
J. Astrophys. Astr. (2007) 28, 157–166

Forbidden Transition Probabilities of Astrophysical Interest
among Low-lying States of V III

Andrei Irimia
Department of Physics and Astronomy, Vanderbilt University, Nashville,
Tennessee, 37235, USA.
e-mail: andrei.irimia@vanderbilt.edu

Received 2005 May 15; accepted 2007 August 7

Abstract. Electric and magnetic multipole transitions among low-
lying states of doubly ionized vanadium were computed using the
multi-configuration Hartree–Fock (MCHF) method with Breit–Pauli (BP)
corrections to a non-relativistic Hamiltonian. Energy levels were deter-
mined up to and including 3d2(1G)4s b 2G7/2 and computed energies
were found to be in good agreement with experiment and other theories.
In addition to Einstein Aki coefficients for some E2 and M1 transi-
tions, lifetime data and selected weighted oscillator strengths are also
reported.
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1. Introduction

Vanadium transition data are useful in a wide range of scientific applications. Ionized
vanadium, for example, has been used in plasma diagnosis (Wagatsuma & Danzaki
1999), where physical properties such as electron temperature and concentration can
be determined by analyzing the intensity and width of spectral lines (Griem 1964).
Lines of forbidden ionized vanadium were observed in the spectra of B[e] stars by
Jaschek & Andrillat (1997) while Lodders (2002) studied the abundance of this ele-
ment in low-mass dwarf stars. A chemical abundance study of brown dwarfs made
use of vanadium spectroscopic data to determine its depletion in these astrophysical
objects (Burrows et al. 2000; Gounelle et al. 2001) used spectral data of vanadium for
a study of cosmic-ray irradiation in early solar-system rocks. Yields of this element
in massive stars were modeled by Samland (1998), who made the observation that
an accurate interpretation of the observational database for vanadium is restricted at
the present time by the fact that abundance determinations for metal-poor and solar-
metalicity stars are missing. Transition data in vanadium were also used by Whal-
ing et al. (1985) and Biemont et al. (1989) to determine the solar abundance of this
element.

Experimental studies of the Sc-like isoelectronic sequence are few in spite of dat-
ing as far back as the 1920s (Gibbs & White 1927; White 1929a, 1929b; Goly 1978;
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Bromage 1978). Gibbs & White (1927) determined the wavelengths and relative posi-
tions of multiplets in the V III spectrum while White (1929a, 1929b) focused on
investigating term separations for this ion. Ekberg (1976) observed the spectrum of
V III in a vacuum sliding-spark discharge experiment and made contributions to our
present understanding of this ion. Radiative lifetimes for excited states in V III were
measured by Andersen et al. (1977) for a few 3d2 4p levels using a beam-foil exper-
iment, but their data do not include lifetimes for the metastable levels of the 3d3 and
3d2 4s configurations. In recent years, Stark broadening parameters for spectral lines
of V I, V II and V III were determined by Popovic & Dimitrijevic (2000).

Early theoretical investigations of V III include a spectrum calculation by Many
(1946) and a study of d3 and d4 configurations of vanadium by Meshkov (1954). In
1963, Mendlowitz computed intermediate-coupling transition strengths for d2 d →
d2p and d3 → d2p allowed transitions.

A spin-dependent interaction calculation for this spectrum was performed by
Pasternak & Godschmidt (1972) and some oscillator strengths were determined by
Roberts (1973), who also computed the lifetimes of several 3d2(a 3F)4p levels. An
atomic partition function calculation for some Ti and V ions – including V III –
was done in 1988 by Halenka (1988), followed by Zilitis (2001), who employed the
Dirac-Fock method to study the structure of the energy level system and to determine
ionization potentials for 39 Sc-like ions.

In the scandium sequence, some forbidden transitions were computed by Luke
(1997) for singly ionized vanadium and atomic data have also been published for V II
(Roberts 1973; Halenka 1988) and V V (Berry 1976). Nevertheless, a similar study
involving doubly ionized vanadium has not yet been performed. In a 2003 compilation
of resonance absorption lines for wavelengths longward of the Lyman limit, Morton
(2003) mentioned the lack of sufficient atomic data for V III and indicated the work of
Kurucz (1998) as one of the very few recent sources of reliable tabulations for this ion.

