CHAPTER 3
STEADY HEAT CONDUCTION

§ 3-6 Heat Transfer from Finned Surface

1 The Function of Fins (A))

® Increase heat transfer rate for a fixed surface temperature

—“Extending” A increases Q_ for a fixed T
Newton's law of cooling Q. =h A (T, -T,)

® Or, Lower surface temperature for a fixed heat transfer rate

—“Extending” A, lowers T for a fixed QS

T5=Tm+&

hA
® A surface is “extended” by adding fins
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¢ Examples of fins:
* Thin rods on the condenser in back of refrigerator.
* Honeycomb surface of a car radiator.
* Disks or plates attached to a baseboard radiator.
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2 Types of Fins

o (o g =

(a) constant area  (b) variable area (¢) pin fin (d) annular fin
straight fin straight fin

* Fin terminology and types
* Fin base
* Fin tip
® Straight fin: (a) and (b).
* Variable cross-sectional area fin: (b), (c) and (d).
* Spine or a pin fin: (c).
* Annular or cylindrical: (d).




3 The Fin Heat Equation

® Objective: Determine the heat transfer rate from a fin.

Need the temperature distribution
¢ Select an origin and a coordinate axis X

® Procedure: Formulate the fin heat equation:
Conservation of energy for a small element AXx.

heat transfer coefficient
fin temperature

: fluid temperature

: fin cross sectional area
fin perimeter
fin thermal conductivity

X X+AX

AO> AT

a rectangular fin

Qcond X QcomLx+AX

—IAX~ pin geometry:
A, = PAX

X x+tAx L X
a rectangular fin

* Assume steady state and no heat generation
* Conservation of energy for the element :

Ein = Eout

Qcond,x = annd,X+AX + Qconv

Qcond,x+Ax - Qcond,x + hPAX(T _Tm) =0

Qe

Qcond, X+AX Q
AX

Qeongs

QcondAX+Ax

dX L hP(T - T, ) =0

P A 3
—|AX|— as AX—>0 d?jcond +hP(T _Tw)=0
X

o dT
since Quus =kA 5 & kA §1)-hP(T-T)=0
X X

d do
—T— —(kA,——)—hPo =0
If define =T —T_ ax A )

temperature excess .
The general form of fin equation

A, = A.(X) = cross-sectional conduction area
P =P(X) = circumference of the element
are determined from fin geometry. 7

Where{

d de
—(kA.—)-hPO=0
dx( A°dx)

e.g.

For a circular fin of radius r,

° A=rr’ p=2xr,
For a rectangulra bar of side w and t

4
+  A=wt p=2(w-+t)




Assume: constant K and constant cross section of the fin

d?e
k —hPO =0
A dx?
d?e , hP
or — a0 = a‘=—
v ao=»0 where kAC

Ul This is a linear, homogenous, second-order differential equation
with constant coefficients.

Ul The general solution of this equation is
B(x)=Ce* +C,e™
U Two boundary conditions are required to obtain C, and C,.

U The temperature at the fin base (T,) is usually known and is
used as the first boundary condition.
Tx=0)=T, or 0(x=0)=0,=T,-T.,

4 Applications I: Constant Area Fins

Simplest fin problem: constant cross-sectional area A_
h, T

c
A. Governing Equation 0 _ Q
d’e h T
—-2a0=0 A
dx
_ 2_ hP
where 0=T-T, a kA

¢ Equation is valid for:
(1) Steady state (2) Constant k
(3) No heat generation (4) Bi<<1
(5) Constant fin area
(6) Constant ambient temperature T

B. Solution
Assume: h is constant. Therefore a is constant.
Solution is
0(x) = A exp(ax) + A, exp(—ax)
Or
0(x) =B, sinhax+ B, coshax

A, and A, or B, and B, are integration constants. They

depend on: eX g
. . sinh X =
® Location of the origin
X —-X
q g q q +€
* Direction of coordinate axis X cosh X = 5

® The two boundary conditions

C. Special Cases

Consider 3 cases of constant area fins
* Fin equation
* Temperature solution

® Objective: To determine
(1) The temperature distribution in the fin
(2) The heat transfer rate

at the base: at the tip:
specified temperature

T(x=0)=T, (i) Specified temperature

(ii) Convection
(iii) Insulated fin tip




Case (i): Infinite long fin
(L >, T(L) > T.., specified temperature)

hTe c
0 _ Q
® Solution: T, hTo A

0(x) = A, exp(ax)+ A, exp(—ax)

* B.C. are: TO)= T,
TL=Ts
Introduce =T —T_
6(0)=46, (@)
o(L)=0 (b)
where 6, is
6, =T, -T,

©
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B.C. (b) 0=A 0+A,-0, . A;=0

B.C. (a) A,=6,
0(x)

SO ——= = exp(—ax)

