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On Surface Tension for Compact Stars
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Abstract. In an earlier analysis it was demonstrated that general rel-
ativity gives higher values of surface tension in strange stars with quark
matter than neutron stars.We generate the modified Tolman–Oppenheimer–
Volkoff equation to incorporate anisotropic matter and use this to show that
pressure anisotropy provides for a wide range of behaviour in the surface
tension than is the case with isotropic pressures. In particular, it is possible
that anisotropy drastically decreases the value of the surface tension.
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1. Introduction

Stars that are more compact than neutron stars, at present, have become a subject of
considerable interest as they provide us natural laboratories for testing QCD. Over the
last couple of decades, various models have been proposed to explain the compactness
and properties of some of the observed compact objects. Pioneering works in this field
have put forward new concepts of compact matter, namely strange stars (Witten 1984;
Farhi & Jaffe 1984) and boson stars (Kaup 1968; Ruffini & Bonazzola 1969; Colpi
et al. 1986). Due to the high matter densities within such stars one expects pressure
to be anisotropic in general, i.e., in the interior of such stars the radial pressure and
tangential pressure are different. An anisotropic energy momentum is a topic which is
often ignored in the calculations of compact stars. However, since the pioneering work
of Bowers & Liang (1974) there has been extensive research in the study of anisotropic
relativistic matter in general relativity. The analysis of static spherically symmetric
anisotropic fluid spheres is important in relativistic astrophysics. Ruderman (1972)
showed that nuclear matter may be anisotropic in the high density ranges of order
1015 gm cm−3 where nuclear interactions have to be treated relativistically. Anisotropy
in compact objects may occur due to the existence of a solid core or the presence of
type 3A superfluid (Kippenhahm & Weigert 1990), phase transition (Sokolov 1980),
pion condensation (Sawyer 1972), slow rotation (Herrera & Santos 1997), mixture of
two gases (Letelier 1980) or strong magnetic fields (Weber 1999). Also objects made
up of self-interacting scalar particles known as boson stars are naturally anisotropic in
their configurations. Anisotropic models for compact self gravitating objects have been
studied by Herrera & Santos (1997); Rao et al. (2000); Corchero (2001); Mak & Harko
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(2003); Ivanov (2002); Dev & Gleiser (2003); Hernández & Nú̃nez (2004); Chaisi &
Maharaj (2005), and many others. Anisotropic models for compact objects have been
shown to achieve high red-shift values (Bowers & Liang 1974; Herrera & Santos 1997;
Ivanov 2002; Mak & Harko 2003), and they are stable (Herrera & Santos 1997; Dev &
Gleiser 2003). In this article, we show that pressure anisotropy may also affect the
surface tension of compact stars. We believe that this aspect has not been considered
yet in the context of anisotropic stellar models.

2. Surface tension of strange stars

In a recent paper by Bagchi et al. (2005), it has been shown that objects composed of u,
d and s quarks popularly known as ‘strange stars’ give higher values of surface tension
than neutron stars, a necessary criterion for the existence of stable strange stars in
the Universe. This calculation is based on equations of state (EOS) for strange matter
formulated by Dey et al. (1998). In an approximated linearized form, the EOS may be
written as (Zdunik 2000; Gondek-Rosińska et al. 2000)

p = a(ρ − ρb), (1)

where ρ is the energy density, ρb is the density at the surface, p is the isotropic pressure,
and a is a parameter related to the velocity of sound (a = dp/dρ).

To calculate the surface tension, one assumes that the star is a huge spherical ball
composed of strange matter which is self-bound and non-rotating. The excess pressure
on the surface of the star can be expressed as

|�p|r=R = 2S

R
, (2)

where S is the surface tension of the star and R is the radius of curvature. At the surface

|�p|r=R = rn

dp

dr
|r=R, (3)

where rn is the radius of the quark particle given by rn = (1/πn)1/3 where n is the
baryon number density. As strange stars are very compact, a relativistic treatment is
necessary to find their configurations and other physical parameters. Thus for a given
EOS, one uses the Tolman–Oppenheimer–Volkoff (TOV) equation (Oppenheimer &
Volkoff 1939)

dp

dr
= −

G(ρ + p)
[

m(r)

c2r
+ 4πr2p

c4

]
c2r

(
1 − 2Gm(r)

r

) (4)

to find the surface tension of the star, making use of equations (2) and (3). This method
helps to yield higher values of surface tension as compared to neutron stars including
the possible explanation for the existence of strange stars in the Universe and other
related phenomena like delayed γ -ray bursts (Bagchi et al. 2005).

