Chinese Journal of Rock Mechanics and Engineering

13(1994), 375-388

桩基设计方法^{*}

陆培炎

(广东省水利水电科学研究所 广州 510610)

提要 本文提出了桩基强度和桩的沉降计算方法,指出不能用岩石单轴抗压强度去计算桩基 强度,提出了桩基的设计原则和桩的允许沉降值,特别提到了在软土中桩的负摩擦和侧移问

关键词 桩基,设计方法

桩基设计原则 1

在广东, 桩基应用很多, 主要有如图1的三特形式。 即有扩大头的挖孔桩(图 la), 无扩大头的挖孔桩, 冲、 钻孔灌注桩(图 1b)和有磁尖的预应力混凝土桩、预制 桩、锤击式灌注桩和就地压入桩(图 1c)。

桩穿过各种岩土层,并支承于某一岩土层上,在桩 顶荷载 N 的作用下,由于桩向下位移 S,桩周各土层将 产生向上的摩擦力,其合力为N,,在桩底将产生作用于 支承岩土层上的荷载为 N_b , $N=N_f+N_b$ 。

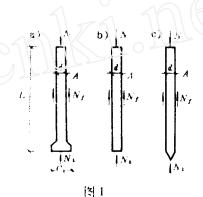


Fig. 1

桩基的设计,对于承受垂直荷载作用的桩基,应保证桩身的强度和桩基的地基强度有 一定的安全度,也应保证桩顶的沉降小于上部建筑物允许的沉降。即

$$N \leqslant \Phi \tag{1}$$

$$S \leqslant f \tag{2}$$

式中: N --- 桩的计算荷载;

 Φ ——· 桩身强度和桩底地基强度:

S---桩顶计算沉降;

f--上部建筑物允许沉降。

对于承受水平荷载作用的桩基,应保证桩身的强度和桩基强度,也应保证桩顶的水平 位移在一定的允许范围内。检验桩身强度可按砼结构规范解决。

如果知道桩的摩擦力 N_t ,则 N_b 可知,式(1)中检验桩基强度公式可写为:

$$N_b \leqslant \Phi$$
 (3)

1991年12月26日收到初稿, 1994年7月11日收到修改稿。

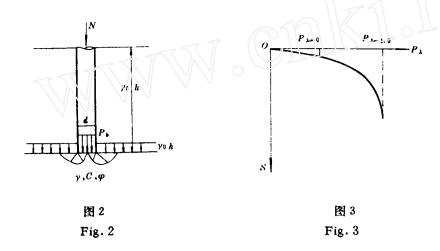
* 1993年10月19日作者在国立新加坡大学以该文为内容作了报告。

桩基强度计算 2

(1) 在荷载 N_a 作用下,桩支承于有容重 γ 、内聚力 c 和内摩擦角 ϕ 的岩土上,桩埋深 为 h, 桩底直径为 d (图 2), 桩基强度可按笔者的弹塑性压力公式计算[1]:

$$\Phi = A_b \cdot p_\lambda \tag{4}$$

式中: A, ---- 桩底面积;


 p_{λ} 一桩基岩土的弹塑性压力,当危险度 $\lambda=0$, $p_{\lambda=0}$ 为临塑压力;当 $\lambda=1$, $p_{\lambda=1}$ 为 极限压力; $p_{\lambda=0-1}$ 为弹塑性压力,如图 3。

$$p_{\lambda} = A_{\lambda} \gamma d + B_{\lambda} \gamma_0 h + D_{\lambda} c \tag{5}$$

式中: A_{λ} , B_{λ} , D_{λ} ——与桩底岩土的内摩擦角 φ 和危险度 λ 有关, 具体数值列于附录中;

ν,ν0——桩底和埋深岩土层的容重;

c---桩底岩土的内聚力。

在广州、深圳、珠海的桩长为 18m 以内、支承于残积层和砂层上的直径为 480mm 的 锤击沉管灌注桩的静载试验,曾检验式(5) $p_{\lambda=0}$ 和 $p_{\lambda=1}$ 与实测值相比还比较满意,笔者认 为,大于 480mm 直径的桩应该也可以应用这个公式。

(2) 对于岩石上的桩,只要对岩体(强、中、微风化)进行三轴剪切试验或在井内进行 现场的剪切试验,均可得到岩样或岩体的 c、 φ 值。例如在广州珠江帆影,曾进行中微风化 的软质页岩试验,试验结果如表1所示。

