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Abstract. We simulate the distribution of neutral hydrogen (HI) at
the redshiftsz = 1.3 and 3.4 using a cosmological N-body simulation
along with a prescription for assigning HI masses to the particles. The
HI is distributed in clouds whose properties are consistent with those of
the damped Lyman-α absorption systems (DLAs) seen in quasar spectra.
The clustering properties of these clouds are identical to those of the dark
matter. We use this to simulate the redshifted HI emission expected at
610 MHz and 325 MHz, two of the observing bands at the GMRT. These are
used to predict the correlations expected between the complex visibilities
measured at different baselines and frequencies in radio-interferometric
observations with the GMRT. The visibility correlations directly probe the
power spectrum of HI fluctuations at the epoch when the HI emission
originated, and this holds the possibility of using HI observations to study
large-scale structures at highz.

Key words. Cosmology: theory, observations, large scale structures—
radiation.

1. Introduction

Observations of Lyman-α absorption lines seen in quasar spectra are an important
probe of the distribution of neutral hydrogen (HI) at high redshifts. These observations
show that the bulk of the neutral gas in the redshift range 1≤ z ≤ 3.5 is in HI
clouds with column densities greater than 2× 1020 atoms/cm2 (Lanzettaet al.1995;
Storrie-Lombardiet al. 1996; Ṕerouxet al. 2001). The damped Lyman-α absorption
lines produced by these clouds indicate�gas(z), the comoving density of neutral gas
expressed as a fraction of the present critical density, to be nearly constant at a value
�gas(z) ∼ 10−3 (Pérouxet al.2001).

In this paper we simulate the HI emission expected from these clouds. The aim of the
exercise is to investigate the possibility of detecting the redshifted HI emission using
the Giant Meterwave Radio Telescope (GMRT; Swarupet al.1991). We focus on two
of the GMRT frequency bands centered at 610 MHz and 325 MHz corresponding to HI
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emission from redshiftsz = 1.3 and 3.4. The HI flux from individual clouds (< 10µJy)
is too weak to be detected by GMRT unless the image of the cloud is significantly
magnified by an intervening cluster gravitational lens (Sainiet al. 2001). Although
we may not be able to detect individual clouds, the redshifted HI emission from the
distribution of clouds will appear as a background radiation in low frequency radio
observations. In three earlier papers (Bharadwajet al.2001; Bharadwaj & Sethi 2001
and Bharadwaj & Pandey 2003; hereafter referred to as Paper a, b and c respectively),
and in the present paper we investigate issues related to calculating the expected signal
and detecting it.

We propose (Papers b and c) that the optimal observational strategy for detecting this
signal is to deal directly with the complex visibilities measured in radio interferometric
observations. Briefly introducing the terms involved, we remind the reader that the
quantity measured in radio interferometric observations with an array of antennas is
the complex visibilityV (U, ν). This is measured for every pair of antennas at every
frequency channel in the observation band. For every pair of antennas it is convenient
to express the visibility as a function ofU = d/λ i.e., the separation between the
two antennasd expressed in units of the wavelengthλ. We refer to the different
possible values ofU as baselines. One of the big advantages of dealing directly with the
visibilities is that the system noise contribution to the visibilities is uncorrelated. The
visibilities respond only to the fluctuations in the redshifted HI emission. In Paper b we
showed that the correlation expected between the visibilitiesV (U, ν)andV (U, ν+1ν)

measured at the same baseline at two slightly different frequencies is

〈V (U, ν)V ∗(U, ν + 1ν)〉 = [Ī bDθ0]2

2r2

∫ ∞
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√

(2π U/r)2 + k2
‖ , Ī0 is the specific intensity expected from the HI emis-

sion if the HI were uniformly distributed,θ0 = 0.6× θFWHM, θFWHM being the angular
width of the primary beam of the individual antennas,r is the comoving distance to

the HI from which the radiation originated, andb2D2P(k)
[
1 + β

k2
‖

k2

]2
is the power

spectrum of the fluctuations in the HI distribution in redshift space at the epoch when
the HI emission originated.