Forbidden transitions play an important role in many astrophysical applications,
particularly in the interpretation of spectra of diluted astrophysical plasmas, where
energy is transfered to the plasma via excitation and ionization processes. Because
astrophysical plasma densities are very low, the probability of collisions is small and
many states decay by M1 or E2 transition radiation. This is why forbidden transitions
are useful indicators of plasma densities, indicating a need for both experimental and
theoretical data for such transitions (Hartman et al. 2003).

Forbidden lines of the Sc-like ions have recently come under much attention as a
result of the FERRUM project (Hartman et al. 2003), in which the laser probing tech-
nique was extended at the CRYRING storage ring to measure extremely long lifetimes,
such as that of the metastable 3d2(3P)4s b 4P5/3 level in Ti II. With the recent lifetime
measurement of a very long-lived (520+310

−140 s) metastable state in strontium (Yasuda &
Katori 2004), the growing importance of atomic data for forbidden lines – including
for the Sc-like sequence – cannot be overstated. In this paper, we present the results of
a V III spectrum calculation for states up to and including 3d2(1G)4s b 2G7/2 using
the multi-configuration Hartree Fock (MCHF) method with Breit–Pauli corrections. In
addition to energy levels and non-relativistic oscillator strengths, we report lifetimes
for the excited states computed as well as Aki coefficients for E2 and M1 transitions in
this atom. This is the first theoretical investigation of forbidden lines and metastable
state lifetimes for the lower portion of the V III spectrum.
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2. Computational approach

In the non-relativistic MCHF approach (Froese Fischer 1991), the wave function � of
state γLS is written as

� (γLS) =
∑

j

cj�
(
γjLS

)
, (1)

where γ denotes the dominant configuration as well as any other quantum numbers
required to specify the state uniquely. The wave function � is expanded in terms of
configuration state functions (CSFs) that have an identical LS symmetry but different
electronic configurations γj . A basis consisting of one-electron spin-orbital functions

φnlmlms
= 1

r
Pnl(r)Ylml

(θ, φ) χms
(2)

is used to build the CSFs. Radial functions are determined by the CSFs included in the
expansion and they are subjected to the requirement of orthonormality within each l

symmetry:
∫ ∞

0
Pn′l(r)Pnl(r)dr = δn′n. (3)

Since the orbitals obtained using the MCHF procedure are eventually used in a Breit–
Pauli configuration interaction (CI) calculation involving many LS terms, our method
optimizes on a weighted linear combination of energy expressions thereby optimizing
simultaneously for a group of terms. In the multiconfiguration self-consistent field
(MC–SCF) approach, both radial functions and expansion coefficients are determined
so that the energy functional

〈γLS|H|γLS〉 (4)

is left stationary. The iterative Davidson algorithm (Davidson 1975) is used to deter-
mine the desired eigenvalues and eigenvectors.

Because the Breit–Pauli interaction matrix must be computed from one orthonormal
orbital basis, LS terms are grouped according to the term interaction. Simultaneous
optimization of the radial functions is performed on all LS states that were grouped
together. After obtaining the set of radial orbitals, relativistic corrections are taken into
account within the BP approximation by diagonalizing the BP Hamiltonian (Froese
Fischer 1997) to obtain the intermediate coupling functions

�(γ J ) =
∑
LS

∑
j

cj (LSJ )�(γjLSJ ). (5)

The expansion coefficients cj (LSJ ) and the corresponding energy E(LSJ ), are an
eigenvector and eigenvalue, respectively, of the interaction matrix. All contributors to
the Breit–Pauli Hamiltonian were included in the present calculation with the exception
of the orbit–orbit interaction term, which does not contribute to interactions between
CSFs from different LS terms. It is convenient to think of the Breit–Pauli interac-
tion matrix as having a block structure, in that diagonal blocks are the interactions
within an LS term, while off-diagonal blocks represent the interaction between the
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terms. Two LS terms are referred to as interacting if, for some value of J , there are
non-zero interactions in the off-diagonal block for the pair of LS terms.

