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Abstract 
New type of elliptic curve point multiplication is proposed, where complex multiplication by 2−  or by 

2)71( −±  is used instead of point duplication. This allows speeding up multiplication about 1.34 times. Us-
ing higher radix makes it possible to use one point duplication instead of two and to speed-up computation about 
1.6 times. The method takes prime group order factorization: ρρ=r  and integer exponent reduction modulo 
quadratic prime ρ in the Euclidean imaginary quadratic ring. 
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1 Introduction 

Elliptic curves over finite fields were proposed in [4] and are widely used in cryptography, be-
cause they are relatively fast and provide exponential strength. They allow building a wide range of 
cryptographic primitives (digital signatures, public-key encryption, key agreement, zero-knowledge 
proofs, oblivious transfer, etc.). 

Elliptic curve points form Abelian group, which is cyclic or direct product of two cyclic groups 
[4]. Security of elliptic curve cryptosystems, such as ECDSS [1], public key encryption, Diffie — 
Hellman key agreement relies on the complexity of elliptic curve discrete logarithm problem 
(ECDLP): given elliptic curve E(Fq) over the field of q = pn elements, generator Q ∈ E(Fq) of prime 
order r and point P ∈ 〈Q〉 find an exponent l such that P = lQ. 

Generalized Pollard’s algorithm [6] of complexity )( rO  is the best known algorithm for solving 
ECDLP. If E(Fq) has efficiently counted non-trivial automorphism group, then this algorithm can be 
executed in two stages. The first one deals with orbits of the automorphism group and the second one 
refines logarithm with regard to the automorphism group [3]. Usually such automorphisms correspond 
to complex multiplication. 

For example, elliptic curve E(Fq): y2 = x3 + B, q ≡ 1 (mod 6), has automorphism: ϕ(x, y) = (ωx, –y), 
where ω2 – ω + 1 = 0 in Fq. If r2 does not divide #E(Fq), then ϕ acts in the cyclic subgroup of order r 
and ϕ6 ≡ 1 (mod r). Orbit cardinality of the affine points of this subgroup is equal to 6 for automor-
phism ϕ. Elements of the orbit have the same value x3 (and y2). There exists ρ ∈ Fr such that ρ6 = 1. If 
l denotes discrete logarithm of an arbitrary element of the orbit, then ρil (mod r) is discrete logarithm 
of any other element of the orbit. This property allows decreasing ECDLP problem complexity about 6  
times. Similarly, elliptic curve E(Fq): y2 = x3 + Ax, q ≡ 1 (mod 4), has automorphism: ϕ(x, y) = (–x, iy), 
where i2 = –1 in Fq. If r2 does not divide #E(Fq), then ϕ acts in the cyclic subgroup of order r and 
ϕ4 ≡ 1 (mod r). This property allows decreasing ECDLP problem complexity about 2 times. 

ECDLP is hard if the following conditions hold: 
− r is large prime (160 bits in ECDSS); 

− there is no Weil pairing injective homomorphism [5] from E(Fq) to any group  for small 

exponents n; 
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− there is no surjective homomorphism from E(Fq) to Fp [8]. 



2 Elliptic curve with complex multiplication by 2−  

Elliptic curve cryptosystem rate is dictated by the complexity of multiplication a point by a num-
ber. Usually this procedure is performed by duplications and additions [4]. For example, to compute 
25Q we represent 25 in binary: (11001)2 and then compute the chain: 23(2Q + Q) + Q. 

Point multiplication procedure allows further acceleration by higher radix exponent representation, 
combined with signed binary digits (0, 1, –1) [7]. 

Projective coordinates allow excluding inversion during duplication and addition; so inversion is 
needed only once, after all duplications and additions are done. Duplication (and addition) requires 
addition, subtraction and multiplication in Fq. The first two operations are of linear complexity and 
multiplication is of quadratic complexity, so the rate of elliptic curve arithmetic depends on the num-
ber of multiplications. Duplication and addition need 12 and 15 field multiplications respectively [7]. 

Two types of curves: with j = 0 and j = 1728 possess complex multiplication as shown above. The 
exponent k for these curves can be represented as k ≡ k0 + wk1 (mod r), where w is an eigenvalue of 
complex multiplication operator, and rk <0 , rk <1 . We can use common base of points Q, 2Q, 

..,  Qr 2log22  for k0 and k1. Point multiplication is performed in such a way: k0Q, k1Q, wk1Q, 
k0Q + wk1Q. This allows increasing the rate of multiplication [7]. 

