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Abstract

A (public key) Trace and Revoke Scheme combines the functionality of broadcast encryption
with the capability of traitor tracing. Specifically, (1) a trusted center publishes a single public
key and distributes individual secret keys to the users of the system; (2) anybody can encrypt a
message so that all but a specified subset of “revoked” users can decrypt the resulting ciphertext;
and (3) if a (small) group of users combine their secret keys to produce a “pirate decoder”, the
center can trace at least one of the “traitors” given access to this decoder.

We construct the first chosen ciphertext (CCA2) secure Trace and Revoke Scheme based
on the DDH assumption. Our scheme is also the first adaptively secure scheme, allowing the
adversary to corrupt players at any point during execution, while prior works (e.g., [19, 21])
only achieves a very weak form of non-adaptive security even against chosen plaintext attacks.
In fact, no CCA2 scheme was known even in the symmetric setting.

Of independent interest, we present a slightly simpler construction that shows a “natural
separation” between the classical notion of CCA2 security and the recently proposed [20, 1]
relaxed notion of gCCA2 security.

1 Introduction

A broadcast encryption scheme allows the sender to securely distribute data to a dynamically
changing set of users over an insecure channel. Namely, it should be possible to selectively exclude
(i.e., “revoke”) a certain subset of users from receiving the data. For that reason, it is often
convenient to think of broadcast encryption as a revocation scheme, since the revocation ability is
what makes the task of broadcast encryption non-trivial. In particular, each user should receive an
individualized decoder (i.e., a decryption device with a unique secret key) which decrypts only the
ciphertexts intended for the given user. Broadcast encryption has numerous applications, including
pay-TV systems, distribution of copyrighted material, streaming audio/video and many others.

The formal study of broadcast encryption was initiated by Fiat and Naor [11], who showed
a scheme with message overhead roughly O(z2 log2 z logN), where z is the maximum number of
excluded users (so called revocation threshold) and N is the total number of users. Subsequent
works include [16, 15, 13], and, more recently, [18, 14] which show how to achieve linear message
overhead O(z) and ω(logN) storage per user.

?Extended version of [10].
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A related line of work concerns multicast security [22, 17, 23, 4, 5]. However, in this setting
revoking a single user involves changing the keys for all the users, which makes it inapplicable to
situations where the receivers are “stateless”, do not always stay “on-line”, or where the set of
receivers can change rapidly.

Most of the above works primarily concentrate on the centralized setting, where only the trusted
center (the entity who generates all the secret keys) can send messages to the receivers. In the public
key setting, studied in this paper, the center also prepares a fixed public key which allows any entity
to play the role of the sender. Aside from achieving this extra functionality, the public key setting
also allows the center to store secret keys in a more secure place than the station used for data
transmission (e.g., off-line), and access this storage only for “system maintenance” (e.g., when a
new user joins the system).

In the public key setting, the only known Broadcast Encryption Schemes have been constructed
by [19, 21] based on the DDH assumption, and achieve public key and message overhead O(z). In
fact, these schemes are essentially identical: in the following we will refer to the work of [21], who
emphasize more the public key nature of their scheme.

Concurrently with the present work, Dodis and Fazio [9] extended the efficient scheme of [18] to
the asymmetric setting. The resulting public key Broadcast Encryption Scheme achieves constant
key size, while maintaining similar ciphertext expansion, but does not enjoy full CCA2 security:
in fact, it seems hard to obtain such a high level of security within the Subset Cover framework
of [18].

Some Criticism. Despite providing a simple and elegant scheme, the work of [21] has several
noticeable shortcomings. First, the given (informal) notion of security does not address the peculiar
features of the revocation setting. Indeed, to show the “security” of revocation, [21] shows the
following two claims: (1) the scheme is semantically secure when no users are revoked; (2) no set
of z a-priori fixed users can compute the secret key of another user. Clearly, these properties do
not imply the security notion we really care about and which informally states: (3) if the adversary
controls some setR of up to z revoked users, then the scheme remains semantically secure. Actually,
the scheme of [21] can be shown to satisfy the needed property (3) only when the set R is chosen
by the adversary non-adaptively, and in fact only if it is chosen before the adversary learns the
public key. Such weak non-adaptive security is clearly insufficient for realistic usages of a public
key revocation scheme.

Most importantly, the extended scheme of [21] is proven to be CCA2-secure when none of the
users is corrupted, but stops being such the moment just a single user is corrupted, even if this
user is immediately revoked for the rest of the protocol. Again, this is too weak — the scheme
should remain CCA2-secure even after many users have been revoked. As we will see, achieving this
strong type of security is very non-trivial, and requires a much more involved scheme than the one
proposed by [21].

Our Contributions. We introduce for the first time a precise formalization of an appropriate
notion of adaptive security for public key Broadcast Encryption Schemes, for both the CPA and
the CCA2 setting, which naturally models property (3) mentioned above. We construct the first
adaptive chosen ciphertext (CCA2) secure public key Broadcast Encryption Scheme under the DDH

assumption (with no random oracles). We remark that no CCA2-secure schemes were known even in
the symmetric setting. Moreover, it doesn’t seem obvious how to extend current symmetric schemes
(e.g. [18]) to meet the CCA2 notion. Our public key scheme is based on the regular Cramer-Shoup
encryption [7, 8], but our extension is non-trivial, as we have to resolve some difficulties inherent to
the Broadcast Encryption setting. Our CCA2-secure scheme requires a constant user storage and a
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public key size proportional to the revocation threshold z. The length of each ciphertext, and the
time to encrypt and decrypt a message are all proportional to O(z).

As a preliminary step, we show how to modify the CPA-scheme of [21] to achieve a much more
appropriate notion of adaptive security, while maintaining essentially the same efficiency in all the
parameters (up to a factor of 2).

Of independent interest, we also provide another scheme achieving a slightly weaker (but still
very strong) notion of generalized CCA2 security (gCCA2) [20, 1]. As argued in [1], the gCCA2

security is much more robust to syntactic changes, while still sufficient for all known uses of CCA2

security. Interestingly, all the examples separating CCA2- and gCCA2-secure encryption were “arti-
ficial” in a sense that they made a more complicated scheme from an already existing CCA2-secure
encryption. Our work shows the first “natural” separation, but for the setting of broadcast public
key encryption.

A Note on Traitor Tracing. As first explicitly noticed by Gafni et al. [12], Broadcast
Encryption is most useful when combined with a Traitor Tracing mechanism [6] by which the
center can extract the identity of (at least one) “pirate” from any illegal decoder produced combining
decryption equipments of a group of legal members (the “traitors”). By slightly modifying standard
tracing algorithms from previous weaker schemes (e.g. [19, 21] ), tracing algorithms can be added
to our schemes, thus yielding fully functional Trace and Revoke schemes [19]. However, we will
focus only on Broadcast Encryption (i.e. revocation), which is also the main novelty of this paper.

2 Notations and Basic Facts

Lagrange Interpolation in the Exponent. Let q be a prime and f(x) a polynomial of
degree z over Zq; let j0, . . . , jz be distinct elements of Zq, and let f0 = f(j0), . . . , fz = f(jz).
Using Lagrange Interpolation, we can express the polynomial as f(x) =

∑z
t=0(ft · λt(x)), where

λt(x) =
∏

0≤i6=t≤z
ji−x
ji−jt

, t = 0, . . . , z. We can now define the Lagrange Interpolation Operator as
follows:

LI(j0, . . . , jz; f0, . . . , fz)(x)
.
=

z∑

t=0

(ft · λt(x)).

Now, consider any cyclic group G of order q and a generator g of G. For any distinct values
j0, . . . , jz of Zq and (non necessarily distinct) elements v0, . . . , vz of G, let us define the Lagrange
Interpolation Operator in the Exponent as:

EXP-LI(j0, . . . , jz; v0, . . . , vz)(x)
.
= gLI(j0,...,jz ;loggv0,...,loggvz)(x) =

z∏

t=0

g(loggvt·λt(x)) =
z∏

t=0

v
λt(x)
t .

The last expression shows that the function EXP-LI is poly-time computable, despite being defined in
terms of discrete logarithms (which are usually hard to compute). We also remark on another useful
property of the above operator: EXP-LI(j0, . . . , jz; v

r
0, . . . , v

r
z)(x) = [EXP-LI(j0, . . . , jz; v0, . . . , vz)(x)]

r.
In what follows, we will refer to a function of the form gf(x), where f(x) is a polynomial, as an
EXP-polynomial.