To summarize, the visibility-visibility cross-correlation (hereafter refereed to as the
visibility correlation) directly probes the power spectrum of HI fluctuations at the
epoch where the HI emission originated. This holds the possibility of allowing us to
study the large scale structures at high redshifts. A point to note is that the visibility
correlations at a baselineU receives contribution from the power spectrum only for
Fourier modek > kmin = (2π/r)U , and for the CDM-like power spectrum most of
the contribution comes from Fourier modes aroundkmin. So, it may be said that the
correlations at a baselineU probes the power spectrum at the Fourier mode(2π/r)U .

In the earlier work we treated the HI as being continuously distributed whereas in
reality the HI resides in discrete gas clouds. In addition, it was assumed that the HI
distribution is an unbiased representation of the underlying dark matter distribution,
and we used the linear theory of density perturbations to follow the evolution of
fluctuations in the dark matter distribution. It is these assumptions which allow us to
express the power spectrum of fluctuations in the HI distribution in redshift space at
the epoch when the HI emission originated (in equation 1) in terms ofb the linear
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bias parameter (taken to be 1),D the growing mode of linear density perturbations
(Peebles 1980) at the epoch when the HI emission originated,P(k) the present power
spectrum of dark matter density fluctuations calculated using linear theory and the

factor
[
1 + β

k2
‖

k2

]2
which takes the power spectrum from real space to redshift space

in the linear theory of redshift distortions (Kaiser 1987) . Here we report progress on
two counts. First, we have used a PM N-body code to evolve the fluctuations in the
dark matter distribution, thereby incorporating possible non-linear effects. Second,
we have assigned HI masses to the dark matter particles in the N-body code and
this was used to simulate the redshifted HI emission. So we have also been able to
incorporate the fact that the HI gas is contained in discrete clouds. The predictions
for the HI signal expected at GMRT presented in this paper incorporate both these
effects. We still retain the assumption that the HI is an unbiased tracer of the dark
matter.

We next present a brief outline of this paper. In section 2 we discuss the method
that was used to simulate the HI signal, and in section 3. we present the results of our
investigations. In section 4 we discuss the results and present conclusions.

Finally, it should be pointed out that there have been alternative lines of approach
investigating the possibility of using HI observations to study large scale structures
at z ∼ 3 (Sunyaev & Zeldovich 1975; Subramanian & Padmanabhan 1993; Kumar
et al.1995; Weinberget al.1996; Baglaet al.1997; Bagla & White 2002). The reader
is referred to Papers a and b for a detailed comparison of these approaches with that
adopted here.

2. Methodology

We have simulated the visibility correlations expected at two of the GMRT observing
frequency bands centered atνc = 610 MHz and 325 MHz. The simulations were
carried out in three steps:

• Using a PM N-body code to simulate the dark matter distribution at the redshift
where the HI emission originated

• Assigning HI masses to the particles used in the N-body code and calculating the
flux expected from each HI cloud

• Calculating the complex visibilities arising from the distribution of HI clouds and
computing the visibility correlations.

We next discuss the salient features of each of these steps. The valuesh = 0.7,
�m0 = 0.3 and�30 = 0.7 were used throughout.

2.1 The N-body simulations

We have used a Particle-Mesh (PM) N-body code to simulate the dark matter dis-
tribution at the redshiftz where the HI emission originated. The simulation volume
was a cubic box of comoving volumeL3. The sizeL was chosen so that it is approx-
imately twice the comoving distance subtended byθFWHM of the GMRT primary
beam.

The values ofr the comoving distance to the region from where the HI emission
originated, the grid spacing of the mesh1L, and the number of dark matter particles
used in each simulationNDM are all shown in table 1.
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Table 1.

νc (MHz) z θFWHM r (Mpc) L (Mpc) 1L (Mpc) NDM NSIM zin

610 1.33 0.9◦ 4030 128 0.5 1283 4 19
325 3.37 1.8◦ 6686 512 1 2563 4 9

The initial power spectrum of dark matter density fluctuations atzin (shown in
table 1) is normalized to COBE (Bunn & White 1996), and its shape is determined
using the analytic fitting form for the CDM power spectrum given by Efstathiouet al.
(1992). The value of the shape parameter turns out to be0 = 0.2 for the set of
cosmological parameters used here. We have run the N-body code forNSIM (table 1)
independent realisations of the initial conditions and the final results for the visibility
correlations were averaged over all the realisations.

