al. [4]. The second one has been suggested in various papers [6, 10]
and proposed to use the correlation factor between the power samples and the
Hamming weight of the handled data. Both approaches exhibit some limitations
due to unrealistic assumptions and model imperfections that will be examined
more thoroughly in this paper. This work follows previous studies aiming at ei-
ther improving the Hamming weight model [12], or enhancing the DPA itself by
various means [7,19].

The proposed approach is based on the Hamming distance model which can
be seen as a generalization of the Hamming weight model. Surprisingly all its
basic assumptions were already mentioned in various papers from year 2000
[7,6,12]. This synthetic and experimental work that has been conducted since
then, shows how a simple extension of those former elements can explain many
defects of DPA. Furthermore, a new analysis method is derived by introduc-
ing optimality criteria that were missing up to now. Classical statistics show
that the correlation power analysis (CPA) with the proposed model is the most
relevant indicator to validate the model and conduct efficient and sometimes
optimal attacks against unprotected implementations of many algorithms such
as DES or AES. This study deliberately restricts itself to the scope of secret key
cryptography although it may be extended beyond.

This paper is organized as follows: Section 2 introduces the Hamming dis-
tance model and Section 3 proves the relevance of the correlation factor. The



model based correlation attack is described in Section 4 with the impact on the
model errors. Section 5 addresses the estimation problem and the experimental
results which validate the model are exposed in Section 6. Section 7 contains
the comparative study with DPA and addresses more specifically the so-called
“ghost peaks” problem encountered by those who have to deal with erroneous
conclusions when implementing classical DPA on the substitution boxes of the
DES first round: it is shown there how the proposed model explains many de-
fects of the DPA and how the correlation power analysis can help in conducting
sound attacks in optimal conditions.

2 The Hamming distance consumption model

Classically, most power analyses found in literature are based upon the Hamming
weight model [3,4], that is the number of bits set in a data word. In a m-bit
microprocessor, binary data is coded D = E;";Ol d; 27, with the bit values di=0
or 1. Its Hamming weight is simply the number of bits set to 1, H(D) = E;.n:_ol d;.
Trivially, the Hamming weight is not linear w. r. t. D and its integer values
stand between 0 and m. If D is a uniformly distributed random variable, each
independent bit d; has a probability 1/2 to be 0 and 1/2 to be 1. Therefore each
bit has an average value of 1/2 and a variance of 1/4. As sum of m independent
variables the whole word has an average Hamming weight ugy = m/2 and a
variance o3 = m/4.

Some papers [12] have tackled the problem of consumption modeling and
proposed different laws to represent the information leakage. Usually they con-
clude that their model is incomplete except in restricted situations or on specific
components. Nevertheless, it is generally assumed that at a given time the data
leakage through the power side-channel depends on the number of bits switch-
ing from one state to the other [7,6]. Indeed one can model a microprocessor
as a state-machine where transitions from state to state are triggered, in this
instance, by a clock signal. This seems relevant when looking at a logical elemen-
tary gate as implemented in CMOS technology. The current consumed is related
to the energy required to flip the bits from one state to the next. It is composed
of two main contributions: the capacitor’s charge and the short circuit induced
by the gate transition. Curiously, this elementary behavior is commonly admit-
ted but has never given rise to any satisfactory model that is widely applicable.
Of course, hardware designers use tools to simulate the current consumption
of their designs but they usually keep the underlying model as a trade secret;
complete representative simulations are difficult to obtain anyway.

If the transition model is adopted, a basic question is posed. What is the
reference state from which the bits are switched?

We assume here that this reference state is a constant machine word, R,
which is unknown, but not necessarily zero. It will always be the same if the
same data manipulation always occurs at the same time, although this assumes
the absence of any desynchronizing effect. In addition, two restrictive hypotheses
are put forward:



— it is assumed that switching a bit from 0 to 1 requires the same amount of
energy as switching it from 1 to 0.

— all the machine bits are assumed to be perfectly balanced and require the
same amount of energy to switch on and off.

These assumptions may appear very restrictive (and explain some imperfec-
tions of the next results). But they are affordable without any thorough (and
almost inaccessible) knowledge of microelectronic devices. Moreover they lead to
a convenient expression for the model. Indeed the number of flipping bits to go
from R to D is described by H (D@ R) also called the Hamming distance between
D and R. This statement encloses the Hamming weight model which assumes
that R = 0. If D is a uniform random variable, so is D @ R, and H(D @ R) has
the same mean m/2 and variance m/4 as H(D).