许多岩样剪切试验证明,由于岩体裂隙,c 值应予降低使用,一般乘 $0.25\sim0.5$ 的系 数,而 ϕ 值不予折减。由室内剪切试验与野外的剪切试验发现,岩体的内摩擦角 ϕ 两者很 接近,我们也可用室内剪切试验内摩擦角 φ 以及用现场的 h=0 和 d 已知的小压板试验得 到的极限压力 $p_{\lambda=1}$, 由式(5)反算求出岩体内聚力 c 值,其 c、 φ 值列于表 2 中。该表还列出 小压板试验($h = 0, d = 0.36 \sim 0.5$ m)的 $p_{\lambda=1}$ 值。

表1 Table 1

标	R (MPa)	B, (MPa)	φ (度)	c (MPa)
1孔		340		
2孔	_	916		
1孔	4. 3	946. 6		
2 孔	4. 8	776. 6		
1孔			28°11′	0. 996
2孔			28°11′	0. 996
1孔			25°10′	1. 35
2孔			26°C	1.60
	4. 5	400	28°0′	1.00
	1孔 2孔 1孔 2孔 1孔 2孔	1升 2升 1升 4.3 2升 4.8 1升 2升 1升 2升	(MPa) (MPa) (MPa) 1 孔 340 2 孔 916 1 孔 4.3 946.6 2 孔 4.8 776.6 1 孔 2 孔 1 孔 2 孔 1 孔 2 孔	1升 340 2升 916 1升 4.3 946.6 2升 4.8 776.6 1升 28°11′ 2升 25°10′ 2升 26°0′

关于岩石的变形模量 E,,可用多种方法测定,表1给出的是压板试验和单轴应力应变 试验的结果,现场压板试验是很好的方法,根据这些试验结果,岩体的 B,也列于表 2 中。

表 2 Table 2

岩 石(体) 名 称	E,(MPa)	q(度)	c(MPa)	$p_{\lambda=1}$ (MPa) ($h = 0$, $d = 0.36 \sim 0.5 \text{m}$)
强风化泥岩、泥质砂岩 和砂质泥岩	100~300	28~30	0. 07~0. 3	2.5~5
中徽风化泥岩、泥质砂岩 和砂质泥岩	500~1000	28~30	0. 25~0. 5	7~19
强风化砂岩和砾岩	200~400	30~36	0. 2~0. 35	>10
中徽风化砂岩、砾岩 和石英岩	>1000	36~45	0.5~2.0	>19
微风化石灰岩和花岗岩	>3000	38~45	2.0~4.0	>19

有了岩体的 c、 φ 值,我们可以用式(5) 算出 $p_{\lambda=0}$, $p_{\lambda=0.2}$, …, $p_{\lambda=1.0}$ 值, $\frac{p_{\lambda=1}}{p_{\lambda=0}}$ 值对 于不同的 $c \setminus \varphi$ 应是不同的,我们可以选择任意的 $\lambda < 1$ 。桩基强度安全系数 k 为:

$$k = \frac{A_b \cdot p_{\lambda=1.0}}{N_b}$$

一般, k 值应大于 2。

(3) 目前,在广东省和深圳市,都已有了桩基地方性规范,提供了当地岩石的允许承 载力R,值,正如同世界各国的概念一样,应用岩石单轴抗压强度R乘小于1的系数,例如 $0.2 \sim 0.5$,作为 R_j 值。现在我们分析应用单轴抗压强度去计算桩基强度有什么差异。

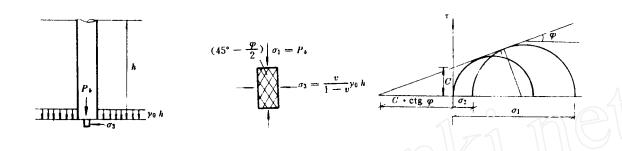


图 4 Fig. 4

图 2 是桩基强度计算简图,图 4 表示一个岩样在桩底的应力,并取出该岩样受到最大 主应力 $\sigma_1 = p_b = \frac{N_b}{A_b}$ 和最小主应力 $\sigma_3 = \frac{v}{1-v} \gamma_0 h$, v是岩石的泊松比, 一般 v = 0.2, $\zeta =$ $\frac{\nu}{1-\nu}=0.25$,则 $\sigma_3=0.25 \gamma_0 h$ 。一个岩样,在围压 σ_3 作用下,增加 σ_1 直至破坏,得到 σ_3 作用下的 σ_1 , 对于同一种岩石的多个岩样可绘出多个莫尔园(图 5), 则莫尔一库伦强度条

$$\sin\varphi = \frac{\frac{1}{2}(\sigma_1 - \sigma_3)}{c \cdot \operatorname{ctg} \varphi + \frac{1}{2}(\sigma_1 + \sigma_3)}$$

