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Introduction

There is general agreement that the basic problem in
decompression is gas coming out of solution and forming a
gas phase.  However, it is also well known that a
considerable number of bubbles can be formed without any
acute signs or symptoms.  Such bubbles have been called
“silent” bubbles1 and have, in particular, been observed in
the pulmonary artery.2  One conclusion that can be drawn
from this observation is that acute clinical symptoms are

critical dependent upon the location of the bubbles.
Bubbles in the brain, for instance, could give few
symptoms, as large areas of the brain are clinically silent.
Bubbles in joints, on the other hand, would give symptoms,
because of the rich innervation by pain receptors in these
areas.  One effect of this would be that we have to
distinguish between primary and secondary effects of
bubbles.  The primary effects are related to the mechanical
effect of the bubbles, which may be blockage of the
circulation or distortion of tissue.   The secondary effects
are related to the numerous effects of the bubble surface,
with activation of a large number of biochemical and
cellular mechanisms.  It seems obvious that this secondary
effect can occur without any acute signs or symptoms.

When do bubbles form ?

Most, if not all, practical decompressions will lead
to some degree of gas bubble formation in the organism
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and the risk of decompression illness (DCI).  The
predominant theory about the growth of bubbles is that
bubbles grow from preformed nuclei, as the resistance of
“pure solutions” to supersaturation and gas phase
development is considerable.3  One likely theory is that the
nuclei are composed of small (approximately 1 micron)
stable gas bubbles.4

The exact threshold for bubble formation is not
known, but it is probably in the range of 50-70 kPa in
tissue5 and even lower in the vascular system.  Eckenhoff
et al. demonstrated that saturation at 3.7 msw on air was
sufficient to produce bubbles in the pulmonary artery in
man.6  The conclusion from this study must be that gas
bubbles will form in the vascular system at any
supersaturation and that the concept of a minimum
tolerable limit of supersaturation, as least for the venous
system, may only relate to clinical symptoms and not to
bubble formation.  Adding to this problem is the fact that it
has been demonstrated repeatedly that large inter-and intra-
individual differences in bubble forming “ability” exist.
Factors like sex, age, body build, circulation, temperature,
blood composition and degree of exercise seem to play a
role.7,8  Cavitation in joints, for example, has been
demonstrated without any supersaturation following violent
movements.  Even under experimental conditions where the
circulation is kept stable, a variation in vascular bubbles
between individuals, often a factor of 10, following
decompression is observed.9  Furthermore, there are data
indicating that there is a large difference is susceptibility to
decompression sickness that is not directly related to the
amount of vascular gas bubbles observed.10

Where do bubbles form ?

Bubbles have been observed in many tissues in the
body following decompression.  They are most commonly
found in the vascular system, the white matter of the CNS,
in abdominal fat, in synovial fluids and in muscles.11

Following quite severe decompressions, we did not observe
bubbles in the muscles themselves, but only on fascia.

Harvey et al. studied the limits for vascular bubble
formation in cats, both at rest and after electrical
stimulation and tissue injury.12  The conclusion from these
studies was that at marginal exposures, stimulation or
injury was needed for bubble formation.  At higher
supersaturations, bubbles  occurred at rest, the time of
occurrence determined by the fat content.  Essentially the
same results have been obtained in frogs and rats.13  Based
on these studies, the authors concluded that gas bubbles are
chiefly intravascular and that they are responsible for nearly
all important phases of the syndrome of decompression
sickness.  Only in very severe cases did extravascular
bubbles play a role and then only in lipid rich structures.

Venous bubbles

There is evidence from many studies that gas
bubbles occur in the venous system during most
decompressions.14,15  Several studies have documented the
relationship between the occurrence of many venous
bubbles and the risk for clinical symptoms requiring
treatment.16,17  This, together with the fact that bubbles
probably are present in the venous system  during most
decompressions, suggests that a diver complaining of pain
in a joint may be suffering from two different conditions,
namely tissue gas in and around the joint and pulmonary
gas embolism.