Weighted oscillator strengths gf are computed here using the length and velocity
gauges given by

gifl(ik) = 2

3
�Eik

∣∣∣∣
〈
�i

∣∣∣∣
∣∣∣∣
∑

j

rj
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∣∣∣∣�k

〉∣∣∣∣
2
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and
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, (7)

respectively. In the equations above, gi is the degeneracy factor, i.e., gi = (2Li +
1)(2Si +1) for LS-coupled wave functions and gi = (2Ji +1) for BP wave functions.

In the computational approach employed here, an active set (AS) of orbitals was
used to determine wave function expansions. The latter were obtained for increas-
ing sizes of the principal quantum number n and the convergence of the calcula-
tion was monitored by observing the agreement of the non-relativistic length and
velocity gauges of the oscillator strength. Since the length gauge is correct to O(α2)

while the velocity gauge requires a relativistic correction to the gradient operator
(Drake 1972), both gauges are reported in this work. Throughout this paper, we
refer to the {1s, 2s, 2p, . . . , 3s, 3p, 3d} set of orbitals as the n = 3 orbital set,
{1s, 2s, 2p, . . . , 4s, 4p, 4d, 4f } as n = 4, etc. In the case of the present calculation,
expansions were obtained for orbital sets with n = 4, . . . , 6 and s ≤ l ≤ g by means
of generating single (S) and double (D) excitations from a multi-reference set, where
1s22s22p6 was considered to form a closed common core and the multi-reference
set contained the configurations 3d3 and 3d24s. Configuration states from SD excita-
tions which did not interact with at least one member of the multi-reference set were
discarded.

The number of CSFs included in the calculation increases rapidly both with n

and with the number of electrons outside the common core. Since large orbital sets
can result in a considerable increase in computational time required for the problem,
appropriate restrictions are necessary. For this reason, for each of n = 7, 8, 9, only
expansions over even 3d nl n′l′ configuration states (where nl and n′l′ are orbitals
from the orbital set) were added to the existing set of CSFs.

Once radial functions were determined for each group, the Breit–Pauli CI calcu-
lations were performed and transition data determined for these wave functions. All
E2, E3, M1, M2 and M3 transitions between the states targeted by the calculation
were computed. To improve the reliability of the mixing of LS terms in the Breit–
Pauli interaction matrix, fine-tuning (Hibbert 1993) was applied to its elements. In
this process, adjustments were made to the matrix elements that shift all diagonal
components of a given LS block by a fixed amount. This shift was the difference
of an ab initio energy level and the observed level. If more than one eigenstate in
a group had the same LS value as, for example, 3d3 a 4F and 3d2b 4s4F , energy
adjustments were made separately for each of the eigenstates with different shifts
for 4F .
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Table 1. Breit–Pauli energies, energy differences (computed – observed (NIST), in cm−1),
splittings (in cm−1), and lifetimes (in s) for excited states up to and including 3d2(1G)4s b 2D3/2
after fine-tuning.