可写成

件为:

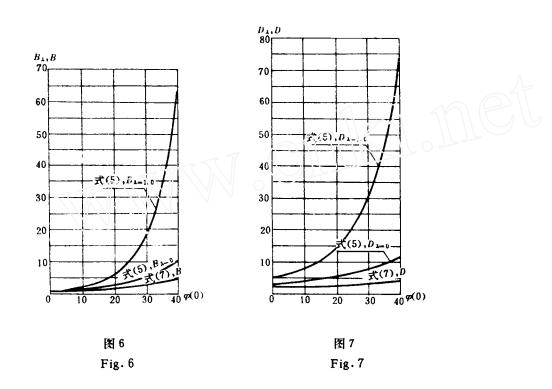
$$\sigma_1 = \frac{1 + \sin\varphi}{1 - \sin\varphi} \, \sigma_3 + \frac{2\cos\varphi}{1 - \sin\varphi} \, c$$

亦可写成

$$\sigma_1 = B\sigma_3 + Dc \tag{6}$$

式中

$$B = \frac{1 + \sin \varphi}{1 - \sin \varphi}, \quad D = \frac{2\cos \varphi}{1 - \sin \varphi}$$


当 $\sigma_3 = 0$, $\sigma_1 = Dc$, 这就是单轴压缩试验。

按照图 4, $\sigma_1 = p_h$, $\sigma_3 = 0.25 \gamma_0 h$,

则

$$p_b = B \cdot 0.25 \gamma_0 h + Dc \tag{7}$$

式(7) 表明,在围压 σ_3 作用下, σ_1 与岩样内聚力 σ_2 、内摩擦角 σ_3 有关。将式(7) 与 式(5) 比较,式(5) 比式(7) 多了一个桩径 d 项。显然,一个是单元体,一个是半空间体, B_{λ} 与 B 、 D_{λ} 与 D 是不同的。图 6 与图 7 表示单元体的 B 和 D 均小于半空间体当 $\lambda=0$ 或 λ =1 时的 B_{λ} 和 D_{λ} 。就是说,一个有围压 $\sigma_3=0$. 25 $\gamma_0 h$ 的试样试验所得到的极限压力 σ_1 值, 远小于一个半空间体在超载 y_0h 作用下的极限压力 $p_{\lambda=1,0}$ 值。

当 $\sigma_3 = 0$,式(7)的 p_s 就是单轴试验极限抗压强度 R。如果应用单轴试验的 R 去评定 桩基的极限压力,显然是不正确的。它有三个问题:第一,不能考虑桩径 d 的影响;第二, B 值远小于 $B_{\lambda}(\lambda=0\sim1)$, 何况单轴试验不考虑 σ_3 即不考虑埋深; 第三, D 值远小于 D_{λ} 值,即单轴试验与半空间受力完全不同。

桩的沉降计算[2] 3

(1) 在垂直荷载 N 作用下,桩顶的沉降 S 由三部份组成,即桩身混凝土的压缩 S_c 、桩 底岩土的变形 S, 和沉渣的压缩 S, 组成, 即

$$S = S_c + S_r + S_s \tag{8}$$

设桩身混凝土、桩底岩土及沉渣均处于线性变形状态,并已知桩周的摩擦力 N_f ,且 N= $N_f + N_b$,则

$$S_c = \frac{(N+N_b)l}{2AE_c} = \frac{pl}{E_c}(1-\frac{1}{2}\frac{N_f}{N}) = \frac{pl}{E_c}(1-\frac{1}{2}\eta)$$
(9)

式中, $p = \frac{N}{A}$, $A \longrightarrow$ 桩身截面积, $l \longrightarrow$ 桩长, $E_c \longrightarrow$ 混凝土弹性模量, $\eta \longrightarrow \frac{N_f}{N}$ 。

$$S_r = \frac{N_b d_b (1 - v_r^2) \cdot 0.79}{A_b E_r} \tag{10}$$

式中, E_r — 桩底岩土的变形模量, ν_r — 岩土的泊松比,岩石 0.2, ± 0.3 , A_b — 桩底 截面积, d, —— 桩底直径。

当没有扩大桩头时,

$$S_r = \frac{p d (1 - v_r^2) \cdot 0.79}{E_z} (1 - \eta)$$
 (11)

