模糊随机结构有限元及可靠性分析的双因子法

马 娟,陈建军,徐亚兰,崔明涛 (西安电子科技大学机电工程学院,陕西西安 710071)

摘要:研究了具有模糊随机参数桁架结构的有限元分析和广义可靠性指标计算的问题.同时考虑结构 参数和荷载的模糊随机性,基于双因子法建立了模糊随机桁架的静力分析模型,推导了结构模糊随机响 应计算式,利用求解随机变量数字特征的代数综合法给出了结构响应的模糊数字特征,并以此为基础给 出了结构广义可靠性指标公式,为后续的结构优化工作提供了基础. 关键词:模糊随机参数;有限元分析;模糊随机响应;模糊数字特征;可靠性指标

中图分类号:TB115 文献标识码:A 文章编号:1001-2400(2009)01-0069-05

Analysis of the finite element and the reliability of the structures with fuzzy-random parameters based on the two-factor method

MA Juan, CHEN Jian-jun, XU Ya-lan, CUI Ming-tao

(School of Mechano-electronic Engineering, Xidian Univ., Xi'an 710071, China)

Abstract: The analysis of the finite element of the fuzzy-random truss and the structural reliability are given. Considering the fuzzy-randomness of structural parameters and loads simultaneously, the static analytical model of the fuzzy-random truss is constructed based on the two-factor method, and the structural fuzzy-random responses are presented. The fuzzy numerical characteristics of the structural response are then derived with the random variables' algebraic synthesis method and the structural reliability is then given too, which is the basis of the structural optimization.

Key Words: fuzzy-random parameters; finite element analysis; fuzzy-random response; fuzzy numerical characteristics; reliability index

由于工程问题的复杂性,结构本身或荷载的不确定性中除了随机性^[1]、模糊性^[2]之外,还有一类不确定 性,即模糊随机性.随机有限元法处理随机性、模糊有限元法处理模糊性,当要同时处理模糊性和随机性时则 需要使用模糊随机有限元方法.自从 H. Kwakernaak^[3-4]于 1978 年提出了模糊随机变量的概念后,许多学者 开展了不少有益的探索^[5-6],如文[5]用摄动法求解了一类模糊随机结构的静力学问题,先对模糊随机有限元 方程做水平截集,得到一组随机区间方程,再利用小参数摄动理论导得区间位移的递归方程组进行求解.但 该法计算量相对较大.

目前,基于概率的结构优化设计研究取得了不少成果^[7•9].此类优化设计考虑结构的随机性,且约束条件 通常为苛刻的确定性的许用界限值.但在机械结构设计中亦存在大量的模糊或模糊随机信息,如安全与失效 状态含有模糊性是工程中经常遇到的问题,而基于概率的设计存在着把许多工程中的非确定约束处理成了 确定性约束的硬性缺陷,没有真正反映结构的特性.因此基于广义可靠性的模糊或模糊随机结构分析及优化 设计研究势在必行,而此类结构的广义可靠性分析是需要首先解决的问题.

笔者在前期工作的基础上^[10],采用一种全新的双因子法研究带有第一类模糊随机参数桁架的有限元分 析和广义可靠性指标计算的问题,提供一种计算量相对较小的方法,为结构灵敏度分析及优化工作提供必要 的基础.首先基于双因子法建立了模糊随机桁架静力有限元方程,推导了当结构参数和载荷均为模糊随机变

收稿日期:2007-12-05

作者简介:马 娟(1972-),女,讲师,博士,E-mail: juan.m@126.com.

基金项目:国家部委预研基金资助(51421060505DZ0155);陕西省自然科学基金资助(2005A009)

量时结构静力位移和应力响应;在给出结构响应的模糊数字特征后,又分析了结构的广义可靠性指标.最后 通过工程算例验证了笔者所构建模型及其求解方法的可行性和合理性.

1 模糊随机桁架结构有限元分析

1.1 结构刚度矩阵的建立

考虑结构几何尺寸和物理参数均为模糊随机变量,根据第一类模糊随机变量的双因子表示法^[10],设结构中共有r根杆,所有杆单元材料相同,且各杆件长度 l_e 和截面积 A_e 取值的模糊随机分散程度均各自相等. 对第 e 个杆单元有:弹性模量 $E_e = \tilde{E}E^* E_e^*$,杆长 $l_e = \tilde{l}l^* l_e^*$,杆截面积 $A_e = \tilde{A}A^* A_e^*$.其中: E^* , I^* 和 A^* 分别为 E_e , l_e 和 A_e 的随机因子,其均值均为 1.0,变异系数是各参数的变异系数 ν_E , ν_l 和 ν_A ; 模糊因子 \tilde{E},\tilde{l} 和 \tilde{A} 的取值范围分别为 $\left[\tilde{E}_L = \frac{1}{r}\sum_{e=1}^r E_d/E_e^*, \tilde{E}_R = \frac{1}{r}\sum_{e=1}^r E_{de}/E_e^*\right], \left[\tilde{l}_L = \frac{1}{r}\sum_{e=1}^r l_d/l_e^*, \tilde{l}_R = \frac{1}{r}\sum_{e=1}^r l_{de}/l_e^*\right]$ 和 $\left[\tilde{A}_L = \frac{1}{r}\sum_{e=1}^r A_d/A_e^*, \tilde{A}_R = \frac{1}{r}\sum_{e=1}^r A_{de}/A_e^*\right], E_e^*, E_d, E_d, l_e^*, l_d, l_d, A_e^*, A_d$ 和 A_d 分别是 E_e , l_e 和 A_e 的