Another assumption is that the relationship between the current consumption
and H(D @ R) is linear. This can also be seen as a limitation but considering
a chip as a large set of elementary electrical components, this linear model fits
reality quite well. It does not represent the entire consumption of a chip but
only the data dependent part. This does not seem unrealistic when considering,
for instance, that the bus lines are usually considered as the most consuming
elements within a micro-controller. In this simple vision all the remaining things
in the power consumption of a chip are assigned to a noise term denoted b and
assumed independent from the other variables; its mean value is not necessarily
zero and can be assigned to an offset component. Therefore the basic model for
the data dependency can be written:

W=aH(D®R)+b

where @ is a scalar gain between the Hamming distance and W the power con-
sumed.

Before the relevance of the model is experimentally justified, we are going to
discuss some mathematical points based on classical statistics.

3 The linear correlation factor

If the linear Hamming distance model is assumed to be valid, there will exist
relationships between the variances of the different terms considered as random
variables:
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Writing the noise as b = W — aH(D @ R), its variance can also be expressed
with the following formula:

0 = o}, +a’0% — 2acov(W, H) = o3y + a’0%y — 2a0wompwa

where pw g denotes the correlation factor between the Hamming distance and
the power. It is the covariance between both random variables normalized by the



product of their standard deviations. Under the uncorrelated noise assumption,
this definition leads to:
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This equation complies with the well known property: —1 < pwg < +1: for a
perfect model the correlation factor tends to £1 if the variance of noise tends to
0, the sign depending on the sign of the linear gain a. The signal to noise ratio
of W can be expressed in terms of the correlation factor as:
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Let’s notice that if the model applies only to [ independent bits amongst m, a
partial correlation still exists:

SNR(W) = % _/m __ pwn
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4 Secret inference based on correlation power analysis

The relationships written above show that if the model is valid the correlation
factor is maximized when the noise variance is minimum. This means that pw g
can help to determine the reference state R. Assume a set of known random data
D and a set of related power consumption W are available. If the 2™ possible
values of R are scanned exhaustively they can be ranked by the correlation
factor they produce when combined with the observation W. This is not that
expensive when considering an 8-bit micro-controller, the case with many of
today’s smart cards, as only 256 values are to be tested. On 16-bit or 32-bit
architectures the same exhaustive search cannot be applied as such. However it
is still possible to work by introducing some special tricks like prior knowledge
or partial correlation.

Let R’ represent the candidate values and H' the related model for the Ham-
ming distance with the data H' = H(D @& R'). Knowing that R is the right
value and H = H(D @ R) the right prediction on the Hamming distance, the
correlation test leads to:

cov(aH + b, H') a cov(H,H')

PWH = ——— = 75 = PWHPHH'
owoygy ow Og
as H' and b are independent, cov(H',b) = 0. Under this realistic condition
lowr:| < |pwH| since the correlation factors are normalized. No other value
than the correct R can produce higher correlation rate.
Now the issue of uniqueness is to be addressed. If the model is valid are there
other values R' # R that could result in an equivalent correlation factor?



Assume a value of R' that has k bits that differ from those of R, then:
H(R® R') = k. When both are XORed with the random D, one adopts the
following formulation for the Hamming distances:

H = Hy,  + Hy
H =H  +H =Hyu - H+k

where H,,_j, denotes the common part (m — k bits large) of R® D and R' & D.
The different part has a complementary Hamming weight and so H}, = k — H.
Since k does not vary we have the following equality:

cov(H,H') = cov(H,H' — k)

So using the bracket notation for mathematical expectations this can be devel-
oped into:

cov(H,H')
cov(H,H')

((Hm—k + Hk)(Hm—k: - Hk)) - <Hm—k: + Hk)<Hm—k - Hk)
(HZ,_4) = (H}) = (Hm-p)? + (Hi)”

Replacing the terms by their respective values (see Section 2) gives:
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leading to the following expression of the covariance:

m — 2k
4

cov(H,H') =

Therefore, since o = o = m/4, we finally obtain:

cov(H,H'") m—2k
pHH/ = =
OCHOH! m

This expression shows how the correlation factor is capable of rejecting wrong
values of R. For instance, if a single bit is wrong amongst an 8-bit word, the
correlation is reduced by 1/4. If all the bits are wrong, i-e R’ = =R, then an
anti-correlation should be observed with pwm = —pwm (This property can be
used to reduce the exhaustive search on R to 2™ 1 values). In absolute value or
if the linear gain is assumed positive (a > 0), there cannot be any R’ leading to
a higher correlation rate than R.