The N-body code gives the final positions and peculiar velocities of theNDM dark
matter particles in the simulation. The power spectrum of the density fluctuations in
the dark matter distribution atz = 1.33 andz = 3.37 is shown in Figs. 1 and 2
respectively. In both the figures we have shown the power spectrum for the range
of Fourier modes which will make a significant contribution to the visibility corre-
lation at the baselines where the signal is expected to be strongest. We find that at
z = 1.33(610 MHz) the power spectrum obtained from the N-body simulation shows

P
(k

) 
M

pc
3

k Mpc−1

100

123

200

400

Nbody

linear 

300

610 MHz

z=1.33

1

10

100

1000

10000

0.1 1

Figure 1. This shows the power spectrum of density fluctuations in the dark matter distribution
atz = 1.33. The vertical lines show the smallest Fourier modekmin = (2π/r)U which contributes
to the visibility correlations at a baselineU . This is shown for the different values ofU indicated
in the figure.
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Figure 2. This is the same as Fig. 1 except that it is atz = 3.37 which corresponds to 325 MHz.

substantial differences from the power spectrum calculated using linear theory at
Fourier modesk ≥ 0.3 Mpc−1. Converting to baselines, we expect non-linear effects
to be important forU ≥ 200. At z = 3.37(325 MHz) there are differences between
the N-body and linear power spectrum atk ≥ 0.3 Mpc−1, but the non-linear effects
are not as pronounced as at 610 MHz. Converting to baselines, non-linear effects will
influence the signal at baselinesU ≥ 400.

2.2 Assigning HI masses

We model the HI clouds as randomly oriented rotating disks of radiusR, column density
NHI and rotation velocityV . The values ofR andV are held fixed in each simulation,
and we have run simulations with different sets of values for these parameters. It is
assumed that the column densities have a power law distribution in the range 2×1020 ≤
NHI/(atoms/cm2) ≤ 1 × 1022 and the comoving number density of HI clouds with
column densities in the intervaldNHI is BN−α

HI dNHI. The total comoving number
density of HI clouds at redshiftz is

nc
HI(z) = B

∫ NHI [max]

NHI [min]
N−α

HI dNHI (2)

and the comoving mass density is

ρc
HI(z) = B

∫ NHI [max]

NHI [min]
(πR2NHImHI)N

−α
HI dNHI, (3)
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wheremHI is the mass of the hydrogen atom. The normalisation coefficientB is
determined by using equation (3) to calculate�gas(z)

�gas(z) = 4

3
�HI(z) = 4

3

8πG

3H 2
0

ρc
HI(z). (4)

We use�gas= 10−3 in all the simulations.
This model fixes the total number of HI clouds in the simulation volumeNclouds =

L3nc
HI(z) . The total number of clouds scale as

Nclouds∝ 1 − α

2 − α
R−2, (5)

as we varyα the slope of the column density distribution or the radius of the cloudsR.
For large values ofR the HI is distributed in a few clouds with large masses, whereas
there are many clouds with low HI masses whenR is small. Our model has three free
parameters, namelyα, R andV . We have run simulations varyingα andR (table 2)
for V = 100 km/s and 200 km/s.

We randomly selectNcloudsparticles from the output of the N-body simulation and
these are identified as HI clouds. The HI mass of each cloud isMHI = πR2NHImHI,
where the column density is drawn randomly from the power-law distribution discussed
earlier. The center of the simulation volume is aligned with the center of the GMRT
primary beam and it is located at a comoving distance corresponding to the redshift
z. The comoving distance to each cloud is used to calculate its angular position and
redshift. The redshift is used to determine the luminosity distance which is used to
calculate the flux from the individual clouds. The effect of the peculiar velocity is
incorporated when calculatingνo the frequency at which the HI emission from each

Table 2.