Arterial bubbles

Gas bubbles in the arteries have been detected in
divers after excursions,18 during decompression from
saturation dives19 and at autopsy after fatal accidents.20

Arterial gas bubbles have also been observed in large
animals during and after decompression.21-23  Thus, there
is no doubt that arterial gas bubbles occur during or after
some decompressions.

In divers, there are several possible pathways by
which venous bubbles may reach the  arterial circulation.
First, venous gas bubbles may travel through the
pulmonary circulation and enter the pulmonary veins and
the left atrium, although the pulmonary circulation is
usually considered to be a good filter for gas bubbles as
well as for other emboli.  Second, venous gas bubbles may
pass through a patent foramen ovale (PFO) or other
extraordinary connections in the heart to reach the left side
of the heart.  Third, if the lung has been overinflated during
a rapid ascent, gas may escape directly into the pulmonary
veins after alveolar rupture.24

Finally, gas bubbles may form in the arterial
circulation if the decompression rate is sufficiently fast
>0.3-1 fsw/sec.25  All gas nuclei in the blood will not be
destroyed at compression and supersaturation of the
arterial blood may occur during the rapid decompression.
However, an experimental study using goats did not
succeed in demonstrating such bubbles in the arterial
circulation after a short hyperbaric exposure and a rapid
decompression.26

In as many as 20-34% of humans, dependent on age,
the foramen ovale is patent after foetal life.27  Normally it
is functionally closed, since the pressure in the left atrium
is higher than the pressure in the right atrium and the septum
primum functions as a valve.  However, a spontaneous shunt,
not dependent on a Valsalva manoeuvre or other factors to
change the pressure gradient between the atria, is diagnosed
in 5-6% of humans using contrast echocardiography.28,29
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Tissue bubbles

It seems reasonable to assume that tissue bubbles can
occur if the gas load is high enough.  This was apparently
shown for the spinal cord by Francis et al., who  showed
tissue bubbles in the white matter following rapid
decompression after a 15 minute dive to 300 fsw on air.30

This work has, however, recently been challenged by Palmer,
who claims that all changes observed could be explained
by gas bubbles inside vessels.31  This is also supported by
the recent work of Sharpe and Broome, who showed that
there was no relationship between the fat content of the
spinal cord and the occurrence of gas bubbles.32  Even if
the exact mechanism of tissue injury is controversial, the
evidence seems to indicate that vascular processes are the
more important ones.

Primary bubble effects

Initially, the bubbles will lead to changes, mainly due
to their direct mechanical effects.  When gas bubbles form
and expand they can obstruct the arterial and venous
circulation, leading to tissue ischaemia, or they can damage
the tissue and induce pain by direct pressure effects.
Bubble formation may influence circulation by mechanical
obstruction.  Venous obstruction may lead to oedema and
arterial obstruction may lead to tissue ischaemia, both of
which have been observed after decompression.33  This can
reduce gas elimination, both by increasing diffusion
distances and by reducing blood flow.

One important primary effect of the bubbles, which
is often forgotten, is the  reduction in gas elimination caused
by these bubbles.  Both theoretical34 and experimental35

studies have demonstrated that gas bubbles in the tissue will
increase gas elimination time.  In another study, it was shown
that bubbles significantly increased the time constant of the
slow component of the bi-exponential curve describing the
nitrogen concentration in the pulmonary artery.36  This can
be seen in Figure 1.

Obstruction of flow to the tissue by bubbles may
increase elimination time even more.  Computer simulations
have shown that a high number of bubbles can increase the
time constant of gas elimination from muscles from 50 to
2,000 minutes (Flook, Personal communication 1999).  This
is partly taken into account by the new US Navy (USN)
diving tables, where gas elimination is considered to be
linear, not exponential.37  However, in reality the problem
may be even more complex as bubbles in the circulation
may increase the transport of gas to the lungs.38

Secondary bubble effects

When gas bubbles are formed protein denaturation
takes place at the blood-gas interface.39  The gas-blood

interface is a thin layer, approximately 20 nm thick,
consisting of fibrin and gamma globulin.40,41  This layer
acts as a foreign substance, activating formed elements of
the blood and inducing biochemical changes such as
complement activation.42  These mechanisms play a
significant role in the response of the tissue to venous gas
emboli and are probably the basis for any long term effects
that may occur.  At present, our understanding of the
importance of these mechanisms is quite fragmentary.  Much
further work is needed to determine the relative influence
of mechanical and biochemical effects of gas embolism.  An
understanding of these processes is necessary for
development of a rational approach to treating or
preventing injury caused by vascular bubbles.