This proves the uniqueness of the solution and therefore how the reference
state can be determined. This analysis can be performed on the power trace
assigned to a piece of code while manipulating known but randomly varying
data. If we assume that the handled data is the result of a XOR operation
between a secret key word K and a known message word M, the procedure
described above, i-e exhaustive search on R and correlation test, should lead
to K ® R associated with max(pwg). Indeed if a correlation occurs when M



is handled with respect to R;, another has to occur later on, when M @ K is
manipulated in turn, possibly with a different reference state R» (in fact with
K @ R, since only M is known).

For instance, when considering the first AddRoundKey function at the begin-
ning of the AES algorithm embedded on an 8-bit processor, it is obvious that
such a method leads to the whole key masked by the constant reference byte R,.
If R, is the same for all the key bytes, which is highly plausible, only 28 possi-
bilities remain to be tested by exhaustive search to infer the entire key material.
This complementary brute force may be avoided if Ry is determined by other
means or known to be always equal to 0 (on certain chips).

This attack is not restricted to the & operation. It also applies to many
other operators often encountered in secret key cryptography. For instance, other
arithmetic, logical operations or look-up tables (LUT) can be treated in the
same manner by using H(LUT(M % K) & R), where x represents the involved
function i.e. @, +, -, OR, AND, or whatever operation. Let’s notice that the
ambiguity between K and K @ R is completely removed by the substitution
boxes encountered in secret key algorithms thanks to the non-linearity of the
corresponding LUT: this may require to exhaust both K and R, but only once
for R in most cases.

To conduct the analysis in the best condition, it is important to correctly
model the whole machine word that is actually handled and its transition with
respect to the reference state R which is to be determined as an unknown of the
problem.

5 Estimation

In a real case with a set of N power curves W; and N associated random data
words M;, for a given reference state R the known data words produce a set of N
predicted Hamming distances H; g = H(M;® R). The corresponding correlation
factor can be estimated by the following formula:

R NY WiHir— 3 Wi} Hir
pwr(R) =
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where the summations are taken over the N samples (i = 1, N). One reminds
that such an estimation has to be done at each time slot within the power traces
Wi (t).

The issue concerning the estimation of p is not trivial at all. It is theoretically
difficult to study the variance of the estimator p with respect to the number of
available samples N. Statistical literature (such as [1]) states that, depending
on the true value of p, some transforms of p have statistical behaviors that
can be approximately modeled (in law, mean value and variance) provided the
number of samples is moderately large (say a few dozens). p is very slightly
biased and this bias tends asymptotically to zero with increasing N. Briefly, for
ordinary noise levels, a few hundred experiments should suffice to provide a good



estimate of the true correlation factor. Next results will show that this is more
than necessary for conducting reliable tests.

Exhausting R and taking the maximum value py,q, = max(pww(R)) can be
seen as a model fitting procedure. It becomes meaningful if significant values of
the correlation estimate are achieved, typically values higher than 50% with a
substantial set of experiments. In such a case the existence of a linear relationship
between W and H is likely. According to the linear regression theory, a least
square estimate of the gain is given by:

ow _ cov(W, H)

a = Pmax 2
OH (7]

which estimates the sensitivity of the measurement with respect to the model.
It is not actually useful since it does not help in finding the optimal R. The next
formula provides an estimate of the noise variance:

6% = (1 - p%naz)U%V
In very noisy conditions, it is often possible to perform averages of several curves
with same data before estimating the correlation factor with varying data. This
reduces the variance of noise in the same proportion.

The previous formula shows that p,,,, is an estimate that minimizes the noise
variance or equivalently the probability p(W = aH(D @& R) + pp). In other words
the correlation factor which is usually referred to as a linearity test between two
random variables has turned into a posterior maximum likelihood test for the
Hamming distance model with respect to the reference state R.

6 Experimental results

So far the interest of the model based correlation analysis has been attested
only according to theoretical considerations. It must be confronted to many
experiences to be justified in practice. This section presents some experimental
results and synthesizes the general rules of behavior derived from the analysis
during the passed years of various chips for secure devices.

