2007 年 4 月 April 2007

• 工程应用技术与实现• 文章编号: 1000—3428(2007)07—0229—03 文献标识码: A 中图分类号: TP391

基于激光视觉传感器的实时焊缝三维计算系统

徐培全¹,甘孝俭²,唐新华¹,芦凤桂¹,姚 舜¹

(1. 上海交通大学焊接研究所,上海 200030;2. 北京同财科技有限责任公司,北京 100089)

摘 要:构建了一种基于视觉传感的焊缝三维模型实时计算系统,包括图像采集程序、图像预处理程序、视觉计算焊缝三维模型程序以及 实时显示程序。在未焊接情况和 GTAW(钨极氩弧焊)条件下进行试验,结果表明,该系统可以实时地获得被检测焊缝的三维模型,精度能 够满足焊接需要,处理速度可以达到 20fps,为焊缝自主跟踪奠定了基础。 关键词:焊缝三维模型;视觉传感;实时控制

Real-time Welded Seam 3D Calculation System Based on Laser Vision Sensor

XU Peiquan¹, GAN Xiaojian², TANG Xinhua¹, LU Fenggui¹, YAO Shun¹

(1. Welding Engineering Institute, Shanghai Jiaotong University, Shanghai 200030; 2. Beijing Tongcai Technology Co., Ltd., Beijing 100089)

(Abstract) Software system for real-time welded seam 3D model based on vision sensor is constructed, which includes image acquisition, image pre-processing, 3D calculation and real-time control etc. The software and 3D model are confirmed under the condition of no arc and GTAW condition. The results show: this software system could be used to calculate 3D of welded seam in real-time with adequate precision. The velocity for image processing attains 20 frames per second, and lays fundamental for welded seam tracking.

[Key words] Welded seam 3D model; Vision Sensing; Real-time control

随着计算机技术和机器人技术在视觉系统方向的发展, 基于视觉的焊接机器人系统在工业自动化领域得到越来越广 泛的应用^[1,2]。然而,焊接过程提升到自动化和人工智能水平 还需要焊缝信息识别、定位与跟踪技术的相应发展。在已经 开发的基于VC、LABVIEW等软件平台的焊缝自动识别与跟 踪系统,焊缝三维坐标的建模和软件实现一直是一个难题, 通常利用三角测量原理或者阴影恢复深度、立体视觉等技术。 但这些技术由于本身测量原理的限制,因此无法实现真正意 义上的坐标计算^[3,4]。

本文开发了一种新型的视觉传感器,改善了传统的点状 或线条状激光视觉传感器信息量少、解释模糊以及跟踪方向 单一等问题。建立了焊缝三维坐标计算模型,并在 VC 平台 上开发了焊缝三维坐标计算算法。实时地实现了从焊接图像 采集、图像预处理、三位恢复与显示等模块。为基于视觉的 焊缝识别与实时跟踪奠定了基础。

1 焊缝三维坐标计算原理

为了获得被焊工件的三维信息,检测激光轨迹的成像过 程被分为2个阶段:(1)激光从激光二极管发射、激光轨迹投 射到被焊工件上;(2)激光轨迹在被焊工件表面漫反射在面阵 CCD 摄像机中的成像过程。模型构建过程的原则是将所有点 坐标、直线方程经过坐标系变换关系转换到激光锥体坐标 系下。

(1)从光线接收系统来考虑,设 $P(x_L, y_L, z_L)$ 为激光轨迹与工件的交点(即激光投射到工件上的点)在激光锥体坐标系中的坐标,其在像平面中的成像点在摄像机坐标系中的坐标为 $P'(x_{pixle}, y_{pixel})$,根据空间投影关系与摄像机成像定律,

像点在激光锥体坐标系中的坐标 $P'(x_L, y_L, z_L)$ 由下式计算

$$\begin{cases} x_{L}' = -x_{c} \cdot \cos \beta + l \cdot \sin \beta \\ y_{L}' = -y_{c} \\ z_{L}' = l \cdot \cos \beta + x_{c} \cdot \sin \beta \end{cases}$$
(1)

其中 , / 是激光锥体坐标系坐标原点与摄像机坐标系原点之间 的距离。

令 *l*' 是激光锥体坐标原点与摄像机镜头中心之间的距 离;则镜头中心点在激光锥体坐标系中的坐标为 *O*'(*l*'sin β,0,*l*'cos β),而且由于传感器总体相对位置不变, 因此该点是恒定的。根据摄像机成像原理,在激光锥体坐标 系下,物点 *P*、像点 P'和镜头中心 O'必在同一条光线上, 所有的这样的光线组合在一起的光线簇,就构成了环形激光 的空间投影。空间直线 PP'属于经过 P'点和 O'点的直线 簇,即

$$\{l\}, \frac{x - l' \sin \beta}{m} = \frac{y}{n} = \frac{z - l' \cos \beta}{p}$$
(2)