Config. Term J Energy Diff. Splitting Lifetime

3d3 a 4F 3/2 0.00

5/2 176.72 31.22 176.72 4.1984E+03

7/2 400.29 58.79 400.29 2.0642E+03

9/2 646.92 63.12 646.92 2.4716E+03

a 4P 1/2 11482.92 −30.88 2.3032E+01

3/2 11618.03 26.23 135.12 2.3673E+01

5/2 11774.37 4.67 291.46 2.5194E+01

a 2G 7/2 11948.37 −17.93 7.6451E+02

9/2 12204.93 17.93 256.57 4.9393E+03

a 2P 3/2 15459.73 −90.57 9.8242E+02

1/2 15670.38 90.58 210.65 1.1899E+04

a 2D 3/2 16205.37 −125.13 4.4811E+04

5/2 16502.87 128.17 297.51 3.2689E+03

a 2H 9/2 16793.77 −17.13 1.4307E+04

11/2 16994.74 17.14 200.97 5.9964E+03

a 2F 7/2 27724.56 −3.24 8.2104E+00

5/2 27850.05 3.25 125.50 7.2835E+00

b 2D 5/2 42261.58 −5.82 1.6962E−01

3/2 42371.21 0.01 109.64 1.6224E−01

3d2(3F)4s b 4F 3/2 43893.05 −49.44 1.1551E−02

5/2 44095.10 −14.94 202.06 1.1435E−02

7/2 44354.29 8.47 461.25 1.1297E−02

9/2 44646.95 −0.01 753.90 1.1160E−02

b 2F 5/2 49314.12 −13.62 1.7603E−02

7/2 49818.90 13.61 504.78 1.6899E−02

3d2(1D)4s c 2D 5/2 56204.84 44.42 1.1082E−02

3/2 56212.33 −44.42 7.49 1.1234E−02

3d2(3P)4s b 4P 1/2 56567.40 38.10 4.5039E−03

3/2 56703.31 34.26 135.91 4.4934E−03

5/2 56850.12 −72.38 282.72 4.4967E−03

b 2P 1/2 61570.04 −8.70 1.2980E−02

3/2 61785.86 8.71 215.82 1.2495E−02

3d2(1G)4s b 2G 9/2 63307.35 4.23 7.2629E−03

7/2 63310.81 −4.24 3.45 7.1578E−03
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Table 2. Convergence trends for some non-relativistic weighted oscillator strengths
(gf values) in V III. Per cent differences were computed according to the formula
[gf (l) − gf (v)] × 100/ max{gf (l), gf (v)}.

3d3 a 4F − 3d2(1G)4s b 4P 3d3 a 2H − 3d2(1G)4s b 2G

n gf (l) gf (v) Diff. (%) n gf (l) gf (v) Diff. (%)

4 9.82E−7 7.74E−7 21.2 4 1.21E−6 8.99E−7 25.6

5 8.80E−7 7.32E−7 16.8 5 1.06E−6 8.78E−7 17.2

6 8.70E−7 7.55E−7 13.3 6 1.03E−6 9.00E−7 12.5

7 8.60E−7 7.90E−7 8.2 7 1.01E−6 9.46E−7 6.3

8 8.60E−7 7.91E−7 8.1 8 1.01E−6 9.49E−7 6.0

9 8.59E−7 7.92E−7 7.8 9 1.01E−6 9.50E−7 5.8

Table 3. Non-relativistic weighted oscillator strengths (gf values) in V III. Per cent differ-
ences were computed according to the formula [gf (l) − gf (v)] ×100/ max{gf (l), gf (v)}.

Transition gf (l) gf (v) Diff. (%)

3d a 2G − 3d a 2D 1.518E−11 1.683E−11 9.8

3d a 2G − 3d a 2G 5.290E−07 5.546E−07 4.6

3d a 2G − 3d2(3F)4s c 2D 2.416E−07 2.545E−07 5.1

3d a 2G − 3d2(3P)4s b 2P 9.975E−08 1.050E−07 5.0

3d a 2D − 3d2(1G)4s b 2G 3.468E−08 3.548E−08 2.3

3d2(3F)4s b 2F − 3d2(3P)4s b 2P 1.862E−09 1.775E−09 4.7

3. Results and discussion

In Table 1, we present our computed energies for the V III spectrum up to and including
3d2(1G)4s b 2G7/2. In addition to LS term splittings, we also report energy differences
(computed – observed (NIST Online Database)) and lifetimes for the excited states.
The differences from observed are very good for these term energies. The separation
between the levels of each term determines its spread and the computed separation
would be the same as observed if term separations were exact.

One feature that makes the Sc-like isoelectronic sequence somewhat unusual is the
fact that the ground state configuration changes along each of the first three members
of the sequence. Thus, the ground state configuration changes from 3d 4s2 in Sc I to
3d2 4s in Ti II to 3d3 in V III. The lowest odd-parity configuration in Sc I is 3d 4s

4p, replaced by 3d2 4p in both Ti II and V III. Although the separation between 3d2

4s even-parity levels and the ground state increases from Z = 21 to Z = 23, this
phenomenon occurs slower than it does for odd-parity 3d2 4p levels. The net result
of this is that 3d2 4s remains the lowest excited configuration in V III, excluding
the ground state configuration 3d3. Thus, the lowest portion of the V III spectrum is
populated by 34 even-parity levels that belong to the 3d3 and 3d2 4s configurations.
As Table 1 shows, these levels are metastable because the excited electron can only
decay via forbidden electric (E2, E4) and magnetic (M1, M3) multipole transitions. For
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Table 4. Einstein Aki-coefficients in s−1 for selected E2 transitions after fine-tuninga.
Per cent differences were computed according to the formula [Aki(L) − Aki(V )]
×100/ max{Aki(L), Aki(V )}.