DDH Assumption. The security of our schemes will rely on the Decisional Diffie-Hellman (DDH)
Assumption in the group G: namely, it is computationally hard to distinguish a random tuple
(g1, g2, u1, u2) of four independent elements in G from a random tuple satisfying logg1 u1 = logg2 u2

(for a survey, see [3]).
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A Probabilistic Lemma. The following useful lemma states that to estimate the difference
between two related experiments U1 and U2, it is sufficient to bound the probability of some event
F which “subsumes” all the differences between the experiments. Formally,

Lemma 1 If U1, U2 and F are events such that (U1 ∧ ¬F ) and (U2 ∧ ¬F ) are equivalent events,

then
∣
∣
∣Pr[U1]− Pr[U2]

∣
∣
∣ ≤ Pr[F ].

3 Definition of Broadcast Encryption Scheme

Since a public-key broadcast encryption is typically used by encrypting a session key s for the
privileged users (this encryption is called the enabling block), and then symmetrically encrypting
the “actual” message with s, we will often say that the goal of a Broadcast Encryption Scheme is
to encapsulate [8] a session key s, rather than to encrypt a message M .

Definition 2 (Broadcast Encryption Scheme)
A Broadcast Encryption Scheme BE is a 4-tuple of poly-time algorithms (KeyGen, Reg, Enc, Dec),
where:

• KeyGen, the key generation algorithm, is a probabilistic algorithm used by the center to set
up all the parameters of the scheme. KeyGen takes as input a security parameter 1λ and a
revocation threshold z (i.e. the maximum number of users that can be revoked) and generates
the public key PK and the master secret key SKBE.

• Reg, the registration algorithm, is a probabilistic algorithm used by the center to compute the
secret initialization data needed to construct a new decoder each time a new user subscribes
to the system. Reg receives as input the master key SKBE and a (new) index i associated with
the user; it returns the user’s secret key SKi.

• Enc, the encryption algorithm, is a probabilistic algorithm used to encapsulate a given session
key s within an enabling block T . Enc takes as input the public key PK, the session key s
and a set R of revoked users (with |R| ≤ z) and returns the enabling block T .

• Dec, the decryption algorithm, is a deterministic algorithm that takes as input the secret key
SKi of user i and the enabling block T and returns the session key s that was encapsulated
within T if i was a legitimate user when T was constructed, or the special symbol ⊥.

3.1 Security of Revocation

Intuitively, we would like to say that even if a malicious adversary A learns the secret keys of
at most z users, and these users are later revoked, then subsequent broadcasts do not leak any
information to such adversary. The security threat posed by such adversary is usually referred
to as Chosen Plaintext Attack (CPA), and a Broadcast Encryption Scheme withstanding such an
attack is said to be z-Resilient against CPA. It is well known that such an attack is not powerful
enough to model some realistic adversarial scenarios, e.g. in the presence of an insider who helps
the adversary to get decryptions of arbitrary ciphertexts.

To be on the safe side, it is possible to consider the Chosen Ciphertext Attack (CCA2) in which
the adversary is allowed to “play” with the decryption machinery as she wishes, subject only to
the condition that she doesn’t ask about enabling blocks closely related to her “challenge” T ∗. In
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formalizing the notion of “close relationship”, the usual treatment is to impose a minimal restriction
to the adversary, just disallowing her to submit the challenge itself to the decryption machinery. As
already noted in [20, 1], such a mild constraint does in turn restrict too much the class of schemes
that can be proven secure, excluding even schemes that ought to be considered secure under a more
intuitive notion. For this reason, it seems more reasonable to consider a variant of the CCA2, to
which we will refer to as Generalized Chosen Ciphertext Attack (gCCA2), following the terminology
introduced in [1].

In a Generalized Chosen Ciphertext Attack, the set of enabling blocks the adversary is forbidden
to ask about is defined in term of an efficiently computable equivalence relation <(·, ·). In fact, in the
case of a broadcast (as opposed to ordinary) encryption, there is no unique decryption machinery,
since the decryption algorithm can be used with the secret key of any legitimate user. For this
reason, in our setting we need to consider a family of efficient equivalence relations {<i(·, ·)}, one
for each user i. As in the regular case [1], the equivalence relation <i(·, ·) corresponding to each
user i needs to be i-decryption-respecting : equivalent enabling blocks under <i are guaranteed to
have exactly the same decryption according to the secret data of user i. Finally, this family should
form an explicit parameter of the scheme (i.e., one has to specify some decryption-respecting family
{<i} when proving the gCCA2 security of a given scheme).

Formal Model. We now formalize the above attack scenarios, starting with the CPA.

First, (PK,SKBE)← BE.KeyGen(1λ, z) is run and the adversary A is given the public key PK.
Then A enters the user corruption stage, where she is given oracle access to the User Corruption
Oracle CorSKBE

(·). This oracle receives as input the index i of the user to be corrupted, computes
SKi ← BE.Reg(SKBE, i) and returns the user’s secret key SKi. This oracle can be called adaptively
for at most z times. Let us say that at the end of this stage the set R of at most z users is corrupted.

In the second stage, a random bit σ is chosen, and A can query the Encryption Oracle (some-
times also called the left-or-right oracle) EPK,R,σ(·, ·) on any pair of session keys s0, s1.

1 This oracle
returns Enc(PK, sσ,R). Without loss of generality (see [2]), we can assume that the encryption
oracle is called exactly once, and returns to A the challenge enabling block T ∗. At the end of this
second stage, A outputs a bit σ∗ which she thinks is equal to σ. Define the advantage of A as
AdvCPA

BE,A(λ)
.
= |Pr(σ∗ = σ)− 1

2 |.

Additionally, in the case of a Chosen Ciphertext Attack (generalized or not), A has also access
to a Decryption Oracle DSKBE

(·, ·), which she can query on any pair 〈i, T 〉, where i is the index
of some user and T is any enabling block of her choice. A can call this oracle at any point
during the execution (i.e., both in the first and in the second stage, arbitrarily interleaved with
her other oracle calls). To prevent the adversary from directly decrypting her challenge T ∗, the
decryption oracle first checks whether <i(T , T ∗) holds2: if so, D outputs ⊥; if not, D computes
SKi ← BE.Reg(SKBE, i) and uses it to output BE.Dec(i, T ). As before, we define the corresponding

advantages Adv
gCCA2
BE,A (λ) and AdvCCA2

BE,A (λ).

Definition 3 (z-Resilience of a Broadcast Encryption Scheme)
Let µ ∈ {CPA, gCCA2,CCA2}. We say that a Broadcast Encryption Scheme BE is z-resilient
against a µ-type attack if the advantage, Adv

µ
BE,A(λ), of any probabilistic poly-time algorithm A is

a negligible function of λ.

1For the sake of generality, we could have allowed A to interleave the calls to CorSKBE
(i) and EPK,R,σ (where A

can choose any i’s and R’s only subject to i 6∈ R). However, this clumsier definition is easily seen to be equivalent to
the one we present.

2This preliminary check applies to the standard Chosen Ciphertext Attack as well, which corresponds to all the
<i’s being the equality relation.
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4 Revocation Schemes

In this section, we present three Broadcast Encryption Schemes, achieving z-resilience in an adap-
tive setting for the case of a CPA, gCCA2 and CCA2 attack respectively. Subsequent schemes build
on the previous one, in a incremental way, so that it is possible to obtain increasing security at the
cost of a slight efficiency loss.

Considering the subtlety of the arguments, our proofs follow the structural approach advocated
in [8] defining a sequence of attack games G0, G1, . . . , all operating over the same underlying
probability space. Starting from the actual adversarial game G0, we incrementally make slight
modifications to the behavior of the oracles, thus changing the way the adversary’s view is com-
puted, while maintaining the view’s distributions indistinguishable among the games. While this
structural approach takes more space to write down, it is much less error-prone and much more
understandable than a slicker “direct argument” (e.g., compare [7] and [8]).

4.1 z-Resilience against CPA attack

As a warm-up before addressing the more challenging case of chosen ciphertext security, we describe
a simpler CPA-secure scheme. Our scheme naturally builds upon previous works [19, 21], but
achieves a much more appropriate notion of adaptive security, which those previous schemes do not
enjoy.