Inflammation

The response of an organism to injury is termed
inflammation.  In decompression sickness this
inflammatory process is initiated by the surface of the
bubbles, which is regarded by the organism as a foreign
substance.  However, this process can also be initiated by
direct mechanical injury to the tissue.  One important
mediator of the inflammatory process is activation of the
complement system.  Gas bubbles activate the complement
system  in-vitro.43  The degree of activation is dependent
upon the amount of gas infused, varies considerably over
several months in one individual and is not dependent upon
the gas composition of the bubble.  No relationship was
seen between the degree of C5a activation in vitro and the
level of C5a observed in vivo after air dives.44

Leucocytes are involved in many aspects of tissue
injury and inflammation.  Several studies have documented
that leucocytes are activated by decompression.  Philp et
al.45 showed that decompression led to a reduction in both

Figure 1.  The relationship between the number of bubbles
in the pulmonary artery and the time constant for the elimi-
nation of nitrogen from the pulmonary artery.  Mean values
with 95% confidence intervals.
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thrombocytes and leucocytes.  These reductions seem to be
related to the presence of gas bubbles.  During
decompression from a saturation dive to 440 msw, where
no gas bubbles could be detected, there was no reduction in
leucocyte number.46   In another saturation dive, Benestad
et al.47 showed that decompression lead to activation of
neutrophils.  Contrary to what has been observed in
thrombocytes, no activation of leucocytes seems to occur
in vitro at pressure.

Coagulation

Aggregation of thrombocytes may lead to the
formation of blood clots, thus forming solid emboli which
may compound the effect of gas bubbles in the lung.  Thorsen
et al.48 showed that gas bubbles lead to aggregation of
thrombocytes in-vitro.  Aggregation in-vitro was strongest
when the bubble diameter was between 40 and 120 µm.
The degree of aggregation does not seem to be dependent
upon the gas content of the bubble, but only on its surface
properties.49  Aggregation of thrombocytes by gas bubbles
can be considerably enhanced by adrenaline (epinephrine).50

Vasoconstriction/dilatation

Gas bubbles can induce vasoconstriction by direct
effects on the vascular wall51 or vasodilation or
constriction by initiating the release of different vasoactive
substances.52,53

Bubble effects on different organ systems

In the following the bubble effects will be described
on some organ systems.  Primary and secondary effects will
be described together, as they often are quite difficult to
distinguish.

Endothelial damage

Chryssanthou et al. have shown that animals exposed
to decompression will show breakdown of the blood-brain
barrier and the blood-lung barrier.54  Broman et al. have
demonstrated that even very short contact between gas
bubbles and endothelium (1-2 minutes) will lead to such
breakdown.55  Furthermore, studies in rabbits indicate that
such contact leads to endothelial damage and progressive
reduction on cerebral blood flow and function.  In a  study
by Smith et al.56  endothelial damage could be demonstrated
in pigs exposed to severe decompressions.  We were able to
demonstrate changes in the endothelium in pigs following
exposure to gas bubbles.  We found that these changes
occurred at an exposure of approximately 1.5 bubbles/cm2,
equivalent to approximately Grade II-III on the Spencer
scale.57

Even minimal endothelial injury can induce
activation of both biochemical and cellular responses, which
could form the basis for tissue injury following
decompression.

Lung function changes

Gas emboli may block some parts of the pulmonary
vascular bed, reducing or preventing blood flow through
the regions of lung served by those vessels.  This leads to
an initial rise in the pulmonary artery pressure (PAP) and
pulmonary vascular resistance (PVR), and a decrease in
arterial oxygen tension (PaO2).9,58,59  Following
decompression, changes in diffusion capacity60 and lung
function changes similar to “small airways disease” have
been seen.61

Central Nervous System changes.