$$S_{\bullet} = \frac{N_b h_{\bullet}}{A_b E_{\bullet}} \tag{12}$$

式中, h_a — 沉渣厚度, E_a — 沉渣变形模量。 对于没有扩大头的桩,

$$S_s = \frac{p h_s}{\tilde{E}_s} (1 - \eta) \tag{13}$$

对于挖孔桩及 $h_s \rightarrow 0$ 的桩, $S_s = 0$ 。对于没有扩底的桩,

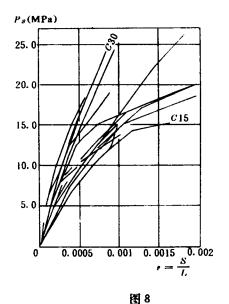
$$S = S_c + S_r = \frac{pl}{E_c} (1 - \frac{1}{2}\eta) + \frac{pd(1 - \nu_r^2) \cdot 0.79}{E_r} (1 - \eta)$$
 (14)

对于有扩底的桩

$$S = S_c + S_r = \frac{pl}{E_c} (1 - \frac{1}{2}\eta) + \frac{N_b d_b (1 - \nu_r^2) \cdot 0.79}{A_b E_r}$$
 (15)

(2) 对于硬质岩石上的桩, 岩基变形 S, 相对于桩身的压缩是很小的, 即桩顶沉降 S 主 要取决于桩身压缩,由式(14)得:

$$S = S_c + S_r = \frac{pl}{E} \left[(1 - \frac{1}{2}\eta) + (1 - \eta) \frac{E_c}{E'} \frac{d}{l} \right] = \frac{pl}{E} \xi$$
 (16)


即

$$\varepsilon = \frac{s}{l} = \frac{p\,\zeta}{E_{\circ}} \tag{17}$$

式中,

$$E_{r'} = \frac{E_{r}}{(1-v_{r}^{2})\cdot 0.79}, \qquad \zeta = \left[(1-\frac{1}{2}\eta) + (1-\eta)\frac{E_{c}d}{E_{r'}l} \right]$$

因此可以绘出 $p \zeta$ 与 $\frac{s}{l}$ 的图形,如图 8 所示。图中列出 C 15 和 C 30 标号混凝土的应力 应变曲线,所有硬质岩石上的桩的试验曲线都被包括在这两曲线之内,而且桩的破坏完全

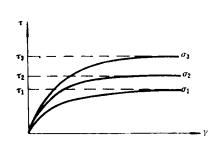


Fig. 8

A 9

Fig. 9

是由于桩身混凝土破坏 并且在桩顶附近。

- (3) 对于软质岩石上桩的沉降,主要是岩基的变形,也要考虑桩身压缩。
- (4) 对于支承于粘偿土及砂土上的桩,在一般情形下,土的压缩是主要的,桩身的压 缩一般约 1~3mm 左右。

4 桩周摩擦力Nf

桩身穿过 n 个土层时, 其桩周摩擦力为:

$$N_f = \pi d \sum_{i=1}^n \tau_i l_i \tag{18}$$

在这个式子中, 要确定的是土与桩周的摩擦力 τ。

一般来说,对于混凝土桩,若桩周外无涂料,则混凝土与土的抗剪强度大于土的抗剪 强度,因此,土与桩周的摩擦力 τ可以用土的剪切试验去研究。

在进行直剪试验时,在不同的垂直压力σ作用下,施加剪应力τ,产生剪应变γ(图 9), 最后达到极值的 7 为抗剪强度,根据若干个这种剪切试验得到土的抗剪强度式

$$\tau = c + \sigma \operatorname{tg} \varphi \tag{19}$$

可见,桩周土的摩擦力是依桩与土相对位移 γ 、土对桩产生的侧向垂直压力 σ 以及土的性 质 c、 φ 的三个因素有关。

当相对位移 γ = 0, 摩擦力无法产生; 当相对位移 γ 较大, 土的剪应力达到极值。因此, 桩产生沉降才可能产生摩擦力。

侧向垂直压力 σ 就是由土自重应力引起的水平应力 σ_3 ,在没有构造应力的情况下, σ_3

 $=\frac{\nu}{1-\nu}$ γh ,因此摩擦力随深度而增加。

许多桩的摩擦力测试表明, 随着荷载 N 的增加, 摩擦力增加, 增加只能到一定的极 值,除了支承于土上的桩及软质岩石上的桩有摩擦力以外,硬质岩石上的桩也有摩擦力。

因此,在设计荷载时,对于土,采用规范提供的摩擦力一般是正确的,且是极值的一。 对于广东的岩石,强风化的泥岩、页岩 $\tau = 60 \text{KPa}$,强风化的砂岩、花岗岩 $\tau = 80 \text{KPa}$,中 风化的泥岩、页岩 $\tau = 80$ KPa,中风化的砂岩和花岗岩 $\tau = 100$ KPa。