We introduce a large class of elliptic curves with fast complex multiplication instead of duplica-
tion and a simple algorithm, establishing bijection between the field Fr and a subset of polynomials of 
degree  ≤ r – 1 over F3 = {–1, 0, 1}. 

Elliptic curve y2 = x3 + Ax2 + Bx has isogeny of degree 2. Consider a curve E(Fp) over prime finite 
field with one parameter t: 

 y2 = x3 – 4tx2 + 2t2x. (1) 

It is known [2] that if 

 p = a2 + 2b2, (2) 

then 

 #E(Fp) = (a ± 1)2 + 2b2. (3) 

The ring ]2[ −Z  is Euclidean and possesses unique factorization. So prime p has unique repre-
sentation of form (2) if and only if –2 is quadratic residue modulo p. Note that if in (2) a ≡ ±1 (mod 6) 
and b ≡ 3 (mod 6) then p ≡ 3 (mod 4) and #E(Fp) ≡ 2 (mod 4) and it is possible to obtain 

2)21( apr ±+= . Twisted curve is obtained by multiplying t by arbitrary quadratic non-residue 
modulo p, for example –1. 

Assume that in (1) r = #E(Fp)/2. Isogeny of degree 2 acts on subgroup of r points as complex mul-
tiplication by 2− : 

))22())2((,)2((),(2 22222 xtxyxyyx −−−=− . 

So, given prime group order r, there exists )(mod 2 r−  and there are positive integers c, d such 
that r = c2 + 2d 2. 

Elliptic curve (1), given in projective form Y2Z = X3 – 4tX2Z + 2t2XZ2 for 21 −=t , has complex 
multiplication: 

 )2,2)(,(),,(2 2222 ZXZXYZYZYX −+−=− . (4) 

Multiplication (4) is performed easier than duplication: only 7, instead of 12, modular multiplica-
tions are needed. So cryptographic algorithms become faster about 1.34 times. 

Transformations 34txx +← , 4)1()103( +±← pt  give “usual” Weierstrass equation for elliptic 
curve (1): 

 y2 = x3 + Ax + B, (5) 



where A = 1 if p ≡ ±1 (mod 10) and A = –1 if p ≡ ±3 (mod 10), 4)1()152)(1514( +±= pB . Twisted 
curve is obtained by changing the sign of B. 

Sometimes higher radix allows increasing the rate of point multiplication. For example if radix is 
16 and we need to compute kQ, it is possible to precompute points 2Q, 3Q, …, 15Q, to divide k (as binary 
vector) into 4-bit blocks: k = k0 + 16k1 + … + 16mkm and to execute procedure for i = m, m – 1, …, 1: 

 Pm = kmQ, Pi–1 = 16Pi + ki–1Q. (6) 

One iteration in (6) takes four point duplications and one point addition. If we represent exponent 
k in δ-base notation with )(mod2 r−=δ , then δ4 = 22, radix in (6) is 4 and one iteration takes only 

two duplications. Precomputation includes computation of points  for cPc
i
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0
i ∈ {–1, 0, 1}. Vec-

tors (c3, c2, c1, c0) are such that (*, 1, *, 1) = (*, 0, *, –1), where * means arbitrary digit, so the base 
consists of 24 vectors (up to inverse): (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 1, –1), (0, 1, 0, 0), 
(0, 1, 0, –1), (0, 1, 1, 0), (0, 1, –1, 0), (0, 1, 1, –1), (0, 1, –1, 1), (0, 1, –1, –1), (1, 0, 0, 0), (1, 0, 0, 1), 
(1, 0, 0, –1), (1, 0, –1, 1), (1, 0, –1, 1), (1, 0, –1, –1), (1, 1, 0, 0), (1, –1, 0, 0), (1, 1, 0, –1), (1, 1, –1, 0), 
(1, 1, –1, –1), (1, –1, –1, 0), (1, –1, –1, 1). 

Note that ECDSS takes point multiplication for fixed points, so the base can be computed 
independently. In this case for 4-digit radix the number of field multiplications is 1.61 times 
less. 