Our first experience was performed onto a basic XOR algorithm implemented
in an old-fashioned 8-bit chip. The sequence of instructions was simply the fol-
lowing:

— load a byte D; into the accumulator
— XOR D; with a constant D-
— store the result from the accumulator to a destination memory cell.

The program was executed 256 times with D; varying from 0 to 255. As
displayed on Figure 1, two significant correlation peaks were obtained with two
different reference states:

— the first one being the address of Dj,
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Fig. 1. Upper: consecutive correlation peaks for two different reference states. Lower:
for varying data (0-255), model array and measurement array taken at the time of the
second correlation peak.

— the second one being the opcode of the XOR instruction

This result typically illustrates the most general case because it reveals the
sequence of transfers on a common bus. The address of a data word is transmitted
just before its value that is in turn immediately followed by the opcode of the
next instruction which is fetched.



This behavior can be observed on a wide variety of chips even those imple-
menting 16- or 32-bit architectures. Correlation rates ranging from 60% to more
than 90% can often be obtained. Figure 2 shows an example of partial corre-
lation on a 32-bit architecture: when only 4 bits are predicted among 32, the
correlation loss is in about the ratio v/8 which is consistent with the observed
result.

Qriginal power curve

Fig. 2. Two correlation peaks for full word (32 bits) and partial (4 bits) predictions.
According to theory the 20% peak should rather be around 26%.

Figures 3 and 4 illustrate the estimation problem of the correlation factor
with regard to the population size N.

Figure 3 shows that it requires a certain amount of curves to reduce the
ambiant variance in the vicinity of a true correlation peak and prevent from
generating false peaks that may lead to wrong interpretation. However those
spurious peaks are temporally well defined and easy to recognize as they look
more like a random noise or clock edges than like classical peaks.

The graphs presented in Figure 4 shows that the estimation of the maximum
value greatly depends on the population size N. They have been constructed
from a set of 1000 power traces recorded during the manipulation of a 32-bit
random data leaking according to its Hamming weight. The first graph shows
how the estimator converges to a given value (here around 75%) when N is
increasing in a dependent mode (taking the 10 first samples, then the 20 first
ones and so on, up to 1000). In this example, the curve looks chaotic in the
beginning and reaches a minimum. Then beyond N = 100 it becomes smoother
and goes in a monotone manner up to an asymptotic value.

The second one is derived from independent subsets. For instance taking
the 1000 samples by packs of 100 (1 to 100, 101 to 200 and so on) we can
calculate up to 10 estimates with N = 100. This approach has been applied
to N = 50, 100, 200, 300 and 500; the observed dispersion clearly proves how



Fig. 3. Correlation curves for 3 values of N.

erroneous the asymptotic value can be. For different populations of a given size
(say below 1000), the obtained value can vary with higher magnitude of 10 to
20%. We have deliberately chosen to illustrate the purpose with a 32-bit example
that represents the worst case. In an 8-bit example this dispersion is much less
important: it rarely exceeds 5% but one has to be aware of it. Anyway some
results presented further will show that the estimation issue is not critical to
conduct attacks in good conditions.

These results can be observed in many situations involving various tech-
nologies and implementations. Nevertheless the following restrictions have to be
mentioned:

— Sometimes the reference state is systematically 0 whatever the algorithm
is. This can be assigned to the so-called pre-charged logic where the bus is
cleared between each significant transferred value. Another possible reason
is that complex architectures implement separated busses for data and ad-
dresses, that may prohibit certain transitions. In all those cases the Hamming
weight model is recovered as a particular case of the more general Hamming
distance model.

— The sequence of correlation peaks may sometimes be blurred or spread over
the time in presence of a pipe line.

— Some recent technologies implement hardware security features designed to
impede statistical power analysis. These countermeasures offer various levels
of efficiencies going from the most naive and easy to bypass, to the most
effective which merely cancel any data dependency.

There are different kinds of countermeasures which are completely similar to
those designed against DPA.

— Some of them consist in introducing desynchronization in the execution of
the process so that the curves are not aligned anymore within a same acqui-
sition set. For that purpose there exist various techniques such as fake cycles
insertion, unstable clocking or random delays. In many cases their effect can
be corrected by applying appropriate signal processing.
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Fig. 4. Estimation of max(p). Upper: convergence versus N for dependent subsets.
Lower: various estimates for independent subsets of given sizes.

— Other countermeasures consist in blurring the power traces with additional
noise or filtering circuitry [8]. Sometimes they can be bypassed by curves
selection and/or averaging or by using another side channel such as electro-
magnetic radiation [13,15].

