# **CHAPTER 3** STEADY HEAT CONDUCTION

§ 3-6 Heat Transfer from Finned Surface

- Examples of fins:
  - Thin rods on the condenser in back of refrigerator.
  - Honeycomb surface of a car radiator.
  - Disks or plates attached to a baseboard radiator.



#### 1 The Function of Fins (肋)

- Increase heat transfer rate for a fixed surface temperature
  - -"Extending"  $A_s$  increases  $\dot{Q}_s$  for a fixed  $T_s$ Newton's law of cooling  $\dot{Q}_{c} = h A_{c} (T_{c} - T_{c})$
- Or, Lower surface temperature for a fixed heat transfer rate
  - -"Extending"  $A_s$  lowers  $T_s$  for a fixed  $Q_s$

$$T_s = T_{\infty} + \frac{\dot{Q}_s}{hA_s}$$

• A surface is "extended" by adding fins







# 2 Types of Fins











- (a) constant area straight fin
- (b) variable area straight fin
- (c) pin fin

(d) annular fin

- Fin terminology and types
  - Fin base
  - Fin tip
  - Straight fin: (a) and (b).
  - Variable cross-sectional area fin: (b), (c) and (d).
  - Spine or a pin fin: (c).
  - Annular or cylindrical: (d).

## 3 The Fin Heat Equation

- Objective: Determine the heat transfer rate from a fin. Need the temperature distribution
- Select an origin and a coordinate axis x
- $\bullet$  Procedure: Formulate the fin heat equation:

Conservation of energy for a small element  $\Delta x$ .

h: heat transfer coefficient

*T*: fin temperature

 $T_{\infty}$ : fluid temperature

 $A_{\rm c}$ : fin cross sectional area

*P*: fin perimeter

k: fin thermal conductivity







- Assume steady state and no heat generation
- Conservation of energy for the element :

$$\begin{split} \dot{E}_{in} &= \dot{E}_{out} \\ \dot{Q}_{\text{cond},x} &= \dot{Q}_{\text{cond},x+\Delta x} + \dot{Q}_{\text{conv}} \\ \dot{Q}_{\text{cond},x+\Delta x} - \dot{Q}_{\text{cond},x} + hP\Delta x (T - T_{\infty}) &= 0 \end{split}$$

6

$$\dot{Q}_{\text{cond},x+\Delta x} \qquad \dot{Q}_{\text{cond},x+\Delta x} - \dot{Q}_{\text{cond},x} + hP(T - T_{\infty}) = 0$$

$$P \rightarrow |\Delta x| - A_c \qquad \text{as } \Delta x \rightarrow 0 \qquad \frac{d\dot{Q}_{\text{cond}}}{dx} + hP(T - T_{\infty}) = 0$$

since 
$$\dot{Q}_{cond} = -kA_c \frac{dT}{dx}$$
  $\frac{d}{dx}(kA_c \frac{dT}{dx}) - hP(T - T_{\infty}) = 0$ 

If define 
$$\theta = T - T_{\infty}$$

$$\frac{d}{dx}(kA_{c}\frac{d\theta}{dx}) - hP\theta = 0$$

temperature excess

The general form of fin equation

Where  $\begin{cases} A_c = A_c(x) = \text{cross-sectional conduction area} \\ P = P(x) = \text{circumference of the element} \end{cases}$  are determined from fin geometry.

$$\frac{d}{dx}(kA_c\frac{d\theta}{dx}) - hP\theta = 0$$

e.g.



For a circular fin of radius  $r_o$ 

$$A_c = \pi r_o^2$$
  $p = 2\pi r_o$ 

For a rectangulra bar of side w and t



$$A_c = wt$$
  $p = 2(w+t)$ 

Assume: constant k and constant cross section of the fin

$$kA_c \frac{d^2\theta}{dx^2} - hP\theta = 0$$

or

$$\frac{d^2\theta}{dx^2} - a^2\theta = 0 \qquad \text{where} \quad a^2 = \frac{hP}{kA_c}$$

$$a^2 = \frac{hP}{kA_c}$$

- ☐ This is a linear, homogenous, second-order differential equation with constant coefficients.
- ☐ The general solution of this equation is

$$\theta(x) = C_1 e^{ax} + C_2 e^{-ax}$$

- $\square$  Two boundary conditions are required to obtain  $C_1$  and  $C_2$ .
- $\square$  The temperature at the **fin base**  $(T_h)$  is usually known and is used as the first boundary condition.

$$T(x=0) = T_b$$
 or  $\theta(x=0) = \theta_b = T_b - T_\infty$ 

#### **B.** Solution

Assume: h is constant. Therefore a is constant.