5 桩基沉降允许值于

桩基沉降允许值于是根据上部结构的使用条件和强度条件确定的。

(1) 许多岩石上具有良好混凝土质量的桩载荷试验表明,在设计荷载作用下,桩的沉 降数值一般如下: 石灰岩上的桩 1~3mm; 硬质岩石(花岗岩、砂砾岩等) 上的桩 3~ 6mm; 软质岩石(强、中风化的花岗岩和砂砾岩、页岩、泥岩)上的桩 3 ~15mm; 土上的 桩 3~25mm。

要注意到,试桩是短暂的荷载,长期荷载沉降与短管试验荷载沉降之比为。对于硬质 岩石为 1.1, 软质岩石 1.2~ 1.3, 土 1.3~ 1.4。

- (2) 许多用桩支承的高层建筑沉雕观测暖明,石灰岩上桩的沉降为 2 ~ 3mm,硬质岩 石上桩的沉降 3~10mm, 软质岩石上桩的沉降 4~20mm, 土上桩的沉降 5~30mm。
- (3) 许多建筑物沉降观测证明,桩的沉降差与建筑物平均沉降之比约0.5,一般高层建 筑柱的跨距 6~8m,柱间容许的沉降差约 12~16mm,因此,桩基上的高层建筑的容许沉 降 f = 30mm。

对象香港那样一些高层建筑,平面短边 A 小,而高度 II 大,则应由沉降差引起的房屋 顶面的水平移动 u 来控制(虽然在施工中不断纠正其水平位移 u),则容许沉降 $f=2u\frac{A}{U}$, 例如 A = 10m, II = 100m, u = 5cm, 则 f = 1cm。

岩石下卧较软夹层的验算

在广州, 许多高层建筑的桩基, 桩下有 h, 厚度的硬层, 其下有厚度 h2 的较软的夹层, 怎样验算桩基的强度和计算桩的沉降?

桩底的压力为 p_b ,通过 h_1 厚度的硬层以 θ 角扩散至下卧较软夹层的顶面,可以认为是 一个直径为 $(d + 2h_1 \operatorname{tg} \theta)$ 的桩,而桩底埋深山 h 增加至 $h + h_1$,如图 10 所示,则可用笔者 的弹塑性压力公式进行计算。

$$p_{\lambda} = A_{\lambda} \gamma_2 (d + 2h_1 \operatorname{tg} \theta) + B_{\lambda} (\gamma_0 h + \gamma_1 h_1) + D_{\lambda} c \tag{20}$$

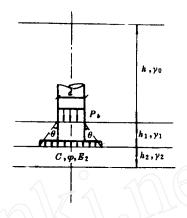
然后进行比较,

$$y_1h_1 + \frac{d}{d + 2h_1 \operatorname{tg}\theta} p_b \leqslant p_{\lambda} \tag{21}$$

或

$$\gamma_1 h_1 + \frac{d^2}{(d+2h_1 \operatorname{tg}\theta)^2} p_b \leqslant p_{\lambda}$$
 (22)

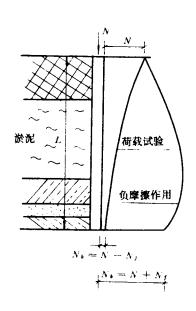
假定其它相邻桩没有较软的夹层,则两桩将产生沉降差 S。,


$$S_s = p_b a_2 h_2 (\frac{1}{E_2} - \frac{1}{E_1}) \tag{23}$$

式中: a2 — 为 h2 厚度范围内平均应力分布系数;

 E_2 一 为较软夹层的变形模量;

 E_1 一 为桩底硬层的变形模量。


并以 $S_{\bullet} \leq 0.002L$ 进行检验, 式中 L 为相邻柱的距 离。

7 桩的负摩擦

桩周土的沉降大于桩的沉降则发生土对桩产生向下 的摩擦力,称负摩擦。在广东,产生负摩擦主要有如下 几种情况:

图 10 Fig. 10

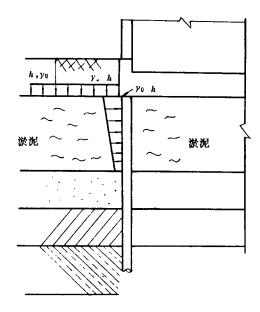
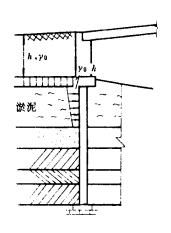