— The data can also be ciphered dynamically during a process by hardware
(such as bus encryption) or software means (data masking with a random
[5,11,17,18]), so that the handled variables become unpredictable: then no
correlation can be expected anymore. In theory sophisticated attacks such as
higher order analysis [9] can overcome the data masking method; but they
are easy to thwart in practise by using desynchronization for instance.

Indeed, if implemented alone, none of these countermeasures can be considered
as absolutely secure against statistical analyses. They just increase the amount
of effort and level of expertise required to achieve an attack. However combined
defenses, implementing at least two of these countermeasures, prove to be very
efficient and practically dissuasive. The state of the art of countermeasures in
the design of tamper resistant devices has made big advances in the recent years.
It is now admitted that security requirements include sound implementations as
much as robust cryptographic schemes.



7 Comparison with DPA

This section addresses the comparison of the proposed CPA method with Dif-
ferential Power Analysis (DPA). It refers to the former works done by Messerges
et al. [4,16] who formalized the ideas previously suggested by Kocher [2, 3].

7.1 Variance of the DPA bias
In single bit DPA the following bias is computed:

T = Ez’ Wid, _ Zz Wi(1— dj)
a Zz dj Ez(]‘ - dj)

This indicator is the difference between the averages of two subsets of power
curves. They result from partitioning the initial population according to a special
selection bit d; within a data on which predictions are done: this is why d; is also
called “targeted bit”. Without loss of generality, both subsets can be assumed as
perfectly balanced: ) . d; = >,(1—d;) = N/2.If 1 is the predicted value for the
target bit d; the corresponding power trace is assigned to the first pack, and to
the second pack if its predicted value is 0. T is expected to be maximized when
the prediction is right so that a peak is erected within the resulting T signal at
the instant when the data is manipulated in a consistent manner. Anywhere else
the resulting bias signal is expected to produce only noise since the prediction is
not consistent with the measurements. As distance between means, T is a test
for two hypotheses with supposed equivalent variances.

If the consumption model is injected in the expression of T and if the bits
others than the selection bit are assumed independent of it and uniformly dis-
tributed, the following statistical properties can easily be stated:

— The pack of words with d; = 0 has an average weight of ’"T_l and a variance
of m=1,
1
— The pack of words with d; = 1 has an average weight of mT“ and the same
variance of Tt
— As a consequence the average of T is ur = a.

— TIts variance is 0% = (T'?) — (T')? that can be developed into:

s (m—1)a* + 4o}
o=
This expression stems from the basic linear properties of mathematical expecta-
tions of combined independent variables:

(zy) = (@)(y) and ((Z2:)*) = 0%, + (Z@:))? = noy +n’(z)’

Moreover it is worth noticing that it does not depend on the reference state
R due to the statistical properties of the Hamming distance model (see Section
2). Finally the signal to noise ratio in the bias signal T is:
(T) av N

SNR(T)=— =
@ or (m —1)a? + 40}




This formula is similar to the one established by Messerges et al. [4,16],
except that we have deliberately omitted here what they call algorithmic noise.
They define this additive noise as the data dependent variance of the power
signal taken when the predicted variable is not handled. Its influence makes the
expression of what they refer to as intra-signal SN R slightly more complicated.
It is not the purpose of this section to discuss that point. It just aims at observing
that in the denominator the number m — 1 of unpredicted bits can be seen as
a penalty that must be compensated by increasing the amount of samples N.
It came up to the mind of Messerges et al. to improve things by enlarging the
prediction to several bits, say [, and increase the SNR of the multi-bits DPA

bias:
lav'N
(m —1l)a? + 40}

SNR(T) =

This enhancement is effective but not really interesting on a practical point
of view. When dealing with multi-bits DPA, only experiments associated with
all zeros and all ones predictions are combined. All the others are not used (say
01 and 10 in a 2-bit case). This forces to record 2'~! N experiments on average
in order to keep N useful curves for each prediction. In summary what is gained
thanks to [ is partly lost because of N. Finally multi-bits DPA may be interpreted
as a tricky extension of the single bit DPA to improve the SN R in an effective
but not actually efficient manner. Indeed nothing proves the relevance of the
SNR as optimality criterion.

7.2 Reminder on the DPA attack against the DES

As a matter of fact during the process of making a decision, DPA presents some
strange defects that cannot be assigned to the SNR. To develop this idea we
are going to address the specific issue of the attack against the DES.