νc (MHz) α R Kpc nc
HI(z) Mpc−3 Nclouds

610 1.2 10 2.0 × 10−2 42467

610 1.2 8 3.2 × 10−2 66354

610 1.2 5 8.1 × 10−2 169865

610 1.2 2 5.1 × 10−1 1061651

610 1.7 10 3.7 × 10−2 76764

610 1.7 8 5.7 × 10−2 119943

610 1.7 5 1.5 × 10−1 307055

610 1.7 2 9.2 × 10−1 1919088

325 0.8 10 1.3 × 10−2 1799234

325 1.2 10 2.0 × 10−2 2717825

325 1.2 8 3.2 × 10−2 4246602

325 1.2 5 8.1 × 10−2 10871300
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cloud is received. The line width1ν of the HI emission line from each cloud is
calculated using1ν =| sinθ | 2νoV/c, where 2νoV/c is the line width if the disk of
the galaxy were viewed edge on andθ is the angle between the normal to the disk and
the line of sight.

To summarize, at the end of this stage of the simulation we haveNcloudsHI clouds.
For each cloud we have its angular positionEθa,and the flux densityFa, frequencyνa

o

and line-width1νa of the redshifted HI emission. Here the indexa (1 ≤ a ≤ Nclouds)
refers to the different clouds in the simulation.

2.3 Calculating visibility correlations

We first describe how we have calculated the complex visibilities that would be mea-
sured in GMRT radio observations of the HI distribution generated in the simulation.
The observations are carried out atNC frequency channels{ν1, ν2, ν3, . . . , νNC} cov-
ering a frequency bandB centered at the frequencyνc. We have usedB = 8 MHz and
NC = 64 atνc = 610 MHz, andB = 8 MHz andNC = 128 atνc = 325 MHz.

For the purpose of this paper we assume that the antennas are distributed on a plane,
and that they all point vertically upwards. The beam patternA(Eθ) quantifies how the
individual antenna, pointing upwards, responds to signals from different directions in
the sky. This is assumed to be a GaussianA(Eθ) = e−θ2/θ2

0 whereθ0 = 0.6 × θFWHM

(table 1).
The position of each antenna can be denoted by a two dimensional vectordi . The

quantity measured in interferometric observations is the visibilityV (U, ν) which is
recorded for every independent pair of antennas (baseline) at every frequency channel
in the band. For any pair of antennas, the visibility depends on the vectord = di − dj

joining the position of the two antennas. It is convenient to express the visibility as a
function of the variableU which isd expressed in units of the wavelength i.e.,U = d/λ.
The signal arising from the clustering pattern of the HI clouds will be strongest at the
small baselines, and our calculations have been limited to this. We have considered a
square grid of baselines extending from−Umax to Umax with resolutionδU . We have
usedUmax = 400 andδU = 10. The complex visibility has been calculated for each
baselineU on the grid using

V (U, ν) =
Nclouds∑
a=1

A(Eθa) F ae−i2πU·Eθa

O

( | ν − νa
o |

1νa

)
, (6)

where the functionO(x) is defined such thatO(x) = 1 for x ≤ 1, elseO(x) = 0. It is
to be noted that in an actual GMRT observation the baselines will have a complicated
distribution depending on which part of the sky is observed and the duration of the
observation. Given the fact that the signal we are interested in is statistical in nature,
and that we are interested in making generic predictions about the signal expected in
a typical GMRT observation, a square grid of baselines is adequate.

The final step in the simulation is to calculate the visibility correlation〈V (U, ν)V ∗
(U, ν + 1ν)〉. The angular brackets〈〉 indicate the ensemble average, and we have
averaged over theNSIM different realisation of the N-body simulation. In addition, the
correlation depends only on the separation in frequency| 1ν |, and the magnitude
U =| U |. So, for a fixed value of1ν andU we have averaged over all possible pairs
of frequencies and baselines which match these values.



