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Juan A. Gómez Pulido1, Miguel A. Vega Rodrı́guez & Juan M.
Sánchez Pérez
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Abstract. In this work we present an adaptive parallel methodol-
ogy to optimize the identification of time series through parametric mod-
els, applying it to the case of sunspot series. We employ high precision
computation of system identification algorithms, and use recursive least
squares processing and ARMAX (Autoregressive Moving Average Exten-
sive) parametric modelling. This methodology could be very useful when
the high precision mathematical modelling of dynamic complex systems
is required. After explaining the proposed heuristics and the tuning of its
parameters, we show the results we have found for several solar series using
different implementations. Thus, we demonstrate how the result precision
improves.
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1. Introduction

In many science and engineering fields, it is necessary to build mathematical models
for studying the behaviour of phenomena and systems whose mathematical descrip-
tion is not available “a priori”. One interesting type of these systems is the Time
Series (TS). Time series are used to describe behaviours in many fields: astrophysics,
meteorology, economy, etc. When dealing with TS there is only one signal avail-
able under observation; its physical structure is not known. This led us to employ the
planning System Identification (SI) techniques (Söderström et al. 1989) in order to
obtain the TS model. The model precision depends on the assigned values to certain
parameters.

In this paper we have focused the effort of analysis in a kind of solar time series:
the sunspot series. Then, we propose a parallel and adaptive heuristics to adjust the
system identification main parameters with the aim of improving the precision of the
parametric model of the sunspot series.
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1.1 Time series modelling

We consider TS as a sampled signal with period T that is modelled with an ARMAX
(Ljung 1999) parametric polynomial description (see equation 1).

y(k) + a1y(k1) + · · · + anay(kna) = 0 where na = dimension. (1)

Basically the identification consists in determining the ARMAX model parameters
ai (θ in matricial notation) from measured samples y(ki)(ϕ(k) in matricial notation).
Then it is possible to compute the estimated signal ye(k) (equation 2) and compare it
with the real signal y(k), computing the generated error (equation 3)

ye(k) = [−a1y(k − 1) − · · · − anay(k − na)] = ϕT (k)θ, (2)

error(k) = y(k) − ye(k). (3)

The recursive estimation updates ai in each time step k, thus modelling the system. The
more sampled data processed, the more precision for the model, because it has more
information about the system behaviour history. We consider SI performed by the well-
known Recursive Least Squares (RLS) with forgetting factor (λ) algorithm (Ljung
1999). From the initial conditions, we start building ϕT(k), and then RLS follows as it
is shown in Fig. 1.

This algorithm is specified by the constant λ (forgetting factor), the initial values
and the observed samples {y(k)}. There is no fixed value for λ, even if it is used as a
value between 0.97 and 0.995 (Ljung 1991). The cost function F (see equation 4) is
defined as the value to minimize in order to obtain the best precision.

F(λ) =
k=k0+SN−1∑

k=k0

|ye(k) − y(k)| (SN is the sample number). (4)

The recursive identification is very useful when it is a matter of predicting the following
behaviour of the time series from the data observed up to the moment. For many pur-
poses, it is necessary to make this prediction, and for predicting it is necessary to obtain
information about the system. This information, acquired by means of the SI, consists
in elaborating a mathematical parametric model for covering the system behaviour.

SI allows finding, in sample time, a mathematical model (θ(k)) from which it
is possible to predict the next behaviours. As identification advances in time, the

Initial conditions:
k = p, θ(p) = P(p) = 1000.I (I = identity matrix, p = initial time (p ≥ na))

ye(k) = ϕT(k).θ(k − 1) err(k) = (y(k) − ye(k)) Κ = P(k − 1).ϕ(k)
λ + ϕT (k).P(k − 1)ϕ(k)

P(k) = P(k − 1) − K.ϕT(k). P(k − 1)
                     λ

θ(k) = θ(k − 1) + K. err (k)

Figure 1. RLS equations.
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predictions improve using more precise models. For example, we can compute in
sample time the system model and then, with this model simulate the system future
behaviour, forwarding real situations (Fig. 2).

For validating the SI evolutionary parallel architecture that we present, we use a time
series set, corresponding to sunspot series obtained from measured observations (ROB
2004) (NOAA 2004). We have used 13 time series (Fig. 3) showing daily sunspots: 10
series (ss−00, ss−10, ss−20, ss−30, ss−40, ss−50, ss−60, ss−70, ss−80 and ss−90)
each one corresponding to the sunspot measurements during ten years (for exam-
ple, ss−20 compiles the sunspots from 1/1/1920 to 31/12/1929); 2 series (ss−00−40
and ss−50−90) each one covering 50 years, and 1 series (ss−00−90) covering all
measurements of the 20th century.

2. The optimization problem

When SI techniques are used, the model is generated “a posteriori” by means of
the measured data. However, we are interested in the system behaviour prediction in
running time, that is, while the system is working and its data are being observed. So, it
would be interesting to generate models in running time in such a way that a processor
may simulate the system next behaviour.