Transition Aki(L) Aki(V ) Diff. (%)

3d3 a 2D5/2 − 3d2(1D)4s c 2D5/2 1.79E+01 1.86E+01 −3.85

− 3d2(1D)4s c 2D3/2 6.69E+00 6.97E+00 −4.03

− 3d2(1D)4sb 2P1/2 8.16E+00 8.74E+00 −6.55

3d3 a 2D3/2 − 3d2(1D)4s c 2D5/2 4.62E+00 4.77E+00 −3.21

− 3d2(1D)4s c 2D3/2 1.61E+01 1.67E+01 −3.39

− 3d2(1D)4sb 2P3/2 6.19E+00 6.58E+00 −5.94

− 3d2(1D)4sb 2P1/2 1.21E+01 1.30E+01 −6.84

3d3 a 2D3/2 − 3d2(1G)4sb 2G7/2 2.27E+00 2.32E+00 −2.14

3d3 a 2D5/2 − 3d2(1G)4sb 2G9/2 2.61E+00 2.64E+00 −0.97

− 3d2(1G)4sb 2G7/2 2.62E+00 2.65E+00 −1.31

− 3d2(1G)4sb 2D5/2 1.79E+01 1.86E+01 −3.80

3d3 a 2D5/2 − 3d2(1G)4sb 2G9/2 2.61E+00 2.64E+00 −0.97

− 3d2(1D)4sb 2G7/2 2.62E−01 2.65E−01 −1.31

3d3 a 2F7/2 − 3d2(3F)4sb 2F7/2 3.33E−01 3.19E−01 4.20

− 3d2(3F)4sb 2F5/2 4.76E−02 4.77E−02 −0.21

3d3 a 2F5/2 − 3d2(3F)4sb 2F7/2 3.88E−02 3.74E−02 3.64

− 3d2(3F)4sb 2F5/2 2.77E−01 2.79E−01 −0.83

3d3 a 2H11/2 − 3d2(1G)4sb 2G9/2 6.70E+01 6.70E+01 0.00

− 3d2(1G)4sb 2G7/2 3.22E+00 3.22E+00 0.05

3d3 a 2H9/2 − 3d2(1G)4sb 2G9/2 3.93E+00 3.94E+00 −0.19

− 3d2(1G)4sb 2G7/2 6.89E+01 6.90E+01 −0.15

3d2(1D)4s c 2D3/2 − 3d2(1D)4s c 2D5/2 7.98E−20 8.50E−20 −6.15

3d2(3F)4sb 2F7/2 − 3d2(1D)4s c 2D5/2 1.34E−05 1.29E−05 4.09

3d2(3F)4sb 2F5/2 − 3d2(1D)4s c 2D3/2 2.00E−05 1.95E−05 2.60
aThe velocity form of the transition operator has neglected some relativistic corrections and
hence, unlike the length form, is not correct in that, some terms of order α2 have been omitted.
The values of the length and velocity gauges have significance when term mixing is small and
the transition is spin-allowed.

example, the lowest excited level 3d3 a 4F5/2 has a very long lifetime of approximately
69 minutes. In the case of several other excited levels, the nature of the spectrum causes
their primary decay channels to involve magnetic octupole (M3) transitions, which
dramatically lengthens their associated lifetimes. As the table suggests, 3d3 levels are
all very long-lived, while 3d2 4s levels have shorter lifetimes, albeit still of the order
of hundredths of a second.