74 S. Bharadwaj & P. S. Srikant

The analytic calculations (Papers b and c) where the HI is assumed to have a con-
tinuous distribution, predict the imaginary part of the visibility correlation function to
be zero, and the clustering signal is manifest in only the real part. In the simulations
we get a very small, but non-zero imaginary component. This is not discussed in the
rest of the paper where we present results for the real component only.

3. Results

In this section we present results for the visibility correlation as obtained from our
simulations. We compare these with the analytic predictions of Papers b and c and
investigate the effect of two factors:

(1) the non-linear evolution of the density fluctuations, and
(2) the discrete nature of the HI distribution.

To get a better understanding of the second effect, we present results varying the
parameters of the HI distribution.

3.1 610 MHz

Figure 3 shows the visibility correlations forU = 100, the results at smaller baselines
show a similar behaviour. The visibility correlation at the baselineU = 100 receives
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Figure 3. This shows the correlation expected between the visibilitiesV (U, ν) and
V (U, ν + 1ν) at the same baselines at two different frequencies. The rotational velocity of the
HI disk is assumed to beV = 200 km/s. The other parameters of the HI distribution take on
values shown in the figure. These results are for the 610 MHz band.
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contributions mainly from Fourier modes aroundk ∼ 0.2 Mpc−1 which is in the linear
regime (Fig. 1), and we expect a good agreement with the analytic, linear predictions.
We find that for1ν < 0.5MHz the analytic predictions are larger than the correlations
obtained in the simulations, and this is reversed for1ν > 0.5 MHz. This discrepancy
can be explained if we take into account the fact that visibility correlation actually
responds to the clustering in redshift space. It is known (e.g., Suto & Suginohara 1991;
Gramanet al.1993; Fisheret al.1994; Brainerdet al.1996; Bromleyet al.1997) that
non-linear effects can be important in redshift space even on scales where the clus-
tering in real space is well described by linear perturbation theory. It has been shown
that this can be modeled by taking into account the effect of the random motions
along the line of sight (e.g., Fisheret al. 1994; Peacock & Dodds 1994; Ballinger
et al.1996). We incorporate this by multiplying the power spectrum with exp [−k2

‖σ
2]

in our analytic formulas for the visibility correlation. This gives the modified
formula

〈V (U, ν)V ∗(U, ν + 1ν)〉 = [Ī bDθ0]2

2r2

∫ ∞

0
dk‖P(k)

[
1 + β

k2
‖

k2

]2

× exp[−k2
‖σ

2] cos(k‖r
′
1ν) (7)

for the visibility correlation. We find that forσ = 200 km/s/H0 this gives a good fit
to the results of the simulations, and this is also shown in the figure. We next shift
our attention to how the results depend on the parameters of the HI distribution. We
find that forr = 10 Kpc where the bulk of the HI is distributed in a few clouds with
large HI masses the results show a 20% increment at small values of1ν compared
to the models with smaller values ofr. This excess correlation at small1ν arises
from the fact that the HI emission from an individual cloud will be spread across a
width δν in frequency. The correlation between the HI emission from the same HI
cloud at two different frequencies will contribute to the visibility correlations when
1ν ≤ δν. The contribution from this signal is significant in comparison to that arising
from the clustering of the HI clouds when the total HI is distributed in a few clouds
with large HI masses each. The contribution to the visibility correlation from within
individual HI clouds goes down asr is reduced and the HI is distributed among many
clouds each with small HI masses. There is very little difference between the results
for r = 5 Kpc and 2 Kpc and we may treat this as the result if the HI were continuously
distributed.

The results in Fig. 3 are for the rotational velocityV = 200 km/s. We have also done
simulations usingV = 100 km/s. We find that there are differences (< 20%) only at
small values of1ν. The effect of decreasingV is to decrease the frequency width of
the HI emission line from individual clouds which results in a higher value of the HI
flux density. This does not effect the clustering signal but enhances the contribution to
the visibility correlation arising from the emission of a single HI cloud. As changing
V does not affect the results very much, in this subsection we show the results for
V = 200 km/s only.