The Key Generation Algorithm. The first step in the key generation algorithm KeyGen(1λ, z)
is to define a group G of order q, for a random λ-bit-long prime q such that p = 2q + 1 is also
prime, in which the DDH assumption is believed to hold. This is accomplished selecting a random
prime q with the above two properties and a random element g1 of order q modulo p: the group G
is then set to be the subgroup of Z∗p generated by g1, i.e. G = {gi1 mod p : i ∈ Zq} ⊂ Z∗p. A random
w ←R Zq is then chosen and used to compute g2 = gw1 . (In what follows, all computations are mod
q in the exponent, and mod p elsewhere.) Then, the key generation algorithm selects two random

z-degree polynomials3 Z1(ξ) and Z2(ξ) over Zq, and computes the values: h0
.
= g

Z1,0

1 ·g
Z2,0

2 , . . . , hz
.
=

g
Z1,z

1 · g
Z2,z

2 . Finally, the pair (PK,SKBE) is given in output, where PK
.
= 〈g1, g2, h0, . . . , hz〉 and

SKBE
.
= 〈Z1, Z2〉.

The Registration Algorithm. Each time a new user i > z (in all our schemes, we reserve the
first indices 0 . . . z for “special purposes”), decides to subscribe to the system, the center provides
him with a decoder box containing the secret key: SKi

.
= 〈i, Z1,i, Z2,i〉 .

The Encryption Algorithm. The encryption algorithm Enc is given in Figure 1. It receives as
input the public key PK, a session key s and a set R = {j1, . . . , jz} of revoked users and returns
the enabling block T . If there are less than z revoked users, the remaining indices are set to
1 . . . (z − |R|), which are never given to any “real” user.

The Decryption Algorithm. If a legitimate user i wants to recover the session key embedded
in the enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉, he can proceed as in Figure 2. If i is
a revoked user (i.e. i ∈ {j1, . . . , jz}), the algorithm fails in step D2, since the interpolation points
j1, . . . , jz, i are not pairwise distinct.

Security. As shown in the theorem below, the z-resilience of the above scheme relies on the
Decisional Diffie-Hellman (DDH) assumption.

3For conciseness, we will use the following notation: Z1,i
.
= Z1(i) and Z2,i

.
= Z2(i).
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E1. r1 ←R Zq

E2. u1 ← gr11

E3. u2 ← gr12

E4. Ht ← hr1t , t = 0 . . . z

E5. Hjt ← EXP-LI(0, . . . , z;H0, . . . , Hz)(jt), t = 1 . . . z

E6. S ← s ·H0

E7. T ← 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉

Figure 1: Encryption algorithm: Enc(PK, s,R)

D1. Hi ← u
Z1,i

1 · u
Z2,i

2

D2. s← S/EXP-LI(j1, . . . , jz, i;Hj1 , . . . , Hjz , Hi)(0)

Figure 2: Decryption algorithm (for user i) Dec(i, T )

Theorem 4 If the DDH problem is hard in G, then the above Broadcast Encryption Scheme is
z-resilient against chosen plaintext attacks. In particular, for all probabilistic poly-time algorithm
A, we have that AdvCPA

BE,A(λ) ≤ ν(λ).

Proof: We define a sequence of “indistinguishable” games G0, . . ., where G0 is the original game,
and the last game clearly gives no advantage to the adversary.

Game G0. In gameG0, A receives the public key PK and adaptively queries the corruption oracle
CorSKBE

(·). Then, she queries the encryption oracle EPK,R,σ(·,·) on (s0, s1), where R must contain
all users that A compromised through the oracle CorSKBE

(·); A receives back the enabling block
T ∗. At this point, A outputs her guess σ∗ ∈ {0, 1}. Let T0 be the event that σ = σ∗ in game G0.

Game G1. Game G1 is identical to game G0, except that, in game G1, step E4 of the encryption
algorithm in Figure 1, is replaced with the following:

E4′. Ht ← u
Z1,t

1 · u
Z2,t

2 , t = 0 . . . z

By the properties of the Lagrange Interpolation in the Exponent, it is clear that step E4′ computes
the same values Ht, t = 0 . . . z as step E4. The point of this change is just to make explicit any
functional dependency of the above quantities on u1 and u2. Let T1 be the event that σ = σ∗ in

game G1; clearly, it holds that Pr[T0] = Pr[T1] .

Game G2. To turn game G1 into game G2 we make another change to the encryption oracle used
in game G1. In game G2 steps E1, E3 are replaced with the following:

E1′. r1 ←R Zq, r2 ←R Zq \ {r1}

E3′. u2 ← gr22

Let T2 be the event that σ = σ∗ in game G2. Notice that while in game G1 the values u1 and
u2 are obtained using the same value r1, in game G2 they are independent subject to r1 6= r2.
Therefore, using a standard reduction argument, any non-negligible difference in behavior between
G1 and G2 can be used to construct a PPT algorithm A1 that is able to distinguish Diffie-Hellman

tuples from totally random tuples with non negligible advantage. Hence,
∣
∣Pr[T2]− Pr[T1]

∣
∣ ≤ ε1

for some negligible ε1.
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Game G3. To define game G3, we again modify the encryption oracle as follows:

E6′. e←R Zq, S ← ge1

Let T3 be the event that σ = σ∗ in game G3. Because of this last change, the challenge no
longer contains σ, nor does any other information in the adversary’s view; therefore, we have that

Pr[T3] =
1
2 . Moreover, we can prove (see Appendix 4.3, Lemma 9), that the adversary has the

same chances to guess σ in both game G2 and G3, i.e. Pr[T3] = Pr[T2] .

Finally, combining all the intermediate results together, we can conclude that adversary A’s
advantage is negligible; more precisely: AdvCPA

BE,A(λ) ≤ ε1.

A comparison with the CPA schemes of [19, 21]. Our CPA scheme extends those proposed
in [19, 21] by using two generators. This improvement turns out to be crucial: the adaptive security
of our CPA scheme hinges heavily upon this change. In particular, the presence of two generators
plays a key role in the reduction from the DDH problem mentioned in the description of game G2

in Theorem 4. More specifically, when setting up the simulation of the adaptive attack scenario
(defined in Section 3.1), the two distinct generators used in the public key of the scheme provide
the perfect place where to embed the first two elements g1 and g2 of the DDH “challenge” at hand.
Doing so, the simulator can choose the rest of the public key in a “honest” way, and hence it will
know all the corresponding secret keys (i.e. the polynomials Z1(ξ) and Z2(ξ)). This in turn allows
the simulator to answer any corruption query that the adversary may want to carry out before
querying the encryption oracle.
On the contrary, the use of a single generator in both CPA schemes of [19, 21] leads to a reduction
in which the simulator does not know the entire secret key (in particular, the constant term of
the secret polynomial is unknown to the simulator; cfr. Theorem 1 of [21]). As a consequence,
there seems to be no way to answer corruption queries, so that the adaptive attack scenario from
Section 3.1 cannot be properly simulated: thus the reduction argument does not go through.

4.2 z-Resilience against gCCA2 Attack

Once we have constructed a Broadcast Encryption Scheme z-resilient against CPA attacks, it is
natural to try to devise an extension achieving adaptive chosen ciphertext security. This was already
attempted by [21], but they do not elaborate (neither formally nor informally) on what an “adaptive
chosen ciphertext attack” on a Broadcast Encryption Scheme exactly is. As a consequence, in
Theorem 3 of [21], the authors only show the security of their scheme against an adversary that
does not participate in the system, wheareas (as we will argue at the end of this section) their
scheme is certainly not CCA2-secure with respect to even a single malicious revoked user.

To achieve CCA2 security, we will first try to apply the standard technique of [7, 8] to the
scheme presented in Section 4.1. Unfortunately, this natural approach does not completely solve
the CCA2 problem; still, it leads us to an interesting scheme that achieves the (sligthly weaker)
notion of generalized chosen ciphertext security.

The Key Generation Algorithm. As before, the first task of the key generation algorithm is
to select a random group G ⊂ Z∗p of prime order q and two random generators g1, g2 ∈ G. Then,
KeyGen selects six random z-degree polynomials4 X1(ξ), X2(ξ), Y1(ξ), Y2(ξ), Z1(ξ) and Z2(ξ) over

Zq, and computes the values ct
.
= g

X1,t

1 · g
X2,t

2 , dt
.
= g

Y1,t

1 · g
Y2,t

2 and ht
.
= g

Z1,t

1 · g
Z2,t

2 , for t = 0 . . . z.
4For conciseness, we will use the following notation: X1,i

.
= X1(i), X2,i

.
= X2(i), Y1,i

.
= Y1(i), Y2,i

.
= Y2(i), Z1,i

.
=

Z1(i) and Z2,i
.
= Z2(i).
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Finally, KeyGen chooses at random a hash function H from a family F of collision resistant hash
functions,5 and outputs the pair (PK,SKBE), where PK

.
= 〈g1, g2, c0, . . . , cz, d0, . . . , dz, h0, . . . , hz,

H〉 and SKBE
.
= 〈X1, X2, Y1, Y2, Z1, Z2〉.