Basically the substitution boxes at the first round of the algorithm can be
aimed at in order to retrieve the 8 sub-keys involved at this stage. The sub-keys
are 6-bit values; so in principle 48 bits of the key (56 bits) can be inferred this
way, that is to say almost all the secret. The remaining part (8 bits) can be
recovered either by using the gleaned information to attack the second round or
by brute force cryptanalysis.

The method consists in guessing the sub-keys at the input of the substitutions
and predict their output SBox(D @ K), where:

— D denotes the known input data (6 bits) derived through several permuta-
tions (IP, EP) from the clear text which is chosen randomly.

— K denotes the sub-key (6 bits) at the input of a substitution box. Its knowl-
edge reveals directly 6 bits of the key by inverting the key schedule operation.

— SBox stands for any substitution table amongst the 8 used in the DES. The
input is 6 bits large (values from 0 to 63) whereas the output is only 4 bits
large (values from 0 to 15).



The brilliant idea behind this procedure is that the right prediction of a single
output bit is capable of disclosing 6 bits of the input sub-key thanks to the non-
linearity of the substitution table. Predicting a bit of D @& K is also possible
but less efficient since one bit is sensitive to only one sub-key bit (moreover
the interpretation is not that obvious). For each substitution the 64 possible
sub-keys are guessed exhaustively and each related prediction validated by the
maximization of the corresponding DPA signal. In the end performing 8 x 64
DPA tests like this should lead to the 48 secret bits involved.

In fact such an attack works quite well only if the following assumptions are
fulfilled:

1. Word space assumption: within the predicted word, the contribution of the
non-targeted bits is independent of the targeted bit value. Their average
influence in the curves pack of 0 is the same as that in the curves pack of 1.
So the attacker does not need to care about these bits.

2. Guess space assumption: the predicted value of the targeted bit for any
wrong guess does not depend on the value associated to the correct guess.

3. Time space assumption: the power consumption W does not depend on the
value of the targeted bit except when it is explicitly handled.

7.3 The “ghost peaks” problem

When confronted to the experience, the DPA attack described above comes up
against the following facts.

— Fact A. For the correct guess, DPA peaks appear also when the targeted
bit is not explicitly handled. This is worth being noticed albeit not really
embarrassing. However this contradicts the third assumption.

— Fact B. Some DPA peaks also appear for wrong guesses: they are called
“ghost peaks”. This fact is more problematic for making a sound decision
and comes in contradiction with the second assumption.

— Fact C. The true DPA peak given by the right guess may be smaller than
some ghost peaks, and even null or negative! This seems somewhat amazing
and quite confusing for an attacker. The reasons must be searched for inside
the crudeness of the optimistic first assumption.

7.4 The ”ghost peaks” explanation

With the help of a thorough analysis of substitution boxes and the Hamming
distance model it is now possible to explain the observed facts and show how
wrong the basic assumptions of DPA can be.

— Fact A. As a matter of fact some data handled along the algorithm may be
partially correlated with the targeted bit. This is not that surprising when
looking at the structure of the DES. A bit taken from the output nibble of a
SBox has a lifetime lasting at least until the end of the round (and beyond
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Fig. 5. DPA curves on bit 1 of SBox; for various guesses (right guess is 24).

if the left part of the IP output does not vary too much). A DPA peak rises
each time this bit and its 3 peer bits undergo the following P permutation
since they all belong to the same machine word.

Fact B. The reason why wrong guesses may generate DPA peaks is that the
distributions of an SBox output bit for two different guesses are deterministic
and so possibly partially correlated. The following example is very convincing
about that point. Let’s consider the leftmost bit of the fifth SBox of the DES
when the input data D varies from 0 to 63 and combined with two different
sub-keys : MSB(SBox; (D @ 0200)) and MSB(SBox; (D @ 0x36)). Both series
of bits are respectively listed hereafter, with their bitwise XOR on the third
line:

1101101010010110001001011001001110101001011011010101001000101101
1001101011010110001001011101001010101101011010010101001000111001
0100000001000000000000000100000100000100000001000000000000010100

The third line contains 8 set bits, revealing only eight errors of prediction
among 64. This example shows that a wrong guess, say 0, can provide a
good prediction at a rate of 56/64, that is not that far from the correct
one 0x36. The result would be equivalent for any other pair of sub-keys K
and K @®0x36. Consequently a substantial concurrent DPA peak will appear
at the same location than the right one. The weakness of the contrast will
disturb the guesses ranking especially in presence of high SNR.