**Solution** is

$$\theta(x) = A_1 \exp(ax) + A_2 \exp(-ax)$$

Or

$$\theta(x) = B_1 \sinh ax + B_2 \cosh ax$$

 $A_1$  and  $A_2$  or  $B_1$  and  $B_2$  are integration constants. They depend on:

• Location of the origin

$$\sinh x = \frac{e^x - e^x}{2}$$

• Direction of coordinate axis x

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

The two boundary conditions

11

### 4 Applications I: Constant Area Fins

Simplest fin problem: constant cross-sectional area  $A_c$ 

A. Governing Equation



 $\frac{d^2\theta}{dx^2} - a^2\theta = 0$ 

where 
$$\theta = T - T_{\infty}$$
  $a^2 = \frac{hP}{kA_c}$ 

- Equation is valid for:
- (1) Steady state
- (2) Constant k
- (3) No heat generation
- (4) Bi << 1
- (5) Constant fin area
- (6) Constant ambient temperature  $T_{\infty}$

10

# C. Special Cases

Consider 3 cases of constant area fins

- Fin equation
- Temperature solution
- Objective: To determine
- (1) The temperature distribution in the fin
- (2) The heat transfer rate



at the tip:

- (i) Specified temperature
- (ii) Convection
- (iii) Insulated fin tip

## Case (i): Infinite long fin

(
$$L \rightarrow \infty$$
,  $T(L) \rightarrow T_{\infty}$ , specified temperature)

 $\begin{array}{c}
h, T_{\infty} \\
\downarrow \\
h, T
\end{array}$ 

• Solution:

$$\theta(x) = A_1 \exp(ax) + A_2 \exp(-ax)$$

- B.C. are:
- $T(0) = T_{\rm b}$

$$T(L) = T_{\infty}$$

Introduce  $\theta = T - T_{\infty}$ 

$$\theta(0) = \theta_0$$

- (a)
- $\theta(L) = 0$
- (b)

where  $\theta_o$  is

$$\theta_o = T_b - T_{\infty}$$

13

# B.C. (b) $0 = A_1 \cdot \infty + A_2 \cdot 0$ , $\therefore A_1 = 0$

B.C. (a)

$$A_2 = \theta_o$$

so 
$$\frac{\theta(x)}{\theta_o} = \exp(-ax)$$



Exponent distribution

#### Case (ii): Finite length fin with convection at tip

- The base is at temperature  $T_{\rm b}$
- The tip exchanges heat by convection:  $h_t, T_{\infty}$



- Solution:  $\theta(x) = B_1 \sinh ax + B_2 \cosh ax$
- B.C. are:  $T(0) = T_{b}$  $-k \frac{dT}{dx}\Big|_{x=L} = h_{t}[T(L) T_{\infty}]$

Introduce  $\theta$ 

$$\theta(0) = \theta_o \tag{6}$$

$$-k \frac{d\theta}{dx}\bigg|_{x=L} = h_t \theta(L) \tag{d}$$

15

B.C. give  $B_2$  and  $B_1$ :

$$B_{1} = \theta_{o}$$

$$B_{1} = -\theta_{o} \frac{\left[\cosh aL + (ka/h_{t}) \sinh aL\right]}{\left[\sinh aL + (ka/h_{t}) \cosh aL\right]}$$

**Solution becomes** 

$$\frac{\theta(x)}{\theta_o} = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh \ a(L - x) + (h_t/ak) \sinh \ a(L - x)}{\cosh \ aL + (h_t/ak) \sinh \ aL}$$

Case (iii): Finite length fin with insulated tip

Same as Case (ii) except the tip is insulated. B.C. (d) becomes

$$\left. \frac{d\theta}{dx} \right|_{x=L} = 0 \tag{e}$$

- Two B.C. give  $B_1$  and  $B_2$
- Simpler approach: Set  $h_i = 0$  in solutions of case (ii)

$$\frac{\theta(x)}{\theta_o} = \frac{T(x) - T_{\infty}}{T_{\rm b} - T_{\infty}} = \frac{\cosh a \ (L-x)}{\cosh a L}$$
 Hyperbolic distribution

17

• The corrected length  $L_c$  is  $L_c = L + \Delta L_c$ Insulation assumption is compensate by increasing the length by  $\Delta L_c$ 



Correction increment:  $\Delta L_c = \frac{A_c}{r}$ 

Increase in surface area = Tip area

i.e. 
$$\Delta L_c \cdot p = A_c$$

19

Corrected Length L<sub>c</sub> for fins with convection at the tip

• Fins with *convection* at the tip

$$\frac{\theta(x)}{\theta_o} = \frac{T(x) - T_{\infty}}{T_h - T_{\infty}} = \frac{\cosh \ a(L - x) + (h_t/ak) \sinh \ a(L - x)}{\cosh \ aL + (h_t/ak) \sinh \ aL}$$

• Fins with *insulated* tips—— Solutions are simpler!

$$\frac{\theta(x)}{\theta_a} = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh a (L-x)}{\cosh a L}$$

• Simplified model for fins with *convection* at the tip: assume insulated tip and introduce corrected length  $L_c$ 

$$\frac{\theta(x)}{\theta_o} = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh a (L_c - x)}{\cosh a L_c}$$

18

Fin with convection from fin tip e.g.