At the same time, our first effort is to obtain a high model precision (minimal F ). SI
precision is due to several causes, mainly to the forgetting factor λ (Fig. 4). Frequently
this value is critical for model precision. Other sources can also have lesser degree of
influence (dimensions, initial values, the system...), but they are considered as problem
definitions, not parameters to be optimized.

On the other hand, the precision problem may appear when a system model is
generated in sample time: If the system response changes quickly, then the sample
frequency must be high for avoiding the key data loss in the system behaviour descrip-
tion. If the system is complex and its simulation from the model to be found must
be very trustworthy, then the required precision must be very high and this implies a
great computational cost. Sometimes the hardware resources do not allow the com-
putational cost in the model generation and processing to be lower than the sample
period. We find a trade-off between a high sample frequency and a high precision in
the algorithm computation. Adjusting the parameter λ for improving the precision can
be conveniently done by means of techniques based on adaptive heuristics. So, the
final goal is to design an architecture for real time SI suited for processes in which a
high precision and a low sample time are required.

The method we suggest, and explain in the next section, can be used in any area.
However, for the case of solar time series, the interval of sampling is not important,
the real goal being to obtain the maximum accuracy of the estimation.

3. PARLS: the proposed heuristics

In order to find the optimum value of λ, we propose a parallel algorithm that is partially
inspired on the concept of artificial evolution (Goldberg 1989) (Rechenberg 1973) and
also in simulated annealing mechanism (Kirkpatrick et al. 1983). In our algorithm,
named PARLS (Parallel Adaptive Recursive Least Squares), the optimization para-
meter λ is evolved for predicting new situations during the successive phases of the
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Figure 2. Recursive SI allows us to predict and simulate future system behaviour. On the right
side, details of a sunspot time series used and its simulation based on the model identified.
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Figure 4. Cost function evaluated for several λ values using RLS identification for ss−80
benchmark when na = 5. We can see how the best performance is reached when λ = 0.998658.

Figure 5. Evolution mechanism. In each phase, a set of λ values performs RLS identification
during a certain number of samples. Then, the λ value whose corresponding F is the minimum
of all computed F is the optimum, and from it a new set of λ values is generated. They are used
in the next PARLS phase to perform new identification during the following PHS samples.

process (iterations of the algorithm). In other words, λ evolves at the same time that
improves the cost function performance (Fig. 5).

PARLS considers a λ value as a state. Starting on an initial λ value (λc) and an
initial R value (the interval of generation where λc is in the middle), a set of λ values
is generated covering the entire interval R uniformly. The λ values generated are equal
to the number of parallel processing units (PUN). Each phase of PARLS process is
an identification loop that considers a given number of sample times (PHS) and the
corresponding λ value. In this work, we use the nomenclature shown in Table 1.

In each phase, R is reduced dividing itself by the RED factor (the interval limits are
moved so that the center of the interval corresponds with the optimal λ value found
in the previous phase), in such a way that the generated set of λ will be more and
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Table 1. PARLS nomenclature.

R Generation interval
λc λ central in R

PHS Phase samples
PHN Number of phases
PUN Number of parallel processing units
TSN Total number of samples
RED Reduction factor of R

more near to the previous optimum found. The new set of generated λ values always
covers uniformly the new interval R. In each processing unit, during each phase, the
cost function F is computed (F is defined as the accumulated error of the samples that
constitute each phase). From equation (4), we have:

F(λPUx) =
k=k0+PHS−1∑

k=k0

|ye(k) − y(k)|. (5)

At the end of each phase, the best λ is chosen. This is the corresponding value to the
lower F . From this λ, new values are generated in a more reduced (new R) interval
(Figs. 6, 7). The goal is that the identifications performed by the processing units
will converge to optimum λ parameters when a given stop criteria is achieved. So the
identification will be of high precision.

Therefore, PARLS could be considered as population-based metaheuristics rather
than parallel metaheuristics, because each processing unit is able to operate in isolation,
as well as the tackled problem itself as only a single real-valued parameter (λ) is
optimized.

4. Experimental results

We consider several criteria for evaluating PARLS performances. All these criteria have
been fully checked and tested (Gómez et al. 2001) in order to get a set of better values
for parameters and strategies. For example, we have studied strategies as the optimum
λ criteria (the λ value that produces a minimum F ), the stop criteria (indicating when
a processing unit must stop the work), the model generation criteria (how to consider
the initial model in the next phase), the optimum F definition (to consider the optimum
F as the lowest in all phases or the lowest computed in the present phase), etc.

A question of interest is about the optimal model size. There is a greater computa-
tional cost when na is higher. Therefore, the na value should be selected in relation to
the required computational cost, and this dimension is considered as part of the defi-
nition of the problem. We have computed several problems with different values for
na, using SISO (Single Input Single Output) systems instead of time series and with
processing units implemented with neural network (Gomez et al. 2002), and our con-
clusion is that an accurate tuning for general purposes could be from na = 5, although
this value can be increased a lot for systems with wide sampling periods. Because a
bigger na increases the model precision, for the sunspot series an adequate value of
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Figure 6. The SI uses different λ values in each phase performed by each processing unit. All
the λ values in the same phase running in the processing units are generated in the R interval
from the previous phase optimum λ found, corresponding with the smallest computed F .

na can be 20, since the computational cost is not big when they are series with a high
interval of sampling (one day).