Figure 4 shows the results forU = 300. We find that the discrepancy between
the linear, analytic predictions and the results of our simulations increases at larger
values ofU . Except at very small values of1ν, the simulated values are larger than
the linear predictions. This is because the larger baselines probe smaller length scales
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Figure 4. This is the same as Fig. 3 except that it shows results forU = 300.

which are significantly nonlinear (figure 1) and the amplitude of the fluctuations is
larger than predicted by linear theory. At smaller scales the fluctuations are non-linear
even in real space, and the modified formula (equation 7) based on only redshift space
considerations grossly underestimates the visibility correlations. An important point
is that at larger values ofU the visibility correlations calculated in the simulations
do not fall as sharply with increasing1ν as predicted in the linear calculations. In
Paper c we found that the visibility correlations decay as∝ exp[−1ν/K], where the
decay constant varies asK ∝ U−0.8 i.e., the decay is faster at larger baselines. Our
simulations show that the decay with increasing1ν is slower than predicted using
linear theory. This is a consequence of the fact that the density fluctuations are non-
linear on the length-scales being probed at these baselines. Another point to note is
that the dependence on the parametersR andα, becomes relatively more pronounced
at large values ofU .

3.2 325 MHz

A point which should be mentioned right at the start is that at 325 MHz we are restricted
in the values ofR for which we are able to carry out simulations. At 325 MHz the
simulation volume is pretty large (table 1) and forR = 2 Kpc the total number of HI
clouds in the simulation volume becomes too large for our computational resources.
Also, in this subsection we useV = 100 km/s in our simulations. Figure 5 shows the
results for the visibility correlations atU = 100. The behaviour at smaller baselines
is not very different. We find that for1ν < 1 MHz the predictions of the analytic,
linear calculations (Paper c) are very close to the values obtained in the simulation



Simulating the HI Signal Expected at GMRT 77

Linear

U=100

325 MHz

α =0.8

α =1.2r= 8 Kpc, 

α =1.2

α =1.2r=10 Kpc, 

r=10 Kpc, 

r= 5 Kpc, 

5e10

0

5e10

1e09

1.5e09

2e09

2.5e09

0 0.5 1 1.5 2

<
V

(U
, ν

) 
V

(U
, ν

 +
 ∆

ν)
> 

Jy
2

∆ν Mhz

Figure 5. This shows the expected correlation between the visibilitiesV (U, ν) and
V (U, ν + 1ν) at the same baselines at two different frequencies. The rotational velocity of the
HI disk is assumed to beV = 100 km/s. The other parameters of the HI distribution take on
values shown in the figure. These results are for the 325 MHz band.

for r = 8 Kpc andα = 1.2. The results of the simulation are slightly larger than the
analytic predictions whenr = 10 Kpc, and they are somewhat smaller than the analytic
predictions atr = 5 Kpc. For1ν > 1 MHz the results of the simulation are the same for
all the parameters, and the value is slightly more than the analytic prediction. The power
spectrum (Fig. 2) is in the linear regime at the Fourier modes which contribute to the
visibility correlations atU = 100. The discrepancy between the analytic predictions
and the results of our simulations can be attributed to a combination of the two factors
discussed earlier:

(1) the effect of random motions on the redshift space clustering and
(2) correlations between the HI emission from the same cloud at different frequency

channels.

Figure 6 shows the visibility correlations atU = 400. We find that the behaviour
of the visibility correlations does not change very much for baselines in the range
100 < U ≤ 400. The power spectrum (Fig. 2) starts getting non-linear at Fourier
modes corresponding toU = 400, but the effect is not very significant.

4. Discussion and conclusions

We take up for discussion two issues pertaining to the way we have modeled the
distribution of HI clouds. First is our assumption that the HI clouds responsible for
damped Lyman-α absorption lines are rotating disks, all with the same radius and
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Figure 6. This is the same as Fig. 5 except that it shows results forU = 400.