**Temperature distribution is** 

$$\frac{\theta(x)}{\theta_a} = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh a \left( \underline{L}_c - x \right)}{\cosh a \underline{L}_c} \qquad \Delta \underline{L}_c \cdot p = A_c$$

$$\Delta L_c \cdot p = A_c$$

1) For a circular fin of radius  $r_a$ 

$$\pi r_o^2 = 2\pi r_o \Delta L_c \qquad \Delta L_c = r_o / 2$$





3) For a square bar of side t  $\Delta L_c = t/4$ 

$$L_c = L + t/4$$





- D. Determination of Fin Heat Transfer Rate  $\dot{Q}_{
  m fin}$
- Conservation of energy applied to a fin at steady state:

 $\dot{Q}_{\text{fin}}$  = conduction at the base = convection at the surface

- ullet Two methods to determine  $\dot{oldsymbol{Q}}_{ ext{fin}}$  :
- (1) Convection at the fin surface: Newton's law

$$\dot{Q}_{\text{fin}} = \int_{A_{\text{fin}}} h[T(x) - T_{\infty}] dA_{\text{fin}} = \int_{0}^{L} h[T(x) - T_{\infty}] p dx$$

(2) Conduction at the base: Fourier's law

$$\left| \dot{Q}_{\text{fin}} = -kA_c \frac{dT}{dx} \right|_{x=0}$$

5 Fin Efficiency  $\eta_{\rm fin}$  and Fin Effectiveness  $\epsilon_{\rm fin}$ 

Fin performance is described by two parameters:

- 1) Fin Efficiency  $\eta_{\rm fin}$
- 2) Fin Effectiveness  $\mathcal{E}_{\text{fin}}$ : Measures heat transfer enhancement due to fin addition.

23

21

Case(i) Infinite long fin or specified tip temperature

• Fin heat transfer  $\dot{Q}_{fin}$   $\dot{Q}_{fin} = -kA_c \frac{d\theta}{dx}\Big|_{x=0} = \exp(-ax)$   $= kA_c a\theta_0$ 

$$\dot{Q}_{\rm fin} = \sqrt{hpkA_c} \left(T_{\rm b} - T_{\infty}\right)$$

Case(ii) fin with convection at tip

$$\dot{Q}_{\text{fin}} = \sqrt{hpkA_c} \frac{(T_b - T_{\infty})[\sinh aL + (h_t/ak)\cosh aL]}{\cosh aL + (h_t/ak)\sinh aL}$$

Case(iii) fin with insulated tip  $\frac{\theta(x)}{\theta_o} = \frac{\cosh a (L_c - x)}{\cosh a L_c}$ 

$$\dot{Q}_{\mathrm{fin}} = \sqrt{hpkA_c} (T_{\mathrm{b}} - T_{\infty}) \tanh aL$$

22

Fin Efficiency  $\eta_{
m fin}$ 

$$\eta_{\text{fin}} = \frac{\dot{Q}_{\text{fin}}}{\dot{Q}_{\text{fin,max}}} = \frac{\text{Actual heat transfer rate from the fin}}{\text{Ideal/maximum heat transfer rate from the fin}}$$
if the entire fin were at base temperature

 $\dot{Q}_{ ext{fin,max}}$  = heat transfer from fin if its entire surface is at the base temperature

$$\dot{Q}_{\text{fin.max}} = hA_{\text{fin}}(T_{\text{b}} - T_{\infty})$$

 $A_{\text{fin}}$  = total surface area (Constant area fins  $A_{\text{fin}} = pL$ )

$$\therefore \quad \eta_{\text{fin}} = \frac{\dot{Q}_{\text{fin}}}{hA_{\text{fin}}(T_{\text{h}} - T_{\text{m}})}$$

Case(i) Infinite long fin or specified tip temperature

$$\eta_{\mathrm{long \, fin}} = \frac{\dot{Q}_{\mathrm{fin}}}{\dot{Q}_{\mathrm{fin,max}}} = \frac{\sqrt{hpkA_c} \left(T_b - T_{\infty}\right)}{hA_{\mathrm{fin}} \left(T_b - T_{\infty}\right)} = \frac{1}{aL}$$

Case(ii) fin with convection at tip Case(iii) fin with insulated tip

$$\eta_{\text{insulated}} = \frac{\dot{Q}_{\text{fin}}}{\dot{Q}_{\text{fin,max}}} = \frac{\sqrt{hpkA_c} (T_b - T_{\infty}) \tanh aL}{hA_{\text{fin}} (T_b - T_{\infty})} = \frac{\tanh aL}{aL}$$

25

Fin efficiency of annular fins of length  ${\cal L}$  and constant thickness t.

Figure 3-29

Fin efficiency circular, rectangular, and triangular fins on a plain surface of width w.

Figure 3-30

27

# 6 Applications II: Variable Area Fins



Annular fins

Triangular fins

$$\dot{Q}_{\text{fin}} = \eta_{\text{fin}} \dot{Q}_{\text{fin,max}} = \eta_{\text{fin}} h A_{\text{fin}} (T_b - T_{\infty})$$