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5S rRNA:  Structure and Function from Head to Toe
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Abstract:5S rRNA is uniquely positioned so as to link together all of the functional centers of the ribosome.  
Previous studies have supported the hypothesis that 5S rRNA acts as a physical transducer of information, facili-
tating communication between the different functional centers and coordinating of the multiple events catalyzed 
by the ribosome.  Here, we present a synthesis of both structural and genetic information to construct a more de-
tailed picture of how 5S rRNA may act to transmit and coordinate all of the functional centers of the ribosome.
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Introduction

The availability of detailed structural information, 
biochemical assays, and molecular genetic systems 
make the ribosome a robust model for studying how 
the structures of complex molecules dictate function 
at the molecular level. This megadalton complex is 
composed of multiple proteins and RNAs in which 
the activities of numerous functional centers are coor-
dinated to synthesize proteins with great accuracy. In 
simple terms the ribosome coordinates the activities 
of peptide synthesis by proceeding through a series 
of at least 9 functional centers in at least 7 discrete 
unidirectional steps1. Analyses of static X-ray crystal 
structures have been useful in assigning the positions 
of the functional centers at the atomic level, reveal-
ing for example that the catalytic activity of the ribo-
some is mediated by RNA, and identifying the bind-
ing sites for antibiotics.1-4 Cryo-EM studies provide 

complementary information, showing dynamic views 
of intra-ribosome movements through many of the 
different phases of the translation cycle .5

5S rRNA is the smallest RNA component of the 
ribosome, and its secondary structure has been deter-
mined for many living organisms .6  Although the 
tertiary structure of 5S rRNA has been obtained for 
the uncomplexed molecule,7,8 its isolated domains,9-

11 and as a part of a ribosomal complex,12-15 the pre-
cise function of 5S rRNA in protein synthesis is not 
fully understood. Biochemical studies with E. coli 
ribosomes led to the hypothesis that 5S rRNA acts 
as a physical transducer of information, facilitating 
communication between the different functional cen-
ters and coordinating the multiple events catalyzed 
by the ribosome,16,17 and this view was further sup-
ported by a later study in yeast ribosomes.18  More 
recently, we have also characterized the effects of this 
5S rRNA saturation library on programmed -1 and 
+1 ribosomal frameshifting (PRF) .19  Exploitation of 
the 5S rRNA mutants combined with phenotypic and 
structural analyses of the pure mutants is helping to 
provide a clearer understanding of how 5S rRNA may 
act to coordinate the multiple functional centers of 
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the ribosome.
The “head” of the 5S rRNA is in the upper part 

of central protuberance. 5S rRNA is a major compo-
nent of the central protuberance of the large ribosomal 
subunit (See Fig 1A). The molecule itself does not directly 
contact either the P- or A-site bound tRNAs, nor is it a 
component of the peptidyltransferase, decoding, or elon-
gation factor binding centers. However, it is uniquely posi-
tioned so as to be able to connect all of these components 
with one another.  The upper part of the central protuber-
ance is composed of the 5S rRNA helices I, II,and III, 

connected by the A, B, and C loops respectively. It is 
sandwiched between ribosomal proteins L5 (bacterial 
L18) on the solvent side of the LSU and L11 (bacterial 
L5) together with helix 85 on the interior face (Fig. 1B, 
1C). Protein L11 (bacterial L5) forms the conserved 
B1b/c bridge20 with the small subunit ribosomal pro-
tein S15 (bacterial S13, see Fig. 1B).14 Importantly, the 
C-terminal tail of S13 is located between the antico-
don arms of the A- and P-site tRNAs,21,22 thus estab-
lishing a link between 5S rRNA and the decoding 
center on the small subunit (Fig. 1B).
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Fig.1  Interactions between 5S rRNA and other regions of the ribosomes.  (A).  Lateral view of the E. coli ribosome adapted from (42).  5S 
rRNA is colored light blue.  Large subunit (LSU), small subunit (SSU), and central protuberance (CP) are labelled.  (B)  Closeup of inter-
actions that link 5S rRNA to intersubunit bridges, the decoding center and the A- and P-site tRNAs.  5S rRNA alleles that affect trans-
lational fidelity are shown as purple spheres (18,19).  (C) Interaction between 5S rRNA and ribosomal protein L18 (yeast L5).  Alleles of 
yeast 5S rRNA that affect translational fidelity are shown as purple spheres (18,19).  The T28A allele of yeast L5 (34) is indicated as a red 
sphere.  (D)  5S rRNA alleles in the “toe” region that affect translational fidelity are indicated.