其中, m, n n p 是空间直线沿 x、 y 和 z 3 个方向的单位 矢量。用矢量 $\vec{s} = {\vec{m}, \vec{n}, \vec{p}}$ 表示,由 P 点和 O 点坐标决定, 很明显,物点 P 也属于上述方程并由该方程确定其坐标。

(2)考虑环形激光形成原理,根据激光旋转机构的设计模式,激光锥体坐标系中的每一个点都有唯一确定的半径(r)

基金项目:中德国际科技合作基金资助重点项目"船舶大功率激光 建造技术"(2004DFA02400);上海市科委科研计划基金资助项目 (036105001)

作者简介:徐培全(1978-),男,博士生,主研方向:智能化焊接机 器人系统及机器视觉;甘孝俭,工程师;唐新华,博士、副教授; 芦凤桂,讲师;姚 舜,教授、博导

收稿日期:2006-04-29 E-mail:xupeiquan7810@sjtu.edu.cn

与之一一对应。因此,激光锥体坐标系中任一点坐标x_L,y_L, z_L 与半径r的关系方程构建如下

$$(x-r)^2 + y^2 = r^2$$
(3)

其实,该方程也是激光投射模型中锥体方程的一部分。 纯数学的角度来讲,属于锥体曲线方程。

北奴子的用反木研,属」 谁体画系 当 $x_{r} \neq 0$ 时

$$r = \frac{x_L^2 + y_L^2}{2x_I}$$
(4)

根据环形激光设计原理及激光锥体投射规律,试验中任 一半径 r、该点深度 z_L与传感器设计半径 r₀之间的关系可由 下式表示

$$z_{L} = \frac{175(r_{0} - r)}{r_{0}}$$
(5)

当 $x_L = 0$,深度恢复利用激光三角测量原理来实现,模型如下

$$z_{L} = \frac{(l' - f) \cdot \Delta}{f \cdot \sin \beta + |\Delta| \cdot \cos \beta} \tag{6}$$

其中 *f*是镜头焦距; Δ 是激光像点在摄象机坐标系中沿 *x* 轴 方向的移动距离。在视觉传感器框架内,环形激光发生器和 接受器(CCD摄像机)之间的空间关系是固定的。不论被检测 的焊缝表面形状如何变化,符合条件 *x_L*=0 的激光轨迹总是 垂直于水平面的,随着被检测焊缝表面高度的变化,该激光 点总是沿着 *z* 轴方向变化,相应地,其在摄象机坐标系中的 像点也仅仅沿着 *x* 轴发生变化,即 $\Delta = x_{u0} - x_c$, *x_c*是高度变 化时的坐标。 *x_{u0}* 是标准点在摄象机中的成像坐标。当 *x_c* < *x_{u0}* ,表明被检测点在摄象机坐标系的像素坐标位于标 准坐标点的左侧,即高度减小,高度值由式(11)决定,反之, 当*x_c* < *x_{u0}*时,则表明被检测点高度升高。这样,结合式(2)、 式(4)~式(6)即可获得焊缝的三维信息。

2 实时计算软件系统

焊缝三维坐标实时计算软件系统包括图像采集、图像滤 波、图像分割、图像反色、图像细化以及三维坐标计算及显 示等模块。

2.1 图像采集

在图像采集中,在构造函数中设置初始化变量,其中指 向图像的指针和图像缓冲区的指针,并打开图像采集卡,在 析构函数关闭图像采集卡并收回缓冲区,这样就能够保证图 像的实时采集,代码如下:

构造函数:

CMainFrame::CMainFrame() {//初始化变量 CGSTATUS status = CG_OK; m_pBmpInfo = NULL; m_pImageBuffer = NULL; //打开图像采集卡 status = BeginCGCard(1, &m_hcg); //检验函数执行状态,如果失败,则返回错误状态消息框 CG_VERIFY(status); }

析构函数:

CMainFrame::~CMainFrame() {CGSTATUS status = CG_OK; //关闭图像卡,释放图像卡内部资源 status = EndCGCard(m_hcg); CG_VERIFY(status); //回收图像缓冲区

if (m_pImageBuffer) {

delete []m_pImageBuffer; }

}

在工业中,利用的图像是 8 位的灰度图,需要利用 CGSetVideoFormat()函数设置采集格式。并为图像设置调色 板、定义 256 色查找表,代码如下:

CGSetVideoFormat(m_hcg, ALL8BIT); //初始化 BITMAPINFO 结构,此结构在保存 bmp 文件、显示采

//集图像时使用

m_pBmpInfo->bmiHeader.biBitCount = 8;

由于是 8 位灰度图像,因此需要设置相应的 bmp 格式的 调色板,代码如下:

for (int i = 0; i < 256; i++)

m_pBmpInfo->bmiColors[i].rgbBlue= (BYTE)i;

m_pBmpInfo->bmiColors[i].rgbGreen = (BYTE)i;

m_pBmpInfo->bmiColors[i].rgbRed = (BYTE)i;

m_pBmpInfo->bmiColors[i].rgbReserved = 0; }

2.2 图像预处理

由于焊接过程中存在着干扰,因此待检测焊缝图像的质 量下降,有必要对图像进行预处理,从中分割出能够表示焊 缝三维坐标的特征。主要包括图像滤波、图像分割、图像反 色与图像细化。其中图像分割利用了主动光视觉的特点,分 别实现了弧光条件下和无弧光条件下的焊缝图像分割。

2.3 焊缝三维模型计算

焊缝三维坐标的计算过程包括焊缝定位(寻找焊缝特征 点)和特征点三维计算两个过程。

(1)通过焊缝位置的差分算法对焊缝的特征点进行定位, 获取焊缝特征点在图像坐标系中的像素坐标,并根据坐标变 换关系将其转化为激光锥体坐标系下的坐标。主要代码如下:

```
for (i = 0; i < m_lHeight; i ++)
     for (j = 0; j < m_lWidth; j ++)
lpSrc = (unsigned char *)m_lpDIBBits + lLineBytes * i + j;
if (*(lpSrc) == 0)
{ // 计数加 1
    lCount++;
if (*(lpSrc) == 0 && *(lpSrc - lLineBytes ) == 255 &&
      \dots \&\& (lpSrc + lLineBytes - 1) == 0)
      { // 定位 A,B 点像素坐标
            m_lPixelX1[k1] = j;
            m_lPixelY1[k1] = m_lHeight - i;
            k1 = k1 + 1; }
if (*(lpSrc) == 0 && *(lpSrc + lLineBytes) == 255 &&
         .....&& *(lpSrc - lLineBytes - 1) == 0)
            {// 定位 C,D 点像素坐标
              m_lPixelX2[k2] = j;
              m_lPixelY2[k2] = m_lHeight - i;
              k2 = k2 + 1; \}
}}}
```

(2)根据三维坐标计算算法,实时获得焊缝特征点的三维 坐标。具体为,如果检测点 x 坐标不为 0,则利用提出的算 法计算深度信息。当 x 为 0 时,利用三角测量原理计算深度 信息。

m_lLaserConeY[i] = -m_lPixToMY[i]; B = 2 * r0 * (m_lPixToMX[i] - H0 * tan(beta)); C = H0 * m_lPixToMY[i] * m_lPixToMY[i] * tan(beta); if (B * B - 4 * A * C < 0) { m_lLaserConeX[i] = -B/ (2 * A);}

```
else
{m_ILaserConeX[i] = (-B - sqrt(B * B - 4 * A * C))/(2 * A);
}
if (m_ILaserConeX[i] == 0)
{delta[i] = (m_IPixelX[i] - u0)/sx;
m_ILaserConeZ[i] = delta[i] * (Ca_BM - f)/(f * sin(beta) +
delta[i] * cos(beta)); }
else {
r[i] =(m_ILaserConeX[i]*m_ILaserConeX[i]+ m_ILaser
ConeY[i] * m_ILaserConeY[i])/(2 * m_ILaserConeX[i]+ m_ILaser
ConeY[i] * m_ILaserConeY[i])/(2 * m_ILaserConeX[i];
m_ILaserConeZ[i] = H0 * (r0 - r[i])/ r0;}
2.4 屏幕实时显示图像及三维数据
利用 StretchDIBits()函数将处理后的图像从内存显示到
屏幕 , 从预处理后的图像计算三维坐标的程序则在后台计算
并在对话框中实时显示。
```

StretchDIBits(pDC->GetSafeHdc(), 0, 0,

```
400, //显示窗口宽度
```

```
300, //显示窗口高度
```

0, 0,

```
400, //图像宽度
```

300, //图像高度

m_pImageBuffer, //图像缓冲区

m_pBmpInfo, //BMP 图像描述信息

DIB_RGB_COLORS, SRCCOPY);