However, at very high densities, anisotropy may be significant in such stars which
may contribute to the surface tension. If we assume that pressure within such a star is
anisotropic in general then the TOV equation (4) gets modified yielding different results
as obtained by Bagchi et al. (2005). In the following sections, we derive the modified
TOV equation with anisotropic pressure and perform some numerical calculations to
show the effects of pressure anisotropy on the surface tension of compact stars.
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3. Anisotropic TOV equation

We first formulate the modified TOV equation with anisotropic pressure. We assume
the line element for a static spherical object in the standard form

ds2 = −eγ (r)c2dt2 + eµ(r)dr2 + r2(dθ2 + sin2 θdφ2), (5)

where γ (r) and µ(r) are the two unknown metric functions. Without any loss of
generality, the energy momentum tensor for an anisotropic star may be written as

Tij = (ρc2 + pr)uiuj + prgij + (pr − p⊥)ninj , (6)

where ui is the fluid four-velocity, ni is a radially directed unit space-like vector. We
assume that pr �= p⊥ and p⊥ − pr = � gives the measure of pressure anisotropy in
this model.

The Einstein’s field equations are then given by

8πG

c4
ρ =

(
1 − e−µ

)
r2

+ µ′e−µ

r
, (7)

8πG

c4
pr = γ ′e−µ

r
−

(
1 − e−µ

)
r2

, (8)

8πG

c4
p⊥ = e−µ

4

(
2γ ′′ + γ ′2 − γ ′µ′ + 2γ ′

r
− 2µ′

r

)
, (9)

where primes denote differentiation with respect to the radial coordinate r . Equa-
tions (7)–(9) may be combined together to yield

(ρ + pr)γ
′ + 2p′

r + 4

r
(pr − p⊥) = 0 (10)

which is a conservation equation.
If we write the metric function µ in terms of mass function m(r) as

e−µ = 1 − Gm(r)

c2r
(11)

then equation (10) becomes

dpr

dr
= − (ρ + pr)

(
Gm(r)

c2r
+ 4πGr2pr

c4

)
r
(

1 − 2Gm(r)

c2r

) + 2

r
(p⊥ − pr). (12)

Equation (12) is the the modified TOV equation in the presence of pressure anisotropy.
For a given central density ρc or central pressure pc

r and anisotropic parameter �,
equation (12) may be integrated to find the mass M = m(R) and radius R of the star
provided the EOS pr = pr(ρ) is known. Local anisotropy thus effects the geometry
of the star.

At the surface of the star r = R, the radial pressure pr vanishes. However, the
tangential pressure p⊥ is not necessarily zero at the surface. The two pressure pro-
files within the star should satisfy the following conditions: pr > 0 and p⊥ > 0. The
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maximum value of the anisotropic parameter � vis-a-vis the tangential pressure p⊥
is constrained by the physical requirement that the radial pressure gradient dpr/dr

should be negative in the stellar interior; other physical requirements may, however,
put a more stringent restriction on the values of �. Thus for finite values of p⊥ at the
boundary �(r = R) = pb

⊥, equation (12) becomes

dpr

dr

∣∣∣
r=R

= − ρb
GM
c2R

R
(
1 − 2GM

c2R

) + 2pb
⊥

R
. (13)

If pb
⊥ is not negligible at the boundary, equation (13) shows that it is possible to get

different sets of values of surface tension as obtained by Bagchi et al. (2005) for
isotropic matter. Thus it is possible to generate a wide range of behaviour in the surface
tension for anisotropic matter than is the case for isotropic pressures.

4. Numerical results

To get an estimate of the effects of pressure anisotropy on the surface tension, we
consider the strange matter EOS given by equation (1). We consider two particular
cases as discussed by Gondek-Rosińska et al. (2000):

• EOS SS1: where, a = 0.463, ρb =1.15×1015 gm cm−3, ρc = 4.68×1015 gm cm−3,
n(r = R) = 0.725 fm−3, n(r = 0) = 2.35 fm−3, M = 1.435 M�, R = 7.07 km.