Another important question is how to establish the initial range of λ values in
PARLS search. We have performed experiments in order to determine the approximated
optimal λ for several series using a lot of RLS computations. In Fig. 8, some of these
experiments are shown. We can see that there is a distinct optimal λ for each series,
but in all the cases there is a smooth V-curve that is very useful to the initial PARLS
search. We have thus selected as initial searching parameters tuned values λc = 1 and
R = 0.05. In view of the results, it could be said that the optimum λ value is 1, but it
is dangerous to state this if we have not reduced the range more. Thus, reducing the
interval of search, we will be able to find a near, but different optimum value to 1, as
we can see in Fig. 9.
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Figure 7. PARLS pseudo-code.

PARLS offers a great variability for its parameters. According to the results we have
obtained, we can conclude that there are no common policies for tuning the parameters
in such a way that the best results will always be found. But results indicate that there
is a set of values for which the results are good. We can thus establish fixed values for
PARLS parameters (Table 2) in order to define a unique algorithm applicable to any
series. This has the advantage of a quick application for a series without the previous
task of tuning parameters.

5. Conclusions

In Table 3, we show the comparison of found results between RLS search and PARLS
heuristics for several sunspot series. In all the cases the same tuned parameters have
been used (na = 20, PUN = 11, λc = 1, R = 0.05, RED = 2, PHN = 4). In (a) the
results of 11 RLS identifications with their corresponding 11 equidistant in R values of
λ are shown, and in (b) the PARLS results are displayed too. The computational effort
of 11 RLS identifications is almost equal to PARLS cost with 11 processing units, so
both results can be compared in order to establish the conclusions. With these tuned
parameters, PARLS always finds better results than RLS. This fact contrasts with the
results obtained for series of other areas (Gomez et al. 2002), for which PARLS finds
better results in most of them, but for a few series the difference of F oscillates between
2% and 5% RLS better than PARLS. Therefore, if for the series studied in Gomez
et al. (2002) we said that PARLS improves or holds the results found with RLS with
the same computational effort, now, for the sunspot solar series, we can say PARLS
always gives us better results.

As starting point, we can say that the parallel adaptive heuristic PARLS offers a
good performance, and this encourages us to follow this research. Also, nowadays,
we are trying to accelerate the computation of some parts of PARLS using reconfig-
urable hardware to obtain a synthesis on specialized coprocessors capable of improving
the global efficiency (Gomez et al. 2002) for series of other areas where the sampling
interval is very short.
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Figure 8. The cost function of the sunspot series ss−10, ss−20 and ss−40, calculated by RLS for
200λ values in the same range (λc = 1, R = 0.4), using the same model dimension (na = 20).
We can see a smooth V-curve in all the cases.
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Figure 9. The cost function of ss−90 series calculated by RLS for 100λ values in two different
ranges (R = 0.4 and R = 0.002), both centered in λc = 1 and using the same model dimension
(na = 20). We can see how the optimal λ value is not 1, and how it can be found doing the
search range smaller.
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Table 2. Main PARLS parameters
tuned.

Parameter Tuned value

na 20
λc 1
R 0.05
RED 2
PUN 11
PHN 4

Table 3. A summary of some results. This table shows a comparison of results between RLS
search (RLS 11) and PARLS heuristics for several series with the same tuned parameters.
The better algorithm is PARLS for all the series. See the conclusions section for more
details.

(a) RLS 11 (b) PARLS Better PARLS
Series TSN PHS F F algorithm vs. RLS 11

ss−00−90 36524 9131 3.125670e + 5 2.792250e + 5 PARLS 12%
ss−00−40 18262 4565 1.561340e + 5 1.344990e + 5 PARLS 16%
ss−50−90 18262 4565 1.550950e + 5 1.465290e + 5 PARLS 6%
ss−00 3652 913 3.025500e + 4 1.238500e + 4 PARLS 144%
ss−10 3652 913 3.020200e + 4 1.105800e + 4 PARLS 173%
ss−20 3653 913 3.261300e + 4 1.884100e + 4 PARLS 73%
ss−30 3652 913 3.038700e + 4 1.556800e + 4 PARLS 95%
ss−40 3653 913 3.592300e + 4 2.237500e + 4 PARLS 61%
ss−50 3652 913 3.578300e + 4 2.169700e + 4 PARLS 65%
ss−60 3653 913 2.924200e + 4 2.482800e + 4 PARLS 18%
ss−70 3652 913 2.826900e + 4 2.488500e + 4 PARLS 14%
ss−80 3653 913 3.604300e + 4 3.195270e + 4 PARLS 13%
ss−90 3652 913 3.032900e + 4 2.960300e + 4 PARLS 2%
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