由于视频选用 PAL 制式,只要图像处理时间小于 1/25s, 即 40ms,因此可以实现焊缝三维坐标的实时提取并实时显示 特征提取后的图像。

3试验结果

在 GTAW 焊接弧光条件下和无弧光条件下分别实现了焊 缝的定位与三维检测。如图 1、图 2 所示。

图1 无弧光条件下焊缝图像

像 图 2 焊接条件下焊缝图像

(上接第 228 页)

5 设计实现

采用 Verilog HDL 为设计描述语言, Cadence 公司的 NC Simulator 为仿真分析平台,并采用 Altera 公司的 QuartusII 及 CycloneII 系列 FPGA 进行了硬件下载与测试。与未采用 反相计算的方案相比,节省硬件资源约 40%,译码速度提高 约 60%。

6 结束语

通过采用反相计算策略减少 SOVA 运算过程中数据的存储量,以及采用流水线策略降低 Turbo 译码器译码时延,设计并实现了一种低功耗、高速度的 Turbo 译码器。采用 VerilogHDL 语言设计及 Cadence 公司的 NC Simulator 仿真结 果表明,本文提出的减少硬件资源消耗、降低系统功耗及采 用流水线提高译码速度的方案在降低功耗的同时提高了 Turbo 译码器的译码速度,达到了低功耗、高速的译码性能, 适用于移动通信终端设备的开发与应用。

参考文献

 Berrou C, Glavieux A. Near Optimum Error Correcting Coding and Decoding: Turbo-codes[J]. IEEE Trans. on Communications, 1996, 根据三维坐标算法,计算结果如图 3 所示。从图 3 中可 以看出,所编写的程序识别出了焊缝的特征点,计算了激光 锥体坐标系下的三维坐标,将其转化为机器人坐标系下的三 维坐标。同时,根据识别出的特征点及其三维坐标,计算对 接焊缝的间隙宽度。

mage Sensitivity Coord	Real-time SHOW			Open
Points: Kplxel1: /pixel1:				IngShow
aser Cone Coord				Stap
YL1:				ScamTracking
lobot Base Coordinate XW1:				
YW1:				Robot Name
	Weld Torch Data		Robot Parameters	Connection 1 Transford And Andrew
lobot Base Coordinate	x	01:		Control. Boot : 7
boel_Num:	Y:	02:	opeeu	Cont. System : 7
an Middle	7	03:	_	840 B-1-1-1-1

图 3 焊缝特征点三维坐标计算结果示意图

4 结论

在开发的基于视觉传感的焊缝跟踪系统基础上,提出了 焊缝三维坐标的计算模型,试验结果表明,所构建的软件系 统能够正确实时地实现图像的采集、预处理、三维坐标计算 等任务,满足工业要求。

参考文献

- 1 孙立新,韩 炜,刘冰清.结构光焊缝检测传感器设计理论的研 究[J].光学学报,2003,23(2):225-230.
- 2 吴 林,陈善本.智能化焊接技术[M].北京:国防工业出版社, 2000.
- 3 林 锋,陈一民,熊玉梅. 多传感器技术在机器人系统中的应用 和研究[J]. 计算机工程,2005,31(1):203-205.
- 4 Agapiou G, Kasiouras C, Serafetinides A. A Detailed Analysis of the MIG Spectrum for the Development of Laser-based Seam Tracking Sensors[J]. Optics and Laser Technology, 1999, 31(2): 157-161.

44(10): 1261-1271.

- 2 Viterbi A J. Error Bounds for Convolutional Coding and An Asymptotically Optimum Decoding Algorithm[J]. IEEE Trans. on Information Theory, 1967, 13(2): 260-269.
- 3 Hagenauer J, Hoecher P. A Viterbi Algorithm with Soft-decision Outputs and Its Applications[C]//Proceedings of IEEE Global Telecommunications Conference. 1989: 4711-4717.
- 4 Andersen J D, Zyablow V V. Interleaver Design for Turbo Coding[C]// Proceedings of International Symposium on Turbo Codes and Related Topics, Brest. 1997: 154 -156.
- 5 Wang Zhongfeng, Parhi K K. High Performance, High Throughput Turbo/SOVA Decoder Design[J]. IEEE Trans. on Communications, 2003, 51(4): 570-579.
- 6 Ali G, Huang Chuanxiu. Improvements in SOVA-based Decoding for Turbo-coded Storage Channels[J]. IEEE Transactions on Magnetics, 2005, 41(12): 4435-4442.
- 7 易清明, 谢胜利. 一种节省存储量的 SOVA 子译码器 IP 核的设 计[J]. 微电子学, 2006, 36(10): 68-71.

—1—