3 2− -ary exponent representation 

Each exponent admits of unique minimal 2− -ary representation with the length log2r at most. 
Let ]2[ −= QK  and ]2[ −= ZKO . Prime r in OK is factored as 

ρρ=−−−+= )2)(2( dcdcr . This factorization can be computed from (2), (3): 2r = (a ± 1)2 + 2b2, 
22 )2)1((2 ±+= abr . One of these imaginary quadratic primes satisfies congruence: ρ  or )(mod 0 r≡

)(mod 0 r≡ρ  if we substitute )(mod2 r− . According to (4), transitions between ρ and its conjugate 
are obtained by changing sign in )p(mod2− , so without loss of generality the first congruence will 
be considered. 

Prime fields Fr and OK/ρOK are isomorphic. Exponent minimization is equivalent to reduction 
modulo ρ in OK. Note that if σ, τ ∈ OK, then σ + τρ ≡ α (mod ρ). 

Define norm N of quadratic integer 2−+ ts  as 22 2)2( tstsN +=−+ . Norm function is multi-
plicative, giving isomorphism from (OK/ρOK)* to Fr*. Reduction (k ∈ Fr) → (k (mod ρ) ∈ OK/ρOK) 
can be computed by norm minimization. The following algorithm computes integer reduction modulo ρ. 

Input: integer k; 2dc −+=ρ . 
Output: , where rk <0 , rk <1 . 

1. Set k0 ← k, k1 ← 0, . 

)(mod 210 ρ−+≡ kkk
Method: 

210 −+←κ kk
2. Find optimal steps in real and imaginary directions: [ ]rdkckr )2( 10n += , [ ]rdkckni )( 01 −=  and 

norms Nr = N(κ – nrρ), )2( ρ−−κ= ii nNN . Square brackets mean the nearest integer. 
3. If ni = nr = 0 then set k ← κ else 

3.1. If Nr < Ni then set κ ← κ – nrρ else set ρ−−κ←κ 2in . 
3.2. Go to step 2. 

4. Return(k). 



Algorithm finds representation )(mod 210 ρ−+≡ kkk  with minimum norm, N(k) < r and takes 
two iterations at most. 

Algorithm can be illustrated geometrically in complex rectangular lattice with unit vectors 
}2 ,1{ −  as a process of successive approach to the origin. The process comes to a halt as soon as 

quadratic integer κ falls into a parallelogram with r integer points, disposed symmetrically within the 
ellipse x2 + 2y2 = r. 

Algorithm can be transformed by analogy with usual Euclidean algorithm transformation to binary 
one. Here ρ can be represented as a vector over {–1, 0, 1} and ∑= i

iK 2k  as a vector (…, –K3, 0, 
K2, 0, –K1, 0, K0). 

There is no known computable orbit of automorphism group for given point of order r. Note that if 
2−  generates the whole group Fr* or its large subgroup, then orbits attack has no advantages as 

compared to points attack. So there are no known algorithms for solving ECDLP faster than in )( rO  
elliptic curve operations. 

4 Elliptic curve with complex multiplication by 2)7−+(1  

This approach is also suitable for elliptic curve E(Fp) with complex multiplication by 
2)71( −+ . Then p = a2 + 7b2, where a ≡0 (mod 2), b ≡ 1 (mod 2) and #E(Fp) = p + 1 ± 2a ≡ 0 (mod 4). 

Coefficients in (5) are: 






 −
=

p
A 57  (Jacobi symbol) and )(mod)57)(52( 4)1( pB p+−≡ . Twisted 

curve is obtained by changing the sign of B. 
Let 2)71( −+=ξ  in Fp. Complex multiplication for the curve 36262232 XZtZtXXZ ξ++=Y , 

where )2(6 2ξ+−=t , is given by 

)),(),((),,)(2)71(( 22222 ZXZXYXYZZYX δ+γ+α=−+ , 

where 42ξ=α , 83ξ−=γ , 366ξ−=δ . Complex multiplication takes 8 field multiplications. 
Complex multiplication by 2)71( −+  is given by conjugate coefficients α, γ, δ. Two complex 

multiplications by conjugates are equal to duplication, so radix can be represented by two or four dig-
its from the set {–1, 0, 1}. 

Formulas, determining complex multiplication given by isogeny of degree ≥ 3, are more complex 
than considered above, so these elliptic curves seem to be the fastest. 
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