The Registration Algorithm. Each time a new user i > z subscribes to the system, the center
provides him with a decoder box containing the secret key SKi

.
= 〈i,X1,i, X2,i, Y1,i, Y2,i, Z1,i, Z2,i〉.

The Encryption Algorithm. Using the idea of [7, 8], in order to obtain non-malleable cipher-
texts, we “tag” each encrypted message so that it can be verified before proceeding with the actual
decryption. In the broadcast encryption scenario, where each user has a different decryption key,
the tag cannot be a single point — we need to distribute an entire EXP-polynomial V(x). This is
accomplished appending z + 1 tags to the ciphertext: each user i first computes the tag vi using
his private key and then verifies the validity of the ciphertext by checking the interpolation of the
z + 1 values in point i against its vi.

The encryption algorithm Enc receives as input the public key PK, the session key s to be
embedded within the enabling block and a set R = {j1, . . . , jz} of revoked users. It proceeds as
described in Figure 3, and finally it outputs T .

E1. r1 ←R Zq

E2. u1 ← gr11

E3. u2 ← gr12

E4. Ht ← hr1t , t = 0 . . . z

E5. Hjt ← EXP-LI(0, . . . , z;H0, . . . , Hz)(jt), t = 1 . . . z

E6. S ← s ·H0

E7. α← H(S, u1, u2, (j1, Hj1), . . . , (jz, Hjz))

E8. vt ← cr1t · d
r1α
t , t = 0 . . . z

E9. T ← 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v0, . . . , vz〉

Figure 3: Encryption algorithm Enc(PK, s,R)

The Decryption Algorithm. If a legitimate user i wants to recover the session key embedded in
the enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v0, . . . , vz〉, he can proceed as in Figure 4.
If i is a revoked user, the algorithm fails in step D6, since the interpolation points j1, . . . , jz, i are
not pairwise distinct.

Security. As mentioned above, the presence of many decryption keys leads to the use of an
EXP-polynomial V(x) to tag the encryption of the message. This in turn makes the ciphertext
malleable: since each user i can verify the value of V(x) only in one point, the adversary can
modify the vj ’s values and construct a different EXP-polynomial V ′(x) intersecting V(x) at point
i — thus fooling user i to accept as valid a corrupted ciphertext. In the next section we show a
non-trivial solution to this problem; here, we assess the z-resilience of the Broadcast Encryption
Scheme presented above against a gCCA2 attack. As already discussed in Section 3.1, to this aim
it is necessary to introduce a family of equivalence relations {<i}: intuitively, two ciphertexts T
and T ′ are equivalent for user i if they have the same “data” components, and the tag “relevant
to user i” is correctly verified, i.e. vi = v′i (even though other “irrelevant” tags could be different).
Clearly, this relation is efficiently computable and i-decryption-respecting.

5Recall, it is hard to find x 6= y such that H(x) = H(y) for a random member H of F .
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D1. α← H(S, u1, u2, (j1, Hj1), . . . , (jz, Hjz))

D2. v̄i ← u
X1,i+Y1,iα

1 · u
X2,i+Y2,iα

2

D3. vi ← EXP-LI(0, . . . , z; v0, . . . , vz)(i)

D4. if vi = v̄i

D5. then Hi ← u
Z1,i

1 · u
Z2,i

2

D6. s← S/EXP-LI(j1, . . . , jz, i;Hj1 , . . . , Hjz , Hi)(0)

D7. return s

D8. else return ⊥

Figure 4: Decryption algorithm (for user i) Dec(i, T )

Definition 5 (Equivalence Relation)
Consider V(x) = EXP-LI(0, . . . , z; v0, . . . , vz)(x) and V

′(x) = EXP-LI(0, . . . , z; v′0, . . . , v
′
z)(x). Given

a user i, and the two enabling blocks T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v0, . . . , vz〉 and T ′ =
〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v

′
0, . . . , v

′
z〉, we say that T is equivalent to T ′ with respect to user

i, and we write <i(T , T ′), if the two EXP-polynomials V(x) and V ′(x) intersect at point i, i.e.
vi = V(i) = V

′(i) = v′i.

Theorem 6 If the DDH Problem is hard in G and H is chosen from a collision-resistant hash
functions family F , then the above Broadcast Encryption Scheme is z-resilient against generalized
chosen ciphertext attacks, under the family of equivalence relations {<i}.

Proof: To prove this theorem, we pursue the same approach as in the proof of Theorem 4, where
the starting scenario of the sequence of games is defined as in the definition of the adaptive gCCA2

attack.

Game G0. Recall that in game G0, A receives the public key PK and adaptively interleaves
queries to the corruption oracle CorSKBE

(·) with queries to the decryption oracle DSKBE
(·, ·). Then,

she queries the encryption oracle EPK,R,σ(·, ·) on (s0, s1), where R must contain all users that A
compromised through the oracle CorSKBE

(·); A receives back the enabling block T ∗. Then, A can
again query the decryption oracle DSKBE

(i, T ), restricted only in that ¬<i(T , T ∗). Finally, she
outputs her guess σ∗ ∈ {0, 1}. Let T0 be the event that σ = σ∗ in game G0.

Game G1. Game G1 is identical to game G0, except that, in game G1, steps E4, E8 of the
encryption algorithm in Figure 3, are replaced with the following:

E4′. Ht ← u
Z1,t

1 · u
Z2,t

2 , t = 0 . . . z

E8′. vt ← u
X1,t+Y1,tα
1 · u

X2,t+Y2,tα
2 t = 0 . . . z

By the properties of the Lagrange Interpolation in the Exponent, it is clear that step E4′

computes the same values Hjt , t = 0 . . . z as steps E4; similarly, step E8′ computes the same
values vt, t = 0 . . . z as step E8. The point of these changes is just to make explicit any functional
dependency of the above quantities on u1 and u2.

Let T1 be the event that σ = σ∗ in game G1. Clearly, it holds that Pr[T0] = Pr[T1] .

Game G2. To turn game G1 into game G2 we make another change to the encryption oracle used

10



in game G1. In game G2 steps E1, E3 are replaced with the following:

E1′. r1 ←R Zq, r2 ←R Zq \ {r1}

E3′. u2 ← gr22

Let T2 be the event that σ = σ∗ in game G2. Notice that while in game G1 the values u1

and u2 are obtained using the same value r1, in game G2 they are independent subject to r1 6= r2.
Therefore, using a standard reduction argument, any non-negligible difference in behavior between
G1 and G2 can be used to construct a PPT algorithm A1 that is able to distinguish Diffie-Hellman

tuples from totally random tuples with non negligible advantage. Hence,
∣
∣Pr[T2]− Pr[T1]

∣
∣ ≤ ε1

for some negligible ε1.

Game G3. To define game G3 we slightly modify the decryption oracle: instead of using the
algorithm in Figure 4, in game G3 steps D2, D4, D5 are replaced with the following:

D2′. v̄i ← u
(X1,i+Y1,iα)+(X2,i+Y2,iα)·w
1

D4′. if (u2 = uw1 ∧ vi = v̄i)

D5′. then Hi ← u
Z1,i+Z1,i·w
1

The rationale behind these changes is that we want to strengthen the condition that the enabling
block has to meet in order to be considered valid and hence to be decrypted. This will make it
easier to show the security of the scheme; however, for these changes to be useful, there should be
no observable difference in the way invalid enabling blocks are “caught” in games G2 and G3. To
make it formal, we now introduce the following two events: let T3 be the event that σ = σ∗ in game
G3, and let R3 be the event that A submits some decryption query that would have been decrypted
in game G2 but is rejected in game G3; in other words, R3 is the event that some decryption query
that would have passed the test in step D4 of the decryption oracle used in game G2, fails to pass
the test in step D4′ used in game G3. Clearly, G2 and G3 are identical until event R3 occurs;
hence, if R3 never occurs, the adversary has the same chances to win in both the two games, i.e.

(using Lemma 1) T3 ∧ ¬R3 ≡ T2 ∧ ¬R3 ⇒
∣
∣Pr[T3]− Pr[T2]

∣
∣ ≤ Pr[R3] .

To bound the last probability, we consider two more games, G4 and G5.