Because the lifetimes of excited levels in V III involve highly forbidden transitions
that have very small Einstein Aki coefficients, the computation of transition proba-
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Table 5. Einstein Aki-coefficients in s−1 for selected M1 transitions after
fine-tuning.

Transition Aki

3d3 a 4P3/2 − 3d3 b 4P5/2 6.18456E−05

3d3 a 2P1/2 − 3d3 b 2P3/2 8.40396E−05

3d3 a 2D3/2 − 3d3 a 2D5/2 2.84062E−04

3d3 a 2F7/2 − 3d3 a 2F5/2 3.04621E−05

3d3 a 2G7/2 − 3d3 a 2G9/2 2.02458E−04

3d3 a 2D5/2 − 3d3 b 2D5/2 8.46173E−11

3d3 a 2D5/2 − 3d3 b 2D3/2 4.33143E−02

3d3 a 2D3/2 − 3d3 b 2D5/2 2.95112E−02

3d3 a 2D3/2 − 3d3 b 2D3/2 1.40610E−11

3d3 a 2F7/2 − 3d2(3F)4s b 2F7/2 1.94999E−12

3d3 a 2F7/2 − 3d2(3F)4s b 2F5/2 3.96734E−04

3d3 a 2F5/2 − 3d2(3F)4s b 2F7/2 3.13588E−04

3d3 a 2F5/2 − 3d2(3F)4s b 2F5/2 2.37724E−13

3d3 a 4P5/2 − 3d2(3F)4s b 4P3/2 2.39644E−05

3d3 a 2D5/2 − 3d2(1D)4s c 2D5/2 3.32393E−13

3d3 a 2D5/2 − 3d2(1D)4s c 2D3/2 6.43609E−06

3d3 a 2D3/2 − 3d2(1D)4s c 2D5/2 6.21414E−06

3d3 a 2D3/2 − 3d2(1D)4s c 2D3/2 6.78299E−14

3d3(3F)4s b 2F5/2 − 3d2(3F)4s b 2F7/2 1.48676E−03

3d3(3F)4s b 4F7/2 − 3d2(3F)4s b 4F9/2 6.76096E−04

3d3(3P)4s b 4P3/2 − 3d2(3P)4s b 4P5/2 5.12022E−05

bilities in this ion requires a very high level of accuracy. To ensure the convergence
of our calculation, the length and velocity gauges of the non-relativistic weighted
oscillator strength (gf values) were monitored. If convergence is achieved as the active
set of orbitals is expanded, the agreement between the two gauges should improve. In
Table 2, we present convergence trends for two forbidden transitions between excited
levels. In both cases, the label change is 3d → 4s, which makes such transitions
suitable for testing how well correlation was captured by our calculation.

In Table 3, we present several other computed oscillator strengths for transitions
between excited levels where the change 3d → 4s occurs. We also include one case
of a parent-changing (3F →3P ) transition between two excited levels of the 3d2 4s

configuration. For all these transitions, the agreement of the two gauges is excellent
in spite of their small magnitudes.

Some Einstein Aki coefficients for electric quadrupole and magnetic dipole transi-
tions in V III are made available in Tables 4 and 5, respectively. The selection of these
Aki values was made on the basis of their magnitudes and contributions to the asso-
ciated decay channels. For many of the computed levels in V III, the accuracy of Aki
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values for E2 and M1 transitions is essential in determining the accuracy of lifetime
data. This is because, for the most part, Aki coefficients for E4 and M3 transitions were
found to have much lower values than their E2 and M1 counterparts. This indicates
that the corresponding E4 and M3 decay channels have negligible contributions to
the reported lifetimes whenever E2 and/or M1 decay channels are also available for a
certain level.

4. Conclusion

In summary, we have computed forbidden transitions of astrophysical interest among
low-lying states of V III using the MCHF approach with BP corrections to a non-
relativistic Hamiltonian. Excellent agreement was obtained between computed and
observed energy levels and convergence trends for the weighted oscillator strengths
were also satisfactory. Good agreement between the length and velocity gauges of
these quantities was obtained, although typically this is notoriously difficult to achieve
for forbidden transitions since the gf values associated with them are usually small.
Some Einstein Aki coefficients were also presented.
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