图 11 Fig. 11

图 12 Fig. 12

- (1) 桩穿过较厚的淤泥层,淤泥层上有较厚的填土,桩施工后淤泥层仍未沉降完结, 这是最主要的情况,因此需要准确计算软土的沉降及沉降与时间的关系。
 - (2) 桩穿过淤泥层,建筑物使用时,如粮库、仓库、大面积堆料等,造成淤泥的沉降。
 - (3) 相邻施工场地降低地下水而引起土的沉降。


同一根桩,短暂的桩静载试验与受负摩擦力桩的受力完全不同,如图 11 所示,桩身内 力比外载 N 要大,桩底 N。要比静载试验大许多倍。因此,桩的沉降大,甚至会引起桩基破 坏。

在设计时并不是所有没有计算负摩擦力的桩都会引起桩的沉降事故,这要看负摩擦力 的大小、桩底支承于什么样的岩土上,即桩基强度的危险度和沉降数值。如果桩底的土的 强度不够,则可能发生桩基沉降事故。

桩受侧压力的破坏及侧移 8

在广东,由于软土分布广,淤泥厚且含水量高,设计者往往只考虑桩的垂直荷载,没 有注意到软土侧压力的作用而造成桩破坏及侧移的例子是很多的。笔者[3] 已详细论述它的 破坏、侧移原因和计算图式。桩受侧压力破坏、侧移的几种例子:

- (1) 桩穿过较厚的淤泥,板式基础下桩基,在基础埋深上的自重 yoh 作用下,对淤泥产 生垂直压力,从而淤泥对桩产生侧压力,造成桩的破坏(图 12);
- (2) 桩穿过较厚的淡泥,填土有高差,如桥台,在软土侧压力作用下造成桩的破坏或 侧移(图13);
- (3) 桩穿过较厚的淤泥,在桩附近堆载,如粮库、仓库,桩承台产生水平位移和转动, 造成上部结构的裂缝或破坏(图 14);

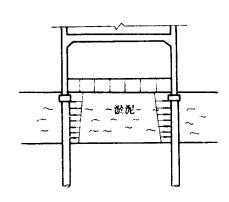


图 14 Fig. 14

- (4) 桩穿过较厚的淤泥,在桩一侧开挖,引起桩的侧移或破坏。
- 总之,桩两侧的软土侧压力差会造成桩的破坏和侧移。

桩在软土侧压力作用下的计算问题是横向荷载作用下桩、土共同作用的课题,可按笔 者[4] 的方法进行分析。

结论

- (1) 桩的设计应进行桩身强度、桩基强度的计算,并应保证有足够的安全度;还应进 行桩的沉降计算,并应小于上部建筑物的允许沉降 f = 30 mm;
- (2) 工程地质勘察报告应提供桩底岩土的内聚力 c 和内摩擦角 φ a 对于土, 可进行一 般的剪切试验;对于岩石,可在井内进行剪切试验或室内三轴试验。同样,勘察报告应提 供桩底岩土的变形模量 E_r 。对于土,可进行一般的压缩试验,但要根据这类土积累的压板 试验和建筑物沉降观测结果进行修正,最好在井内进行压板试验;对于岩石,可在井内进 行压板试验或室内的应力应变试验。
 - (3) 可按式 4、5 进行桩基强度计算,可按式 8 进行征的沉降计算。
- (4) 对于硬质岩石,桩的强度取决于桩身强度,桩的沉降取决于桩身压缩,没有必要 做扩大头和嵌岩;对于软质岩石、桩的强度主要取决于桩基强度,桩的沉降主要考虑桩底 岩石的压缩和考虑桩身压缩,做扩大头是可行的;对于支承于土上的桩,桩的强度主要取 决于桩基强度,桩的沉降取决于桩底土的压缩,因此,应尽量选取低压缩性土作支承。不 论什么桩,桩身质量应保证设计的要求。
- (5) 可按式 20、21 或 22 进行检验岩石下卧较软夹层的强度,并计算桩间沉降差在允许 范围内。
- (6) 在广东,由于桩穿过软土,要注意桩的负摩擦及桩受到软土侧压力的作用而破坏 和侧移。

致谢 本文所进行的研究工作,得到广东省水利水电科学研究所熊丽珍、李鸿钧、曹洪、 陈韶永、范毅、赖琼华、杨光华、陈晓文、陈海新高级工程师和周锦华、倪光乐、谢应恩、 李思平、陈德才、许朝松、叶棠、龙国盈工程师的帮助,也得到东莞市建委霍倩仪总工程师 的帮助。