Game G4. To define game G4, we again modify the encryption oracle as follows:

E6′. e←R Zq, S ← ge1

Let T4 be the event that σ = σ∗ in game G4. Because of this last change, the challenge no
longer contains the bit σ, nor does any other information in the adversary’s view; therefore, we

have that Pr[T4] =
1
2 .

Let R4 be the event that A submits some decryption query that would have been decrypted in
game G2 but is rejected in game G4; in other words, R4 is the event that some decryption query
that would have passed the test in step D4 of the decryption oracle used in game G2, fails to pass
the test in step D4′ used in game G4. In Appendix 4.3, we prove (Lemma 10) that those events

happen with the same probability as the corresponding events of game G3, i.e. Pr[T4] = Pr[T3]

and Pr[R4] = Pr[R3] .

Game G5. In this game, we again modify the decryption algorithm, adding the following special
rejection rule, whose goal is to prevent the adversary from submitting illegal enabling blocks to the
decryption oracle, once she has received her challenge.

11



After A receives her challenge T ∗ = 〈S∗, u∗1, u
∗
2, (j

∗
1 , Hj∗

1
), . . . , (j∗z , Hj∗z ), v

∗
0, . . . , v

∗
z〉, the

decryption oracle rejects any query 〈i, T 〉, with T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v0 ,
. . . , vz〉 such that 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉 6=〈S

∗, u∗1, u
∗
2, (j

∗
1 , Hj∗

1
), . . . , (j∗z , Hj∗z )〉,

but α = α∗, and it does so before executing the test in step D4′.

Notice that in the gCCA2 setting the adversary is not allowed to query the decryption oracle
Dec(i, T ) on enabling blocks <i-equivalent to the challenge T

∗. Therefore, when the special rejection
rule is applied, we already know that it holds ¬<i(T , T ∗).

Let C5 be the event that the adversary submits a decryption query that is rejected using the
above special rejection rule; let R5 be the event that A submits some decryption query that would
have passed the test in step D4 of the decryption oracle used in game G2, but fails to pass the
test in step D4′ used in game G5. Notice that this implies that such a query passed the <i-
equivalence test and the special rejection rule, because otherwise step D4′ wouldn’t have been
executed. Clearly, G4 and G5 are identical until event C5 occurs, i.e. R5 ∧ ¬C5 ≡ R4 ∧ ¬C5 ⇒
∣
∣Pr[R5]− Pr[R4]

∣
∣ ≤ Pr[C5] , where the implication follows from Lemma 1.

Our final task is to show that events C5 and R5 occur with negligible probability: while the
argument to bound event C5 is based on the collision resistance assumption for the family F (using
a standard reduction argument, we can construct a PPT algorithm A2 that breaks the collision
resistance assumption with non negligible advantage), the argument to bound event R5 hinges upon
the fact that the adversary is not allowed to submit queries that are “<i-related” to her challenge,
and upon information-theoretic considerations (as proven in Appendix 4.3, Lemma 11). From these

considerations, we obtain that Pr[C5] ≤ ε2 and Pr[R5] ≤
QA(λ)

q
, where ε2 is a negligible quantity

and QA(λ) is an upper bound on the number of decryption queries made by the adversary.

Finally, combining the intermediate results, we can conclude that adversary A’s advantage is
negligible; more precisely: Adv

gCCA2
BE,A (λ) ≤ ε1 + ε2 +QA(λ)/q.

A comparison with the CCA2 attempt of [21]. As already noticed when describing the
encryption algorithm, in the broadcast encryption setting it is not safe to use a single point as
validating tag; it is for that reason that in our gCCA2 solution we use a validating EXP-polynomial
V(x). On the contrary, in [21] the authors didn’t recognize the inherent insecurity of using a single
tag and proposed a scheme that not only uses a single generator, but also tags ciphertexts with
just one point. Consequently, the information distributed to the users of the system to enable
them to check the validity of a given ciphertext (namely, x1, x2, y1, y2 in the notation of [21]) is
the same for all participants. To verify the validity of a ciphertext T , a user recomputes the tag
v̄ = F x1+y1α

a ·F x2+y2α
b from quantities present in the ciphertext itself and from the secret information

x1, x2, y1, y2 (common to all users). The value v̄ is then compared against the tag v in T .

This means that revoking a user does not affect his/her ability to check the validity of a cipher-
text; furthermore, validating a ciphertext is effectively equivalent to computing the corresponding
tag. This implies that any revoked user is able to construct new, legal ciphertexts from any en-
crypted message; in other words, ciphertexts are malleable and hence the scheme cannot be CCA2

secure. More precisely, even an adversary that non-adaptively corrupts just a single user, can
break the scheme with a single decryption query: upon receiving the challenge ciphertext from the
encryption oracle, the adversary changes it in some easily-reversible way, computes the proper tag
(exploiting the knowledge of x1, x2, y1, y2 that she got from the revoked user) and asks the decryp-
tion oracle to decrypt such modified ciphertext. Once the adversary gets the decrypted message
back, she can easily tell which message was hidden within her challenge, breaking the scheme.

12



4.3 z-Resilience against CCA2 Attack

In Section 4.2, we saw how a direct application of the standard technique of [7, 8] does not provide
a complete solution to the CCA2 problem, but only suffices for gCCA2 security. As proven in
Lemma 11 (see Appendix 4.3), the restriction imposed by the gCCA2 attack (namely, forbidding
the adversary to submit decryption queries 〈i, T 〉 such that <i(T , T ∗) holds) is essential for the
security of the previous Broadcast Encryption Scheme. Indeed, given a challenge T ∗ with tag
sequence v0 . . . vz, it is trivial to come up with a different sequence v′0 . . . v

′
z such that vi = v′i,

resulting in a “different” enabling block T ′ 6= T ∗: however, Dec(i, T ∗) = Dec(i, T ′), allowing the
adversary to “break” the CCA2 security.

Although we feel that gCCA2 security is enough for most applications of Broadcast Encryption
Schemes, it is possible to non-trivially modify the Broadcast Encryption Scheme presented in
Section 4.2 to obtain CCA2 security (with only a slight efficiency loss). The modified scheme,
presented in this section, maintains the same Key Generation and Registration algorithms described
before; the essential modifications involve the operations used to construct the enabling block. In
particular, to achieve CCA2 security, it is necessary to come up with some trick to make the tag
sequence v0, . . . , vz non-malleable. To this aim, we will use any secure (deterministic) message
authentication code (MAC) to guarantee the integrity of the entire sequence. In fact, we only
need any one-time MAC, satisfying the following simple property: given a (unique) correct value
MACk(M) for some message M (under key k), it is infeasible to come up with a correct (unique)
value of MACk(M

′), for any M ′ 6= M .

The Encryption Algorithm. The encryption algorithm Enc receives as input the public key
PK, the session key s to be embedded within the enabling block and a set R = {j1, . . . , jz} of
revoked users. To construct the enabling block T , the encryption algorithm (defined in Figure 3)
operates similarly to the gCCA2 encryption algorithm: the main difference is that now a MAC key
k, randomly chosen from the MAC key space K, is used to MAC the tag sequence v0, . . . , vz, and is
encapsulated within T along with the session key s.

E1. r1 ←R Zq

E2. u1 ← gr11

E3. u2 ← gr12

E4. Ht ← hr1t , t = 0 . . . z

E5. Hjt ← EXP-LI(0, . . . , z;H0, . . . , Hz)(jt), t = 1 . . . z

E6. k ←R K

E7. S ← (s ‖ k) ·H0

E8. α← H(S, u1, u2, (j1, Hj1), . . . , (jz, Hjz))

E9. vt ← cr1t · d
r1α
t , t = 0 . . . z

E10. τ ← MACk(v0, . . . , vz)

E11. T ← 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz), v0, . . . , vz, τ〉

Figure 5: Encryption algorithm Enc(PK, s,R)

The Decryption Algorithm. If a legitimate user i wants to recover the session key embedded
in the enabling block T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉, he can proceed as in Figure 6. If i is
a revoked user, the algorithm fails in step D6, since the interpolation points j1, . . . , jz, i are not
pairwise distinct.
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D1. α← H(S, u1, u2, (j1, Hj1), . . . , (jz, Hjz))

D2. v̄i ← u
X1,i+Y1,iα

1 · u
X2,i+Y2,iα

2

D3. vi ← EXP-LI(0, . . . , z; v0, . . . , vz)(i)

D4. if vi = v̄i

D5. then Hi ← u
Z1,i

1 · u
Z2,i

2

D6. s ‖ k ← S/EXP-LI(j1, . . . , jz, i;Hj1 , . . . , Hjz , Hi)(0)

D7. extract s and k from s ‖ k

D8. if τ 6= MACk(v0, . . . , vz)

D9. then return ⊥

D10. else return s

D11. else return ⊥

Figure 6: Decryption algorithm (for user i) Dec(i, T )

Security. The security analysis for this scheme is very subtle, because there is the risk of circu-
larity in the use of the MAC key k. Namely, k is part of the ciphertext (since it is encapsulated,
along with the session key s, within S); this means that α, the hash of the ciphertext, depends on
k (at least Information-Theoretically), and thus the sequence of tags depends on k. In other words,
we are MAC-ing something that depends on the MAC key k, which could be a problem. Luckily,
the Information-Theoretic nature of the structural approach to the security analysis that we are
pursuing (following [8]) allows us to prove that actually k is completely hidden within S, so that
MAC-ing the resulting tag with k is still secure.