T (X) - Too — e—x\/hp/kAC Exponent

distribution

Case (ii): Finite length fin with convection at tip

* The base is at temperature T, hTq, h €
0 ’
® The tip exchanges heat by /’*
convection: h,T, T, ® A

® Solution: @ (X) = B, sinhax+ B, coshax

* B.C. are: TO)=T,
dT

—k& T h[T(L)-T,]

Introduce &
0(0)=46, (©

do

-k—| =ho(L) d)
dx

x=L

B.C. give B, and B,:
B,=6,
__, lcoshal + (ka/h, ) sinh alL ]

Bl - 90
[sinh aL + (ka/h,) coshal]

Solution becomes

6(x) _T(x)-T_ cosh a(L-x)+(h/aK)sinh a(L-x)
0 T,-T, cosh aL+(h/ak)sinh aL

0




Case (iii): Finite length fin with insulated tip

Same as Case (ii) except the tip is insulated. B.C. (d)
becomes
4ol _y ©
dX Jyor

* Two B.C. give B, and B,

* Simpler approach: Set h, =0 in solutions of case (ii)

0(x) _T(X)-T, cosha(L-X)  Hyperbolic

o

2] T, -T, cosh aL distribution

Corrected Length L, for fins with convection at the tip

* Fins with convection at the tip

0(x) T(X)-T, cosh a(L-x)+(h/ak)sinh a(L-x)
0, T,-T, cosh alL+(h/ak)sinh alL
* Fins with insulated tips
0(x) T(X)-T, cosha(L-x)
o, T,-T, cosh aL

0]

Solutions are simpler /

¢ Simplified model for fins with convection at the tip :
assume insulated tip and introduce corrected length L
0(x) T(X)-T, cosha(l,-X)
6, T, -T, cosh al

o)

® The is
Insulation assumption is compensate by increasing the
length by AL

Q(OHT (;) = (}
— — :E]I-; o
L L /
L L L

Correction increment .

Increase in surface area=Tip area
i.e. AL,-p=A,

e.g. Fin with convection from fin tip
Temperature distribution is
0(x) T(x)-T_, cosha(L -x)
6, T,-T,  coshal,

0o

p:A

C

1) For a circular fin of radius r,
2
mr, =2rr AL, AL =r /2
L.=L+r,/2
2) For a rectangular bar of side w and t

t
Wt=2W+t)AL, AL =———~t/
wriak, - AL 2(1+t/w)

L, =L+t/2

3) For a square bar of sidet AL =t/4
L =L+t/4
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D. Determination of Fin Heat Transfer Rate Q;
® Conservation of energy applied to a fin at steady state:

Qﬁn = conduction at the base
= convection at the surface

* Two methods to determine Qﬁn :

(1) Convection at the fin surface: Newton's law
. L
Qg = [, NTCO=T,1dA, = [ hT(0)-T,]pdx
(2) Conduction at the base: Fourier's law

: dT
= KA —
Qﬁn AC dX

Case(i) Infinite long fin or specified tip temperat

ure
* Fin heat transfer Qfm % = exp(—ax)
: do )
=—kA —2| =kAad
inn AC dX o kAC o

Qq, =+/hPKA, (T, -T,)
Case(ii) fin with convection at tip
. (T, =T )Isinhal+(h/ak)cosh aL |
—/n b~
Qnn PA, cosh aL+(h/ak) sinh aL

Case(iii) fin with insulated tip Q;X) G i(i'x)
b cos

Qun =+/hPKA, (T, ~T, ) tanhaL
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S Fin Efficiency 77;, and Fin Effectiveness g,

Fin performance is described by two parameters:

1) Fin Efficiency 775,

2) Fin Effectiveness & : Measures heat transfer
enhancement due to fin addition.
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Fin Efficiency 77,

. = Qﬁn _ Actual heat transfer rate from the fin
fin —

Qﬁn,max Ideal/maximum heat transfer rate from the fin

if the entire fin were at base temperature

Qfm’max = heat transfer from fin if its entire surface is at
the base temperature

Qﬁn,max = hAﬁn (Tb _Too)
A, = total surface area (Constant area fins A, = pL)
Qfm

77111 S
! hAﬁn(Tb_Too)
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Case(i) Infinite long fin or specified tip temperature

Qu_ APKA (T, -T,) _ 1

”longﬁn - Q.fm,max hAﬁn (Tb - Tm) aL

Case(ii) fin with convection at tip
Case(iii) fin with insulated tip

nitlilpsulated Q.ﬁn’max hAﬁn (Tb - Tw ) aL
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6 Applications II: Variable Area Fins

Annular fins Triangular fins

Qﬁn = nﬁnQ.ﬁn,max = nﬁn hAﬁn (Tb _Too)

X
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Fin efficiency of annular fins of length L and constant thickness t.
Figure 3-29

Fin efficiency circular, rectangular, and triangular fins on a
plain surface of width w.

Figure 3-30
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