• EOS SS2: where, a = 0.455, ρb = 1.33×1015 gm cm−3, ρc = 5.5×1015 gm cm−3,
n(r = R) = 0.805 fm−3, n(r = 0) = 2.638 fm−3, M = 1.323 M�, and R =
6.55 km.

Numerical calculations show that for a given mass and radius, if we gradually
introduce anisotropy, the absolute value of the surface tension decreases as can be seen
in Fig. 1. For example, it is observed that even if we consider a tangential pressure
of 100 MeV fm−3 at the surface, the surface tension decreases drastically. It is to be
noted here that the anisotropy parameter should be so chosen that all the regularity
conditions (Delgaty & Lake 1998) are satisfied. Thus, although in Fig. 1, the surface
tension increases beyond a certain value of the anisotropic parameter, we ignore this
region as the radial pressure gradient becomes positive in this region. The results are
given in Table 1.

Figure 1. Surface tension S plotted against �. The solid line is for EOS SS1 and the dotted
line is for EOS SS2.
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Table 1. Anisotropic effect on the surface tension of strange stars.

dpr

dr
|r=R (MeV fm−3 km−1) S (MeV fm−2)

EOS rn (fm) p⊥ = 0 p⊥ = 100 (MeV fm−3) p⊥ = 0 p⊥ = 100 (MeV fm−3)

SS1 0.76 68.18 39.90 183.19 107.19

SS2 0.73 84.09 53.56 202.14 128.75

5. Discussions

We have shown that anisotropy plays an important role in the calculation of surface
tension of compact stars. The origin of such anisotropies within compact objects may
be different for different objects. We may, however, ask whether it is necessary at all to
consider anisotropic effects on the surface tension of strange stars. The answer is in the
affirmative since one possibility for the origin of anisotropies within strange stars could
be the presence of charged particles at the surface. It has recently been reported that
in strange stars, the electric field could be as high as 1019 eV/cm (Usov 2004), which
indicates the possibility of a large charge distribution within such objects. Therefore
we need to consider the effect of charge while deriving the the gross features of such
stars. It can be shown that in the presence of charge, the TOV equation is modified to

dp

dr
= − (ρ + p)

(
Gm(r)

c2r
+ 4πGr2p

c4

)
r
(

1 − 2Gm(r)

c2r

) + Q(r)

4πr4

dQ(r)

dr
, (14)

where, Q(r) is the total charge confined within a sphere of radius r . Note that the
Einstein–Maxwell system is always anisotropic which is often treated as an isotropic
system of field equations for mathematical simplicity (see for example, Ray et al.
2004). Also recent works (Schmitt 2005) suggest that a natural mechanism to explain
the strong pulsar kicks in neutron stars could be the existence of asymmetric phases
in quark matter.

It is to be noted here that, for simplicity, we ignored the effect of rotation in the
present work although pulsars are magnetized rotators and a strong magnetic field
(∼1012 G) is observed at the surface of such stars. Pulsars known as magnetars may
even have a magnetic field as strong as ∼1014–15 G. Though we do not have an estab-
lished theory for the microscopic origin of such a strong magnetic field, it is agreed that
Ferro-magnetization may occur in the high density quark matter which, in turn, may
modify the EOS for strange matter. The derivation and the form of the modified EOS
in the presence of strong magnetic field or superfluidity (responsible for anisotropy)
is a complex issue and a more detailed analysis is required to see the effect of the
modified EOS on the overall configuration vis-a-vis surface tension of compact stars.

To conclude, without going into the microscopic details of a star, it can be shown
that surface tension is affected in the presence of anisotropy. For the very existence of
strange stars in our Universe a crucial condition put forward was a large value of S by
Alcock & Olinto (1989) which according to Bagchi et al. (2005) can be achieved by a
general relativistic treatment of strange stars. However, in this article we have shown
that a wide range of values of S are possible if we consider anisotropy in the energy
momentum tensor; an issue ignored in the previous calculation (Bagchi et al. 2005).
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Therefore, on the basis of surface tension for compact stars, no conclusive remarks
at this moment can perhaps be made on the possible existence of strange stars. There
could be, however, some other means to justify the existence of such stars which will
be taken up elsewhere.
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