The solution to the CCA2 problem for Broadcast Encryption Schemes and the relative security
analysis can be viewed as the main technical contribution of this paper; at the same time, the
capability to resolve the apparent circularity in the use of the MAC demonstrates the importance
of providing a formal model and precise definitions, without which it would have been much harder
to devise a correct proof of security for the above scheme.

Theorem 7 If the DDH Problem is hard in G, H is chosen from a collision-resistant hash functions
family F and MAC is a one-time message authentication code, then the above Broadcast Encryption
Scheme is z-resilient against chosen ciphertext attacks.

Proof: The proof proceeds defining a sequence of games similar to that presented in Theorem 6.
The definition of games G0, . . . , G5 closely follow the exposition given in Theorem 6: however, the
statements of all lemmas (and their proofs) need to be changed to accommodate for the use of the
MAC. In particular, we can easily state and prove a lemma analogous to Lemma 10, where the only
difference is the presence of information about the MAC key k in the challenge (see Lemma 12).
More importantly, to bound the probability Pr[R5] we introduce a new game G6 to deal with the
use of the MAC in the enabling block, while a lemma similar to Lemma 11 is used to bound the
probability of event R6 defined in game G6 (see Appendix 4.3 for the details on the proofs).

Game G6. To define this game, we modify the decryption algorithm, adding the following second
special rejection rule, whose goal is to detect illegal enabling blocks submitted by the adversary to
the decryption oracle, once she has received her challenge. Notice that, while the special rejection
rule, defined in game G5, is used to reject adversary’s queries aiming at exploiting any weakness in
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the collision-resistant hash family F , the second special rejection rule is used to reject ciphertexts
aiming at exploiting any weakness in the MAC scheme.

After A receives her challenge T ∗ = 〈S∗, u∗1, u
∗
2, (j

∗
1 , Hj∗

1
), . . . , (j∗z , Hj∗z ), v

∗
0, . . . , v

∗
z , τ

∗〉,
the decryption oracle rejects any query 〈i, T 〉, with T = 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz),
v0, . . . , vz, τ〉 such that 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉 = 〈S∗, u∗1, u

∗
2, (j

∗
1 , Hj∗

1
), . . . ,

(j∗z , Hj∗z )〉 and (v0, . . . , vz) 6= (v∗0, . . . , v
∗
z), but τ = MACk∗(v0, . . . , vz), and it does so be-

fore executing the test in step D4′, and before applying the special rejection rule.

Let M6 be the event that the adversary submits a decryption query that is rejected in game G6

using the second special rejection rule; let C6 be the event that the adversary submits a decryption
query that is rejected in game G6 using the special rejection rule; let R6 be the event that A
submits some decryption query that would have passed both the test in step D4 and in step D8
of the decryption oracle used in game G2, but fails to pass the test in step D4′ used in game G6.
Notice that this implies that such a query passed both the second special rejection rule and the
special rejection rule, because otherwise step D4′ wouldn’t have been executed at all.

Event M6 is closely related to the security of the one time MAC used in the scheme; in particular,
any difference in behavior between gameG5 and gameG6 can be used to construct a PPT algorithm
A3 that is able to forge a legal authentication code under a one-message attack with non-negligible

probability, thus breaking the MAC scheme. Hence, Pr[M6] ≤ ε3 , for some negligible ε3.

Moreover, since G5 and G6 are identical until event M6 occurs, if it doesn’t occur at all, they
will proceed identically; i.e., by Lemma 1:

C6 ∧ ¬M6 ≡ C5 ∧ ¬M6 ⇒
∣
∣Pr[C6]− Pr[C5]

∣
∣ ≤ Pr[M6]

R6 ∧ ¬M6 ≡ R5 ∧ ¬M6 ⇒
∣
∣Pr[R6]− Pr[R5]

∣
∣ ≤ Pr[M6] .

Our final task is to bound the probability that events C6 and R6 occur: the argument to bound
Pr[C6] is based on the collision resistance assumption for the family F , while the argument to bound
Pr[R6] hinges upon information-theoretic considerations (as proven in Appendix 4.3, Lemma 13).

From those facts, we obtain that Pr[C6] ≤ ε2 and Pr[R6] ≤
QA(λ)

q
, where ε2 is a negligible quantity

and QA(λ) is an upper bound on the number of decryption queries made by the adversary.

Finally, combining the intermediate results, we can conclude that adversary A’s advantage is
negligible; more precisely: AdvCCA2

BE,A (λ) ≤ ε1 + ε2 + 2ε3 +QA(λ)/q.
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Appendix

The proofs of the following lemmas are based on the same techniques used in [8]; the main tool is
the following technical lemma.

Lemma 8 Let k,n be integers with 1 ≤ k ≤ n, and let K be a finite field. Consider a probability
space with random variables ~α ∈ Kn×1, ~β = (β1, . . . , βk)

T ∈ Kk×1, ~γ ∈ Kk×1, and M ∈ Kk×n, such
that ~α is uniformly distributed over Kn, ~β = M~α+~γ, and for 1 ≤ i ≤ k, the first ith rows of M and
~γ are determined by β1, . . . , βi−1. Then, conditioning on any fixed values of β1, . . . , βk−1 such that
the resulting matrix M has rank k, the value of βk is uniformly distributed over K in the resulting
conditional probability space.

In what follows, we will denote with Coins the coin tosses of A and we define

Xt
.
= X1,t + wX2,t, Yt

.
= Y1,t + wY2,t, Zt

.
= Z1,t + wZ2,t, t = 0 . . . z.

Proof of the Lemma stated in Theorem 4

Lemma 9 Pr[T4] = Pr[T3].

Proof: Consider the quantity V := (Coins, w,Z1, . . . ,Zz, σ, r
∗
1, r

∗
2) and the value Z0. According

to the specification of games G2 and G3, V and Z0 assume the same value in both games. Let
us now consider the value e∗ = logg1 S

∗: unlike the previous two quantities, e∗ assumes different
values in the above two games. In particular, while in game G2 e∗ contains information about the
session key sσ, in game G3 e∗ is just a random value: let us denote with [e∗]2 and [e∗]3 the values
of e∗ in game G2 and game G3, respectively.

By definition of game G2, event T2 solely depends on (V,Z0, [e
∗]2); similarly, by definition of

game G3, event T3 solely depends on (V,Z0, [e
∗]3). Moreover, event T2 depends on (V,Z0, [e

∗]2)
according to the same functional dependence of event T3 upon (V,Z0, [e

∗]3). Therefore, to prove
the lemma, it suffices to show that (V,Z0, [e

∗]2) and (V,Z0, [e
∗]3) have the same distribution.
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According to the specification of gameG3, [e
∗]3 is chosen uniformly over Zq, independently from

V and Z0. Hence, to reach the thesis, it suffices to prove that the distribution of [e∗]2, conditioned
on V and Z0, is also uniform in Zq.

In game G2, the quantities (V,Z0, [e
∗]2) are related according to the following matrix equation:

(
Z0

[e∗]2

)

=

(
1 w
r∗1 wr∗2

)

︸ ︷︷ ︸

M

·

(
Z1,0

Z2,0

)

+

(
0

logg1sσ

)

where det(M) = w(r∗2 − r∗1) 6= 0, since r∗2 6= r∗1.
As soon as we fix the value of V , the matrix M is completely fixed, but the values Z1,0 and Z2,0

are still uniformly and independently distributed over Zq. Now, fixing a value for Z0 also fixes a
value for sσ; hence, by Lemma 8, we can conclude that the conditioned distribution of [e∗]2, w.r.t.
V and Z0, is also uniform over Zq.