Central nervous changes in DCI are probably caused
by several mechanisms.  In severe DCI, both vascular
bubbles and in-vivo bubble formation probably plays a
role.33

Exposure to vascular bubbles without clinical
symptoms do not seem to have a serious effect upon the
spinal cord.62  In this group of 10 amateur and 10
professional divers, five of whom had suffered from DCI,
no changes could be seen.  In the brain, changes in the
endothelial layer of the ventricles could be detected in a
group of divers.63  A possible explanation is that this
damage is caused by gas bubbles in the spinal fluid, such
bubbles will probably primarily adhere to the lining of the
ventricles.

Numerous studies have shown that circulating gas
bubbles change the blood-brain barrier, this is described
above.

Bone

Aseptic bone necrosis is regarded as an occupational
hazard for all workers under pressure.64  There is clear
indications that the incidence of bone necrosis is linked to
decompression.  This is perhaps best demonstrated by the
fact that this disease, which is quite rare in the industrial
world, is considerably more prevalent in the developing
world, where diving practices produce a high incidence of
decompression sickness.

Conclusions.

A recent consensus conference on long term health
effects of diving11 concluded that “changes can be seen in
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lungs, CNS and bone in divers who had not had any
decompression accidents”, or perhaps more accurately, in
divers who had not been treated for decompression illness.
The mechanisms for these changes are not clear, but as
bubbles in the vascular system have been observed
frequently in divers, a reasonable working hypothesis would
be that vascular bubbles may play a major role in this.  There
are still many details missing how the bubbles affect the
organism.  An understanding of the mechanisms involved
is important, however, both for preventing injury and for
treating the damage caused by these bubbles.
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37 DECOMPRESSION SICKNESS CASES
TREATED IN THE DEPARTMENT OF

UNDERWATER AND HYPERBARIC MEDICINE,
ISTANBUL FACULTY OF MEDICINE

Akin S Toklu, Samil Aktas, Salih Aydin and Maide Çimsit

Abstract

The time interval between the onset of
decompression sickness (DCS) and recompression therapy,
and the first aid with medical treatments applied before
reaching a recompression facility, will affect the outcome
of the recompression therapy.

In this study 37 DCS cases were evaluated to find
out the time interval to the onset of DCS, the type of the
disease and symptoms, delay to recompression treatment,
medical treatments applied during transport, recompression
treatment protocols performed and outcomes.

All the patients were male.  Professional divers (32
or 86.5%) outnumbered sports divers (5 or 13.5%).  In 20
cases (54.1%) onset of symptoms was within the first 10
minutes after the dive.  In three men (8.1%) symptoms came
on underwater.  Numbness, tingling and back pain were the
most frequent symptoms reported by the patients with Type
II DCS.  Complete recovery was achieved in 32 (86.5%) of
the cases by recompression therapy combined with medical
treatment.  Rehabilitation was needed in 12 (32.4 %) of the
cases.

Omitted decompression was the most frequent cause
of DCS in our cases.  Additional hyperbaric oxygen therapy
needed in delayed cases is evidence of the importance of
immediate transport and adjunctive medical treatments.

Key Words
Decompression illness, first aid, transport, treatment.

Introduction

The hyperbaric facilities in Turkey are mostly
situated in Istanbul.  The only Hyperbaric and Underwater
Medicine Department in civilian universities is in the
Istanbul Faculty of Medicine.  The Fisheries Research
Institute also has a hyperbaric chamber for treating divers
in Bodrum, in Aegean Sea region.  The Turkish Navy has
three hyperbaric units.  Besides these public facilities, all
with multiplace chambers, hyperbaric oxygen therapy is
performed in three private hyperbaric centres, in Istanbul.
The three private hyperbaric centres, which all have
multiplace chambers and one also has a monoplace, are free
standing and mostly use hyperbaric oxygen therapy for
indications other than diving related disease.  In March
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