The intersubunit bridges, formed by central protuber-
ance of large ribosomal subunit could be a part of allos-
teric signal transmission conduit between the decoding 

center on the small ribosomal subunit and the functional 
centers on the large subunit. The upper area of the cen-
tral protuberance is relatively mobile,23 although con-
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formation changes could not be detected by struc-
ture probing.24 In both bacteria23 and yeast ,25 the 
intersubunit bridge B1b undergoes rearrangement 
upon binding of EF-G (eEF-2). In E. coli the B1b 
bridge is formed between protein L5 complexed 5S 
rRNA and the small subunit protein S13, and the 
contact sites between L5 and S13 are changed dur-
ing the course of translocation. In yeast ribosomes, 
the actual partner of L11 (the homolog of bacte-
rial L5) is changed upon eEF-2 binding: in the 
absence of eEF-2, L11 contacts S18 (the bacterial 
S13 homolog) ,14 but after eEF-2 binding the part-
ner of L11 changes to S15, the homolog of bacterial  
S19 .26

  In addition to its contact with small subunit, 
L11 (bacterial L5) interacts with P-site bound 
tRNA.1,2,5,27,28 Biochemical and structural stud-
ies show that the status of the large subunit P-site 
is monitored to regulate the enzymatic activities 
of the elongation factors ,29,30 and we have shown 
that post-peptidyltransfer ribosomes do not slip 
in the -1 direction.31 A synthesis of these obser-
vations suggests that the status of P-site tRNA 
body is monitored by L5 (yeast L11), i.e. L5 helps 
to determine whether this tRNA is in the P/P or 
P/E hybrid state.  A large number of the muta-
tions in the “head” of 5S rRNA were also shown 
to inhibit -1 frameshifting (Fig. 1B) .19  According 
to our current models, -1 frameshifting happens 
during or immediately after the accommodation 
step, and clearly before translocation .31,32 Stabili-
zation of the post-translocational state would inter-
fere with -1 frameshifting, while at the same time 
increasing the probability of the +1 frameshift. 
Additionally, decreased translational fidelity in 
the form of nonsense codon suppression tend to
 cluster in this region .18

  The “head” of 5S rRNA also makes extensive 
contacts with yeast ribosomal protein L5 (bacte-
rial L18), which correspond to the sites in 5S rRNA 
that produce translational fidelity phenotypes upon 
mutation (Fig. 1C). The mutation of threonine 28 
of L5 to alanine (red sphere in Fig. 1C) is of par-
ticular interest, as was shown it promoted tem-

perature sensitivity, ribosome biogenesis defects,33 
sparsomycin resistance, and increased -1 and +1 
PRF as a consequence of decreased ribosome af-
finity for peptidyl-tRNA (34). This threonine is at 
the center of highly coordinated interaction be-
tween 5S rRNA and L5, and close inspection of the 
large subunit crystal structures reveals that the hy-
droxyl group of threonine forms a hydrogen bond 
with the phosphate backbone of 5S rRNA between 
G7 and G8. These findings suggest that disrup-
tion of contacts between L5 and 5S rRNA nega-
tively impact the ability of this region of ribosome 
to interact with peptidyl-tRNA.

  The interaction between the “middle” of 5S 
rRNA and the A-site finger.  The “middle” part 
of 5S rRNA, composed of helices IV, V, and loop 
E, connects the upper part of central protuberance 
with loop D of 5S rRNA. This loop is directly in-
volved in structural organization of 25S rRNA do-
main II, connecting the peptidyltransferase region 
with the “GTPase associated center”. The “middle” 
of 5S rRNA forms a contact with the highly con-
served helix 38 of 25S rRNA (the “A-site finger”), 
which forms a prominent extension that juts out of 
the intersubunit face of the large subunit toward 
the small subunit (Figs. 1A and 1B). In bacteria 
it takes part in formation of the B1a bridge with 
small ribosomal subunit proteins S1320 and S19 .23 
In yeast, helix 38 also participates in formation of 
the B1a bridge where the small subunit partner is 
S15 (bacterial S19). Like B1b, the B1a also under-
goes conformational changes upon binding of EF-
G (eEF-2). In bacteria, the B1a bridge is completely 
disrupted upon binding of EF-G ,23 whereas binding 
of eEF-2 causes the A-site finger to change its inter-
action partner to the helix 33 of 18S rRNA in yeast 
ribosomes.26 Although the B1a and B1b bridges are 
formed by different components of the large ribos-
omal subunit, both undergo the most prominent 
changes as compared to other intersubunit con-
tacts, and their large subunit partners, i.e. L5 (yeast 
L11) and the A-site finger, are both connected to 5S 
rRNA. 
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While the B1b bridge is located above the P-
site bound tRNA, cryo-EM 35,36 and crosslinking 
studies 27,36 show that the B1a bridge contacts the 
A-site tRNA.  Thus, this interaction serves to link 
5S rRNA to the A-site of the decoding center. The 
phenotypes of the 5S rRNA alleles located in the A-
site finger interacting “middle” part of the molecule 
were different from those in the “head”. Specifically, 
whereas all of the mutants in the “middle” of 5S 
rRNA alleles acted to inhibit +1 PRF ,19 their effects 
on -1 PRF were allele-specific, and none affected 
nonsense suppression.18 Since +1 PRF occurs in the 
post-translocation state, it is likely that 5S rRNA 
mutations localized in the “middle” region affect 
translocation. 