Proofs of Lemmas stated in Theorem 6

Lemma 10 Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3].

Proof: Consider the quantity:

V := (Coins,H, w,X1,0, X2,0, . . . , X1,z, X2,z, Y1,0, Y2,0, . . . , Y1,z, Y2,z,Z1, . . . ,Zz, σ, r
∗
1, r

∗
2)

and the value Z0. Introducing similar notations as in Lemma 9 and reasoning as above, we can
notice that event T3 solely depends on (V,Z0, [e

∗]3) and that event T4 solely depends on (V,Z0, [e
∗]4).

Moreover, event T3 depends on (V,Z0, [e
∗]3) according to the same functional dependence of event

T4 upon (V,Z0, [e
∗]4). The same considerations hold for events R3 and R4. Therefore, to prove the

lemma, it suffices to show that (V,Z0, [e
∗]3) and (V,Z0, [e

∗]4) have the same distribution.

According to the specification of gameG4, [e
∗]4 is chosen uniformly over Zq, independently from

V and Z0. Hence, to reach the thesis, it suffices to prove that the distribution of [e∗]3, conditioned
on V and Z0, is also uniform in Zq.

In game G3, the quantities (V,Z0, [e
∗]3) are related according to the following matrix equation:

(
Z0

[e∗]3

)

=

(
1 w
r∗1 wr∗2

)

︸ ︷︷ ︸

M

·

(
Z1,0

Z2,0

)

+

(
0

logg1sσ

)

where det(M) = w(r∗2 − r∗1) 6= 0, since r∗2 6= r∗1.
As soon as we fix the value of V , the matrix M is completely fixed, but the values Z1,0 and Z2,0

are still uniformly and independently distributed over Zq. Now, fixing a value for Z0 also fixes a
value for sσ; hence, by Lemma 8, we can conclude that the conditioned distribution of [e∗]3, w.r.t.
V and Z0, is also uniform over Zq.

Lemma 11 If QA(λ) is an upper bound on the number of decryption queries that A poses to the

decryption algorithm, then Pr[R5] ≤
QA(λ)

q
.

Proof: In what follows, for 1 ≤ j ≤ QA(λ), we will denote with R
(j)
5 the event that the jth

ciphertext 〈i, T 〉, submitted by A to the decryption oracle in game G5, fails to pass the test in step
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D4′, but would have passed the test in step D4 in game G2. Besides, for 1 ≤ j ≤ QA(λ), we will

denote with B
(j)
5 the event that the jth ciphertext is submitted to the decryption oracle before A

received her challenge, and with B̂
(j)
5 the event that the jth ciphertext is submitted to the decryption

oracle after A received her challenge. If we show that, for 1 ≤ j ≤ QA(λ), Pr[R
(j)
5 | B

(j)
5 ] ≤ 1

q
and

that Pr[R
(j)
5 | B̂

(j)
5 ] ≤ 1

q
, then the thesis will follow.

Claim.: Pr[R
(j)
5 | B

(j)
5 ] ≤ 1

q
.

To prove this claim, fix 1 ≤ j ≤ QA(λ) and consider the quantities:

V := (Coins,H, w,Z0, . . . ,Zz), V ′ := (X0, . . . ,Xz,Y0, . . . ,Yz).

These two quantities together contain all the randomness needed to determine the behavior of A
and of all the oracles she interacts with, up to the moment that A performs the encryption query:
once we fix V and V ′, we totally define how the adversary proceeds in her attack, before she receives

her challenge back. Moreover, fixing V and V ′, the event B
(j)
5 is completely defined: given V and

V ′, we say they are relevant, if the event B
(j)
5 occurs.

Hence, to reach the claim, it suffice to prove that the probability of event R
(j)
5 , conditioned on

any relevant values of V and V ′, is less then 1/q.

Recall that the condition tested in step D4′ in game G5 is (u2 = uw1 ∧ vi = v̄i): since we are
considering the case that the jth query fails to pass the test in step D4′, but would have passed the
test in stepD4 of gameG2, it must be the case that vi = v̄i but u2 6= uw1 . Therefore, we only consider
relevant values of V and V ′ such that u2 6= uw1 . Taking the logs (base g1), the condition u2 6= uw1
is equivalent to r1 6= r2 and the condition vi = v̄i is equivalent to βi = β̄i, where β̄i

.
= logg1 v̄i =

r1X1,i+wr2X2,i+αr1Y1,i+αwr2Y2,i and βi
.
= logg1 vi = LI(0, . . . , z; logg1v0, . . . , logg1vz)(i). Notice

that β̄i can be expressed in terms of the vector (X1,0, X2,0, . . . , X1,z, X2,z, Y1,0, Y2,0, . . . , Y1,z, Y2,z)
T ;

indeed, X1,i = LI(0, . . . , z;X1,0, . . . , X1,z)(i) =
∑z

t=0(X1,t · λt(i)), and similar relations hold for
X2,i, Y1,i and Y2,i. Therefore, by means of some matrix manipulation, we can write:

β̄i = ~δ · (X1,0, X2,0, . . . , X1,z, X2,z, Y1,0, Y2,0, . . . , Y1,z, Y2,z)
T

where ~δ ≡ (δ0, δ1, . . . , δ2z, δ2z+1, δ2z+2, δ2z+3, . . . , δ4z+2, δ4z+3) is defined as:

~δ
.
= (r1λ0(i), wr2λ0(i), . . . , r1λz(i), wr2λz(i), αr1λ0(i), αwr2λ0(i), . . . , αr1λz(i), αwr2λz(i)).

In game G5, the random values defined above are related according to the following matrix
equation:















X0
...
Xz

Y0
...
Yz

β̄i















=















1 w . . . 0 0 0 0 . . . 0 0
...

...
...

...
0 0 . . . 1 w 0 0 . . . 0 0
0 0 . . . 0 0 1 w . . . 0 0
...

...
...

...
0 0 . . . 0 0 0 0 . . . 1 w
δ0 δ1 . . . δ2z δ2z+1 δ2z+2 δ2z+3 . . . δ4z+2 δ4z+3















︸ ︷︷ ︸

M

·





















X1,0

X2,0
...

X1,z

X2,z

Y1,0

Y2,0
...

Y1,z

Y2,z




















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We want to show that the rank of the matrix M is 2z + 3. Clearly, the first 2z + 2 rows are
linearly independent; to see why the last row (i.e. the vector ~δ) is independent from the others,
notice that the only way to obtain δ0 is by multiplying the first row by r1λ0(i): doing so, the
second component of δ results to be wr1λ0(i). But since δ1 = wr2λ0(i), this implies that r1 = r2,
contradicting the assumption that the query fails to pass the test in step D4′ in game G5.

As soon as we fix V , the first 2z+2 rows of matrixM are fixed, but the valuesX1,0, X2,0, . . . , Y1,z ,

Y2,z are still uniformly and independently distributed over Zq; as for ~δ, its value is still undeter-
mined, since r1, r2 and i are not yet fixed. Now, fixing a value for V ′ such that V and V ′ are relevant
and that r1 6= r2, determines the value of the jth query (and hence the value of ~δ), along with the
values X0, . . . ,Xz,Y0, . . . ,Yz and β̄i. Therefore, by Lemma 8, we can conclude that the distribu-
tion of β̄i, conditioned on relevant values of V and V ′, is uniform over Zq; since conditioning on
any fixed, relevant value of V and V ′, βi is just a single point in Zq, it follows that Pr[βi = β̄i] =

1
q
.

Claim.: Pr[R
(j)
5 | B̂

(j)
5 ] ≤ 1

q
.

To prove this claim, fix 1 ≤ j ≤ QA(λ) and consider the quantities:

V := (Coins,H, w,Z0, . . . ,Zz, r
∗
1, r

∗
2, e

∗), V ′ := (X0, . . . ,Xz,Y0, . . . ,Yz, β
∗
i )

where β∗i
.
= logg1 v

∗
i = LI(0, . . . , z; logg1v

∗
0, . . . , logg1v

∗
z)(i) and i > z. Notice that by the specification

of the encryption oracle used in game G5, it holds that: logg1 v
∗
t = r∗1X1,t + wr∗2X2,t + α∗r∗1Y1,t +

α∗wr∗2Y2,t, t = 0, . . . , z. Therefore, we can write:

β∗i =
z∑

t=0

λt(i)(r
∗
1X1,t + wr∗2X2,t + α∗r∗1Y1,t + α∗wr∗2Y2,t).