Fact C. DPA implicitly considers the word bits carried along with the tar-
geted bit as uniformly distributed and independent from the targeted one.
This is erroneous because implementation introduces a deterministic link
between their values. Their asymmetric contribution may affect the height



and sign of a DPA peak. This may influence the analysis on the one hand by
shrinking relevant peaks, on the other hand by enhancing meaningless ones.
There exists a well known trick to bypass this difficulty as mentioned in [19].
It consists in shifting the DPA attacks a little bit further in the processing
and perform the prediction at the end of the first round of the DES instead
of just at the output of the substitution boxes. At this stage the right part
of the data (32 bits) is XORed with the left part of the IP output. If the
message can be chosen freely, this represents an opportunity to re-balance
the loss of randomness by bringing new refreshed random data. But this does
not fix Fact B in a general case .

In order to get rid of the above-mentioned ambiguities it is more convenient
although challenging to try to predict the entire handled word and to take the
whole information into account in order to conduct an attack in optimal condi-
tions. This requires to introduce the notion of algorithmic implementation that
DPA assumptions completely occult.

When considering the substitution boxes of the DES, it cannot be avoided
to remind that the output values are 4-bit values. Although these 4 bits are in
principle equivalent as DPA selection bits, they live together with 4 other bits in
the context of an 8-bit microprocessor. Efficient implementations use to exploit
those 4 bits to save some storage space in constrained environments like smart
card chips.

A trick referred to as “SBox compression” consists in storing 2 SBox values
within a same byte. Thus the required space is halved. There are different ways to
implement this. Let’s consider for instance the 2 first boxes: instead of allocating
2 different arrays, it is more efficient to build up the following look-up table:
LUT42(k) = SBox; (k) || SBoxa(k). For a given input index k, the array byte
contains the values of two neighboring boxes. Then according to the Hamming
distance consumption model, the power trace should vary like:

— H(LUT12(Dy ® K;) ® R;1) when computing SBox; .
— H(LUT12(Dy ® K») ® R») when computing SBoxs.

If the values are bind like this, their respective bits cannot be considered as
independent anymore. To prove this assertion we have conducted an experiment
on a real 8-bit implementation that was not protected by any DPA countermea-
sures. Working in a “white box” mode, the model parameters had been previ-
ously calibrated with respect to the measured consumption traces. The reference
state R = 02B7 had been identified as the Opcode of an instruction transferring
the content of the accumulator to RAM using direct addressing. The model fitted
the experimental data samples quite well; their correlation factor even reached
97%. So we were able to simulate the real consumption of the Sbox output with
a high accuracy. Then the study consisted in applying a classical single bit DPA
to the output of SBox; in parallel on both sets of 200 data samples: the measured
and the simulated power consumptions.

As the next figure shows, the simulated and experimental DPA biases match
particularly well. One can notice the following points:
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Fig. 6. DPA biases on SBox; versus guesses for selection bits 1, 2, 3 and 4, on modeled
and experimental data; the correct guess is 24.

— The 4 output bits are far from being equivalent.

— The polarity of the peak associated to the correct guess 24 depends on the
polarity of the reference state. As R = 0z B7 its leftmost nibble aligned with
SBox; is 0zB = 1011’ and only the selection bit 2 (counted from the left)
results in a positive peak whereas the 3 others undergo a transition from 1
to 0, leading to a negative peak.

— In addition this bit is a somewhat lucky bit because when it is used as selec-
tion bit only guess 50 competes with the right sub-key. This is a particular
favorable case occurring here on SBox;, partly due to the set of 200 used
messages. It cannot be extrapolated to other boxes.

— The dispersion of the DPA bias over the guesses is especially confuse when
looking at bit 4.

The quality of the modeling proves that those facts cannot be incriminated to
the number of acquisitions. Increasing it much higher than 200 does not help:
the level of the peaks with respect to the guesses does not evolve and converges
to the same ranking. This particular counter-example proves that the ambiguity
of DPA does not lie in imperfect estimation but in wrong basic hypotheses.

7.5 Results of model based CPA

For comparison the table hereafter provides the ranking of the 6 first guesses
sorted by decreasing correlation rates. This result is obtained with as few as



only 40 curves! The full key is 0211 22 33 44 55 66 77 88 in hexadecimal format
and the corresponding sub-keys at the first round are 24, 19, 8, 8, 5, 50, 43, 2 in
decimal representation.