参考文献 10

- 1 陆培炎、徐振华、地基的强度与变形的计算。西宁、青海人民出版社,1978
- 2 陆培炎, 硬质岩石与软质岩石上桩的性状, 广东省岩石力学与工程学会及广东省成人科技大学, 广州, 1987, 11
- 3 陆培炎, 软土力学与工程, 第四届全国铁路软土路基研讨报告会报告, 杭州, 1989, 10
- 4 Cheung Y.K., Lu P.Y. and Tsui Y.: A simplified analysis of pile-soil interaction under lateral loading. Proceedings of The Fourth International Conference on Tall Buildings, 1988; (1)

DESIGN METHOD OF PILE FOUNDATION

Lu Peiyan

(Guangdong Provincial Research Institute of Water Conservancy and Hydro-Power Research) (Guang zhou 510610)

Abstract

A method for evaluating foundation strength and settlement of pile foundation is presented. The design principle and allowable settlement values for pile foundations is de-scribed, and the problems of negative friction and lateral displacement of pile in soft soil is discussed.

Key words pile foundation, design method

附录: A,、B,、D,系数表

			// //	V			
N. F.	A W	o	0. 2	0. 4	0.6	0.8	1.0
0	A' _x A _x B _x D _x	0 0 1.00 3.14	0 0 1.00 3.71	0 0 1.00 4.16	0 0 1.00 4.54	0 0 1.00 4.86	0 0 1.00 5.14
2	A' ₂ A ₂ B ₂ D ₂	0 0 1. 12 3. 32	0. 01 0. 01 1. 14 3. 95	0. 02 0. 03 1. 16 4. 47	0. 02 0. 04 1. 17 4. 91	0. 03 0. 06 1. 19 5. 29	0. 04 0. 07 1. 20 5. 63
4	A', A, B, D,	0 0 1. 25 3. 51	0. 02 0. 03 1. 30 4. 26	0. 04 0. 06 1. 34 4. 82	0. 05 0. 10 1. 37 5. 33	0. 07 0. 13 1. 40 5. 78	0. 09 0. 16 1. 43 6. 19
6	A' 1 A 1 B 1 D 1	0 0 1. 39 3. 71	0. 03 0. 06 1. 48 4. 52	0. 06 0. 11 1. 55 5. 20	0. 10 0. 17 1. 61 5. 80	0. 13 0. 22 1. 67 6. 33	0. 16 0. 28 1. 72 6. 81
8	A' ₁ A ₁ B ₂ D ₃	0 0 1.55 3.93	0. 05 0. 09 1. 68 4. 84	0. 10 0. 18 1. 79 5. 62	0. 15 0. 26 1. 89 6. 32	0. 20 0. 35 1. 98 6. 95	0. 25 0. 44 2. 06 7. 53

附录(续1)

	λ						l	•
₽		0	0. 2	0.4	0.6	0.8	1.0	
	A',	0	0. 07	0.14	0. 22	0. 29	0. 36	•
10	A_{λ}	0	0.13	0. 26	0.38	0.51	0.64	
10	B _A	1.74	1.92	2. 07	2. 22	2. 35	2. 47	
	D_{λ}	4. 17	5. 19	6.09	6. 91	7.65	8. 35	
	A',	0	0.10	0. 20	0.30	0.40	0.50	•
12	A_{λ}	0	0. 17	0. 35	0. 52	0.70	0.87	
12	B _x	1.94	2. 18	2.41	2.61	2.80	2. 97	
	D 3	4. 42	5. 57	6. 61	7. 56	8. 45	9. 29	
	A'2	0	0.14	0. 28	0. 41	0. 55	0.69	
14	A,	0	0. 25	0.50	0.76	1.01	1. 26	
**	В,	2. 17	2. 49	2.79	3. 07	3. 33	3. 59	
	D 2	4. 69	6.00	7. 19	8. 31	3. 36	10. 37	
	A',	0	0. 19	0. 38	0. 57	0.76	0.95	
16	A ₂	0	0. 35	0. 59	1. û4	1.38	1.73	
10	B .	2. 43	2. 85	3. 25	3.63	3. 99	4. 34	
	D_{λ}	4. 39	8. 46	7, 85	9. 16	10. 41	11.63	
	A',	0	0. 25	0. 51	0.76	1. 02	1. 27	•
18	A ,	0	0.47	0.93	1.40	1.86	2. 33	
10	В,	2.73	3. 27	3.79	4. 29	4.78	5. 25	
	D_{λ}	5. 31	6. 98	8. 58	10. 12	11. 62	13. 10	
	A',	0	0.34	0.68	1.02	1.36	1.70	•
20	A .	0	0.63	1.26	1.88	2.51	3. 14	
20	B _A	3.06	3.75	4. 42	5.09	5.74	6.40	
	D _x	5.66	7.55	9. 40	11. 22	13. 03	14. 84	
	A',	0	0. 45	0. 91	1.36	1.81	2. 26	•
22	A 2	0	0.84	1.69	2. 53	3. 38	4. 22	
22	B _k	3. 44	4. 31	5. 18	6. 05	6. 93	7.82	
	D ₂	6.04	8. 19	10. 34	12.50	14. 67	16. 88	
	A',	0	0.60	1. 20	1.81	2. 41	3. 01	
24	A_{λ}	0	1.14	2. 28	3. 42	4. 56	5.70	
44	B _A	3.87	4.96	6.08	7. 22	8. 39	9.60	
	D,	6. 45	8.90	11.40	13. 97	16. 60	19. 32	
	A',	0	0.81	1.63	2. 44	3. 26	4. 07	•
26	A,	0	1.54	3. 08	4. 62	6. 16	7.70	
20	B _x	4. 37	5.73	7. 15	8. 65	10. 21	11.85	
	D _a	6.90	9.70	12.62	15. 68	18. 88	22. 25	
	A'2	0	1.08	2. 16	3. 23	4. 30	5. 38	-
28	A ,	0	2.03	4.06	6.10	8. 13	10. 16	
40	В.	4. 93	6. 63	8. 45	10. 49	12. 49	14.72	
	D _x	7.40	10.60	14.01	17.68	21.60	25. 80	