Together, V and V ′ contain all the parameters needed to determine the behavior of A and of all
the oracles she interacts with: once we fix V and V ′, we totally define how the adversary proceeds

in the entire attack. Moreover, fixing V and V ′, the event B̂
(j)
5 is completely defined: given V and

V ′, we say they are relevant, if the event B̂
(j)
5 occurs.

Hence, to reach the claim, it suffices to prove that the probability of event R
(j)
5 , conditioned on

any relevant values of V and V ′, is less then 1/q.

As shown above, we can consider just relevant values of V and V ′ for which it holds that
u2 6= uw1 . Reasoning as in the previous case, and maintaining the notation introduced there, the
random values defined above are related according to the following matrix equation:

















X0
...
Xz

Y0
...
Yz

β∗i
β̄i

















=

















1 w . . . 0 0 0 0 . . . 0 0
...

...
...

...
0 0 . . . 1 w 0 0 . . . 0 0
0 0 . . . 0 0 1 w . . . 0 0
...

...
...

...
0 0 . . . 0 0 0 0 . . . 1 w
δ∗0 δ∗1 . . . δ∗2z δ∗2z+1 δ∗2z+2 δ∗2z+3 . . . δ∗4z+2 δ∗4z+3

δ0 δ1 . . . δ2z δ2z+1 δ2z+2 δ2z+3 . . . δ4z+2 δ4z+3

















︸ ︷︷ ︸

M

·





















X1,0

X2,0
...

X1,z

X2,z

Y1,0

Y2,0
...

Y1,z

Y2,z




















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where ~δ∗ ≡ (δ∗0 , δ
∗
1 , . . . , δ

∗
2z, δ

∗
2z+1, δ

∗
2z+2, δ

∗
2z+3, . . . , δ

∗
4z+2, δ

∗
4z+3) is defined as:

~δ∗
.
= (r∗1λ0(i), wr∗2λ0(i), . . . , r

∗
1λz(i), wr∗2λz(i), α

∗r∗1λ0(i), α
∗wr∗2λ0(i), . . . , α

∗r∗1λz(i), α
∗wr∗2λz(i)).

We want to show that the rank of the matrix M is 2z + 4. Clearly, the first 2z + 2 rows of M
are all linear independent. Moreover, as shown in the previous claim, both β∗i and β̄i are linearly
independent from the first 2z + 2 rows of M . Firstly, notice that the assumption that the j th

query 〈i, T 〉 is rejected in step D4′ of game G5, implies not only ¬<i(T , T ∗), but also that T
passed the special rejection rule; furthermore, we may assume that α 6= α∗, since otherwise the
only way T may have passed the special rejection rule is that 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉 =

〈S∗, u∗1, u
∗
2, (j

∗
1 , Hj∗

1
), . . . , (j∗z , Hj∗z )〉. But this on one hand entails ~δ∗ = ~δ, i.e. β∗i = β̄i, whereas on

the other hand implies that βi 6= β∗i (because otherwise T and T ∗ would be <i-related). Thus, if
α = α∗ then βi 6= β̄i, contradicting the assumption that the jth query 〈i, T 〉 would have passed the
test in step D4 in game G2.

In order to show that ~δ is linearly independent from the first 2z+3 rows, observe that the only
way to obtain δ0 is by multiplying the first row by (r1 − r∗1)λ0(i) and ~δ∗ by 1; similarly, to obtain
δ2z+2 as a linear combination of the other elements in its column, we need to multiply the (z+2)th

row by α(r1 − r∗1)λ0(i) and ~δ∗ by α
α∗

: since α 6= α∗, α
α∗
6= 1 and so, ~δ is linearly independent from

all the other rows.

As soon as we fix V , the first 2z+2 rows of matrixM are fixed, but the valuesX1,0, X2,0, . . . , Y1,z ,
Y2,z are still uniformly and independently distributed over Zq; as for δ∗ and δ, their values are still
undetermined, since r∗1, r

∗
2, r1, r2 and i, are not yet fixed. Now, fixing a value for V ′ such that V

and V ′ are relevant and that r1 6= r2, also fixes the last 2 rows of matrix M along with the values
X0, . . . ,Xz,Y0, . . . ,Yz and β∗i ; hence, by Lemma 8, we can conclude that the distribution of β̄i,
conditioned on relevant values of V and V ′, is also uniform over Zq; since conditioning on any fixed,
relevant values of V and V ′, βi is just a single point in Zq, it follows that Pr[βi = β̄i] =

1
q
.

Proofs of Lemmas stated in Theorem 7

Lemma 12 Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3] .

Proof: Consider the quantities:

V := (Coins,H, w,X1,0, X2,0, . . . , X1,z, X2,z, Y1,0, Y2,0, . . . , Y1,z, Y2,z,Z1, . . . ,Zz, σ, r
∗
1, r

∗
2, k).

and the value Z0. We can repeat the same considerations stated in Lemma 10: the only difference
is that the quantities (V,Z0, [e

∗]3) characterizing game G3 are related according to the following
slightly different matrix equation:

(
Z0

[e∗]3

)

=

(
1 w
r∗1 wr∗2

)

︸ ︷︷ ︸

M

·

(
Z1,0

Z2,0

)

+

(
0

logg1(sσ‖k)

)

For the same reasons seen in Lemma 10, as soon as we fix a value for V , the matrix M is
completely fixed, as well as the value of k, but the values Z1,0 and Z2,0 are still uniformly and
independently distributed over Zq. Now, fixing a value for Z0 also fixes a value for sσ and hence
for logg1(sσ‖k); thus, by Lemma 8, the conditioned distribution of [e∗]3, w.r.t. V and Z0, is also
uniform over Zq.

21



Lemma 13 If QA(λ) is an upper bound on the number of decryption queries that A poses to the

decryption algorithm, then Pr[R6] ≤
QA(λ)

q
.

Proof: In what follows, for 1 ≤ j ≤ QA(λ), we will denote with R
(j)
6 the event that the jth

ciphertext 〈i, T 〉, submitted by A to the decryption oracle in game G6, fails to pass the test in
step D4′, but would have passed both tests in step D4 and in step D8 in game G2. Besides,

for 1 ≤ j ≤ QA(λ), we will denote with B
(j)
6 the event that the jth ciphertext is submitted

to the decryption oracle before A received her challenge, and with B̂
(j)
6 the event that the jth

ciphertext is submitted to the decryption oracle after A received her challenge. If we show that,

for 1 ≤ j ≤ QA(λ), Pr[R
(j)
6 | B

(j)
6 ] ≤ 1

q
and that Pr[R

(j)
6 | B̂

(j)
6 ] ≤ 1

q
, then the thesis will follow.

Claim.: Pr[R
(j)
6 | B

(j)
6 ] ≤ 1

q
.

This proof closely follows the one presented in Lemma 11, so we omit the details here.

Claim.: Pr[R
(j)
6 | B̂

(j)
6 ] ≤ 1

q
.

To prove this claim we proceed like in Lemma 11, fixing 1 ≤ j ≤ QA(λ) and considering the
quantities:

V := (Coins,H, w,Z0, . . . ,Zz, r
∗
1, r

∗
2, e

∗), V ′ := (X0, . . . ,Xz,Y0, . . . ,Yz, β
∗
i , k)

where we are maintaining all the notations introduced above.

Again, we can repeat exactly the same construction utilized in Lemma 11: the only difference
from the argument presented there is in the considerations aiming at showing that we can assume
that α 6= α∗; thus, we only need to justify this assumption in the new scenario, and the claim will
follow.

Under the assumptions that the jth query 〈i, T 〉 is rejected in step D4′ of game G6 but would
have been decrypted as valid in game G2, we can deduce that T passed both the second special re-
jection rule and the special rejection rule. We may also assume that α 6= α∗, since otherwise the only
way that T may have passed the special rejection rule is that 〈S, u1, u2, (j1, Hj1), . . . , (jz, Hjz)〉 =
〈S∗, u∗1, u

∗
2, (j

∗
1 , Hj∗

1
), . . . , (j∗z , Hj∗z )〉; but since T must differ from the challenge T ∗, then it must be

the case that (v0, . . . , vz) 6= (v∗0, . . . , v
∗
z), and so, from the fact that T passed the second special

rejection rule we get that τ 6= MACk∗(v0, . . . , vz), thus contradicting the assumption that the jth

query would have been decrypted in game G2 (since the test in step D8, for the validity of the tag
τ , would have failed).
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