The “toe” of the 5S rRNA: interplay between the 
peptidyltransferase center and elongation factor bind-
ing site.  The 5S rRNA “toe”, composed of the loop D and 

helix IV, is located along the putative signaling 
pathway between the peptidyltransferase center 
and the elongation factor binding site (Fig. 1D). 
Cross-linking studies revealed its proximity to 
helix 89, the component of domain V in the large 
subunit rRNA that is located near the peptidyl-
transferase region .38 The same 5S rRNA seg-
ment formed cross-links with helices 39 and 42 
in domain II, proximal to “GTPase associated 
center” .16,39 These contacts were later confirmed 
by X-ray structure analysis.28 The hypothesis that 
5S rRNA may be involved in allosteric signal 
transmission between the peptidyltransferase and 
the “GTPase associated center” was suggested 
prior to the availability of the atomic resolution 
structures .17 This idea was later supported by 
mutagenesis of 5S rRNA itself , 18 and of one of its 
23S partners.40
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Fig 2.  Model of how 5S rRNA may help mediate the allosteric transmission of information among the different functional centers of the 
ribosome.  Left:  view of the large subunit from the intersubunit face.  In addition to helices and loops, the A-site finger (ASF), sarcin/
ricin loop (SRL0, and ribosomal protein L3 are labelled.  Right:  Diagrammatic representation of the allosteric transmission pathways in 
the ribosome.  5S RNA relays information regarding both the status of the P-site (grey arrow from L11 to the P-loop, circled 1), and that 
of the B1b intersubunit bridge (black arrow to S15/S18), which communicates with the decoding center on the small subunit (circled 2).  
The “middle” also communicates with the P-site through helix 39, and through helix 38 to both the A-site (circled 3), and with the B1a 
bridge, providing feedback to the decoding center regarding the status of the A-site.  The "toe" of 5S rRNA mediates the transmission of 
information to the elongation factor binding elements, i.e. the sarcin-ricin loop (SRL;H95 circled 3), and the “GTPase associated center” 
(helices 41/41, circled 4).  This information can potentially feed back to the peptidyltransferase center as well through helices 91, 92 and 
ribosomal protein L3.
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Loop D of 5S rRNA binds several loops of 
the large subunit rRNA.  Its role as a clamp to 
stabilize interactions between domains II and 
V was previously proposed both because it was 
required for peptidyltransferase activity, and 
because the absence of 5S rRNA could be par-
tially compensated by addition of antibiotics 
that served to link these two domains together 
.41 Intriguingly, loop D protrudes into a pocket 
formed by the helix 42 region connected to the 
“GTPase associated center”. This may provide 
a contact point through which 5S rRNA could 
mediate the allosteric transmission of informa-
tion from the decoding center via the B1a/B1b 
bridges to the elongation factor binding site. 
By this process the “head” of 5S rRNA may be 
able to communicate with the “toe”, affecting 
the position of the “GTPase associated center” 
and, as suggested by chemical protection stud-
ies, possibly the sarcin-ricin loop .19

Mutations that map to the “toe” of 5S rRNA 
affected both +1 and -1 PRF ,19 but only muta-
tions at position 91 were able to suppress non-
sense mutations .18 Specifically, +1 frameshift-
ing tended to be inhibited while -1 PRF was 
stimulated .19 Since +1 PRF takes place in the 
post-translocation state, while -1 is thought 
to happen during accommodation, it is possi-
ble that “toe” mutations interfere with eEF-2 
(EF-G) activity while stimulating eEF-1 (EF-
Tu). Curiously, the effects of the mutations of 
the “toe” of the 5S rRNA are directly opposite 
those in the “head”. 

Loop D is at the tip of the “toe” of 5S rRNA, 
where it directly contacts helix 42, which is 
connected to the large subunit’s “GTPase asso-
ciated center” (Fig. 1D).  It is possible that 5S 
rRNA influences the positioning/function of 
this center through this interaction.  The 5S 
rRNA “toe” also contacts helices 39 and 89. 
Helix 89 is located parallel to helix 91, the tips 
or their loops are connected by a basepair. The 
opposite site of the loop-end of helix 91 also 
interacts with the sarcin-ricin loop, the second 
elongation factor binding site.  Thus, 5S rRNA 
may also influence the structure of both elonga-
tion factor binding sites. 

Figure 2 presents a model of how 5S rRNA may 
be involved in mediating the allosteric transmis-
sion of information among the different functional 
centers of the ribosome.  The “head” of 5S rRNA 
relays information regarding both the status of the 
P-site (grey arrow from L11 to the P-loop), and that 
of the B1b intersubunit bridge, which communi-
cates with the decoding center on the small subu-
nit (black arrow to S15 to circled 2).  Similarly, the 
“middle” communicates with the A-site (circled 3), 
and with the B1a bridge which provides feedback to 
the decoding center regarding the status of the A-
site.  The “toe” of 5S rRNA mediates the transmis-
sion of information to the elongation factor binding 
elements, i.e. the sarcin-ricin loop (circled 3) and 
the “GTPase associated center” (circled 4), and 
potentially to back to the peptidyltransferase center 
as well through helices 91, 92 and ribosomal pro-
tein L3.  As such all of the functional centers of the 
ribosome can be linked by 5S rRNA.  
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