附录(续2)

	1							
J.F.	λ ***	0	0. 2	0.4	0.6	0.8	1.0	
	A',	0	1.46	2.93	4. 39	5.86	7.32	
	A,	0	2.85	5.70	8.56	11. 41	14. 26	
30	B,	5. 59	7.70	10.02	12. 57	15. 36	18. 40	
	D 1	7. 95	11.61	15.63	20.04	24. 87	30. 14	
	A'a	0	1. 98	3. 96	5. 94	7. 92	9.90	
20	Α,	0	3. 90	7.80	11.71	15.61	19. 51	
32	B _x	6. 34	8. 98	11.94	15. 27	19.01	23. 18	
	D,	8. 55	12. 76	17.50	22.84	28. 82	35. 49	
	A',	0	2. 77	5. 51	8.31	11.08	13. 83	
0.4	A,	0	5. 45	10.90	16. 36	21.82	27. 27	
34	B .	7. 22	10. 50	14. 29	18. 67	23.70	29. 44	
	D,	9. 22	14. 08	19.70	26. 20	33. 66	42. 17	
	A',	0	3.78	7.57	11.38	15. 17	18. 92	
0.0	A 1	0	7.46	14. 93	22. 39	29. 86	37. 32	
36	B ₂	8. 24	12. 33	17.19	22. 97	29.79	37.75	
	D ,	9. 97	15. 59	22. 28	30. 24	39, 63	50. 59	
_	A's	0	5, 43	10.86	16. 28	21.70	27. 10	
20	Ax	0	10. 95	21.90	32. 85	43. 80	5 4. 75	
38	B,	9.44	14.54	20. 81	28. 48	37.78	48. 93	
	D ,	10.80	17. 34	25. 36	35. 17	47. 08	61.35	
	A',	0	7. 64	15. 28	22. 92	30. 56	38. 20	
40	A ₁	0	15. 57	31. 14	46.71	62. 28	77. 85	
40	B,	10.85	17. 25	25. 36	35. 61	48. 41	64. 20	
	D ,	11.73	19. 36	29. 03	41. 24	56. 50	75. 31	
	A',	0	11. 22	22. 43	33. 65	44. 86	56. 08	
42	A_{λ}	0	22. 92	45.84	68.75	91.67	114. 59	
42	B,	12.51	20. 57	31.13	44. 94	62.76	85. 37	
	D ,	12.79	21.74	33. 46	48. 80	68. 59	93.71	
	A',	0	16.69	33. 37	50.06	66.74	83. 43	
44	A 1	0	32. 40	64.80	97. 21	129.61	162. 01	
44	В,	14.50	24. 69	38. 55	57. 33	82. 41	115. 31	
	D 2	13. 98	24. 54	38. 88	58. 33	84. 31	118. 37	
	A'a	0	20. 53	41.06	61.60	82. 13	102. 66	
45	A_{λ}	0	40.51	81.02	121. 53	162.04	202. 55	
7.0	B _A	15.64	27. 13	43. 04	65. 04	94. 96	134. 87	
	D ,	14.64	26. 13	42.04	64. 04	93. 96	133. 87	

注:λ和φ可用插入法