SBox; SBoxs SBoxsz SBoxs SBoxs SBoxg SBox; SBoxg
|K pmaz|K pmaz|K pmaz|K pmaz|K pmaz|K pmaz|K pmaa:|K pmaz|
24 92% (19 90% |8 87% |8 88% |5 91% |50 92% |43 89% |2 89%
48 74% (18 7% (18 69% |44 67% |32 71% |25 71% |42 76% |28 7%
01 74% |57 70% |05 68% |49 67% |25 70% |05 70% (52 70% (61 76%
33 74%02 70% |22 66% |02 66% |34 69% |54 T0% |38 69% |41 72%
15 74% |12 68% |58 66% |29 66% 61 67% |29 69% |0 69% |37 70%
06 74% |13 67% |43 65% |37 65% |37 67% |53 67% |30 68% |15 69%

This table shows that the correct guess always stands out with a good contrast.
Therefore a sound decision can be made without any ambiguity despite a rough
estimation of py,q4-

A similar attack has also been conducted on a 32-bit implementation, in a
white box mode with a perfect knowledge of the implemented substitution tables
and the reference state which was 0. The key was 0z7C Al 10 45 4A 1A 6E 57
in hexadecimal format and the related sub-keys at the 1st round were 28, 12,
43, 0, 15, 60, 5, 38 in decimal representation. The number of curves is 100.

SBox; SBoxy SBoxs SBoxy SBoxs SBoxg SBox; SBoxg
|K pmaw|K pmaw|K pmaw|K pmuz|K pmaz|K pmaw|K pma:c|K pmaav|
28 T7% |12 69% |43 73% |0 82% |15 52% (60 51% |5 51% (38 47%
19 36% (27 29% |40 43% |29 43% |03 33% |10 34% |15 40% |05 29%
42 35% (24 27% |36 35% |20 35% |58 30% |58 33% |6 29% |55 26%
61 31% |58 27% |06 33% |60 32% |10 30% |18 31% |12 29% (39 25%

Here again we can notice the good contrast (around 40% on boxes 1 to 4)
between the correct and the most competing wrong guess. The correlation rate
is not that high on boxes 5 to 8, definitely because of partial and imperfect
modeling. However the indication remains quite exploitable. This result shows
that correlating the measurements with the model is a robust approach. When
the number of bits per machine word is greater, the contrast between the guesses
is relatively enhanced, but of course finding the right model could be more
difficult in a black box mode.

8 Conclusion

The results presented above have all been obtained in white box mode for di-
dactic purpose. But our experience on a large set of experiments over the last
years shows that model based correlation power analysis works quite well even
with very few prior information available. Anyway the proposed CPA method
always provides better and unambiguous results with fewer acquisitions than
DPA. Should it fail, so would DPA. An important and reassuring conclusion



is that all the countermeasures designed against DPA offer the same defensive
efficiency against the model based CPA attack. This is not that surprising since
those countermeasures aim at undermining the common prerequisites that both
approaches are based on: side-channel observability and intermediate variable
predictability.

A slight drawback of the correlation analysis is that the calculation of p is
more costly than the computation of the DPA bias 7. More critical features
are the retrieval of the reference state by exhaustive search and the algorithmic
assumptions that have to be validated first (like SBox implementation). As it is
more demanding the method may seem more difficult than DPA. However with
some expertise and a bit of astuteness these complementary elements can be
inferred without excessive efforts knowing that:

— There exists many situations where the implementation variants are not so
numerous due to operational constraints. Moreover correlation analysis can
help a lot as a reverse engineering tool in order to validate some implemen-
tation assumptions before applying the attack itself.

— Regarding the inference of the reference state, say on a 8-bit microprocessor,
the exhaustive search over the 256 possible values of R can be performed
only once on a single SBox. In general the same value remains valid for the
seven other SBoxes.

All these observations confirm the model based CPA method as a sound and
optimal approach that brings sensitive improvements to DPA. Its reliability sug-
gests to propose it as characterization means for the testing of cryptographic
devices. A particularly interesting point is that it provides a quantitative infor-
mation because the maximum correlation factor can be interpreted as a leakage
rate, under standard experimental conditions. The test can be performed very
easily on a simple process, such as a memory to memory known message trans-
fer, in order to assess the behavior of a particular hardware device (or piece of
device) with regard to the side channel involved.
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