rotational velocity. Prochaska and Wolfe (1998) have proposed that these HI clouds
are the gaseous progenitors of present day galaxies. They have attempted to explain
the observed kinematic of the damped Lyman-α absorption lines using a thick, rotat-
ing disk model for the HI clouds. Another model (Haehneltet al.1998) proposes that
the observations could be better explained by modeling the absorption systems as pro-
togalactic gas clumps undergoing merger. The second issue is our assumption that the
HI column densities have a power law distribution and our choice of the value of the
indexα. Lanzettaet al.(1991) show that the column density distribution atz ' 2.5 can
be described by a power law withα ' 1.7. In a later paper Lanzettaet al.(1995) show
that the column density distribution evolves quite strongly with redshift, there being a
tendency toward more high column density clouds at higher redshifts. In our work we
have run simulations for two values of the index i.e.,α = 1.2 and 1.7. Having very
briefly reviewed some of the prevalent views and having compared our assumptions
with them, we note that our simulations seem to indicate that the visibility correla-
tion signal does not depend very critically on the details of the properties of the HI
clouds. We find that the visibility correlation signal has contribution from mainly two
effects:

(1) correlations caused by the emission from the same cloud to different frequency
channels, and

(2) the clustering of the clouds in redshift space.

The first effect is seen in the correlation at small values of1ν, where1ν is smaller
than the width of the HI line from an individual cloud. This effect manifests itself as
a rise in the visibility correlations at small values of1ν (< 0.5MHz). This effect is
enhanced if the HI is distributed in a few clouds with large HI masses as compared to
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the situation where the HI is in many small clouds with low HI masses. This seems
to be the only effect of the fact that the HI is distributed in discrete HI clouds and is
not continuously distributed. This is also the only place where the details of the HI
distribution affects the visibility correlation.

We next turn our attention to the contribution to the visibility correlation signal from
the clustering of the HI clouds. We may take the results for the visibility correlations
at the values of the parametersR andα whereNcloudsis maximum as representing the
results when the discrete nature of the HI distribution can be neglected (continuum
limit). This assumption is justified at 610 MHz where there is very little difference in
the results betweenR = 5 Kpc andR = 2 Kpc. We have not carried out simulations
for R < 5 Kpc at 325 MHz, and simulations with smaller values ofR are needed at
this frequency before we can be sure that the results forR = 5 Kpc really represent the
continuum limit. Let us first discuss the results at the baselines for which the visibility
correlation probes the power spectrum at length-scales which are in the linear regime.
This is true for baselines withU ≤ 100 at 610 MHz (Fig. 1). At 325 MHz most of
the baselines which we have studied probe the power spectrum in the linear regime
(Fig. 2). For all these baselines we find that the simulated values are less than the
predictions of linear theory at small1ν and the simulated values are larger than the
linear predictions at large1ν. The transition occurs in the range1ν ∼ 0.5− 1 MHz.
We propose that this discrepancy is a consequence of the fact that the fluctuations in the
HI distribution in redshift space may be non-linear even on length-scales where linear
theory holds in real space. This can be modeled by incorporating the effect of random
peculiar velocities on the redshift space HI distribution. We show that including this
effect gives a good fit to the simulated results atU = 100 for 610 MHz. At larger
baselines the visibility correlation probes the power spectrum on length-scales where it
is non-linear. Non-linear effects start influencing the visibility correlation at baselines
U ≥ 200 for 610 MHz, and these effects are very significant byU = 400. As a
consequence of these effects the simulated visibility correlations do not fall off with
increasing1ν as quickly as predicted by linear theory. Also, the simulated values are
larger than the linear predictions everywhere except at very small values of1ν. The
range of1ν where the simulated values are less than the linear predictions decreases
with increasingU .

In conclusion we note that the HI signal predicted by our simulations are not dras-
tically different from the analytic predictions presented earlier. In this paper we have
been able to address the effects of the discrete nature of the HI distribution and the
non-linear nature of the HI fluctuations in redshift space. We now have the tools nec-
essary to simulate the HI signal expected at the GMRT. A full simulation of a GMRT
observation requires us to also include the system noise as well as various galactic and
extragalactic radio sources. Only then will we be able to make definite predictions as
to whether it will be possible to detect the HI signal or not. Work is currently underway
on this. The preliminary results indicate that it will be possible to have a 5σ detection
at 610 MHz with one thousand hours of observation.
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