主值以及按模糊因子法得出的近似最大值和最小值;且模糊因子 *È*,*ì* 和 *A* 的取值范围的表示仅适合结构所 有同一性质物理量模糊随机分散程度相对本身较小的情况.

根据有限单元法,局部坐标系下 e 单元的模糊随机刚度矩阵为

$$\bar{\boldsymbol{K}}^{(e)} = \left(\frac{E^*A^*}{l^*} \; \frac{\tilde{E}\tilde{A}}{\tilde{l}}\right) \left(\frac{E^{\#}_{e} \; A^{\#}_{e}}{l^{\#}_{e}} \boldsymbol{G}^{e}\right) = \left(\frac{E^*A^*}{l^*} \; \frac{\tilde{E}\tilde{A}}{\tilde{l}}\right) \bar{\boldsymbol{K}}^{(e) \ \#} \quad , \tag{1}$$

其中 G 是常量阵,其元素 $g_{11} = g_{44} = 1$, $g_{14} = g_{41} = -1$,其余为零; $\overline{K}^{(e) \#}$ 为确定性部分.

则总体坐标系下 e 单元的模糊随机刚度矩阵 K^(e) 为

$$\boldsymbol{K}^{(e)} = \boldsymbol{\lambda}^{\mathrm{T}} \, \boldsymbol{\bar{K}}^{(e)} \, \boldsymbol{\lambda} = \left(\frac{E^* A^*}{l^*} \, \frac{\widetilde{EA}}{\tilde{l}} \right) \boldsymbol{\lambda}^{\mathrm{T}} \, \boldsymbol{\bar{K}}^{(e) \ \sharp} \, \boldsymbol{\lambda} = \left(\frac{E^* A^*}{l^*} \, \frac{\widetilde{EA}}{\tilde{l}} \right) \boldsymbol{K}^{(e) \ \sharp} \quad , \qquad (2)$$

其中 λ 为 e 单元的坐标转换矩阵,λ^T 为其转置矩阵; K^{(e) #} 为 K^(e) 的确定性部分.

进一步,结构总体刚度矩阵 K 为

$$\mathbf{K} = \sum_{e=1}^{r} \mathbf{K}^{(e)} = \left(\frac{\underline{E}^* A^*}{l^*} \; \frac{\widetilde{E}A}{\widetilde{l}}\right) \sum_{e=1}^{r} \mathbf{K}^{(e) \#} = \left(\frac{\underline{E}^* A^*}{l^*} \; \frac{\widetilde{E}\widetilde{A}}{\widetilde{l}}\right) \mathbf{K}^{\#} \quad , \tag{3}$$

其中 K[#] 是总体模糊随机刚度矩阵 K 的确定性部分.

1.2 结构的静力位移响应

设有n个荷载 $P = \{p_1, \dots, p_n\}$ 作用在结构上,它们的幅值为模糊随机变量,且它们的模糊随机不确定性相同,则由双因子法可得其中任一个载荷: $p_i = p^* \tilde{p} p_i^*$,即

$$\mathbf{P} = p^* \, \widetilde{p} \{ p_1^{\sharp}, \cdots, p_n^{\sharp} \} = p^* \, \widetilde{p} \, \mathbf{P}^{\sharp} \quad , \qquad (4)$$

其中 \tilde{p} 为荷载向量**P**的模糊因子,其不确定取值范围为 $\left[\tilde{p}_L = \frac{1}{n}\sum_{i=1}^n p_{iL}/p_i^{\sharp}, \tilde{p}_R = \frac{1}{n}\sum_{i=1}^n p_{iR}/p_i^{\sharp}\right]; p^*$ 为荷载向量的随机因子,其均值为 1.0,变异系数为 ν_p .

将结构总体模糊随机刚度矩阵(3)和模糊随机荷载向量(4)代入结构的静力有限元方程中,则有

$$\frac{\Xi^* A^*}{l^*} \frac{EA}{\tilde{l}} \mathbf{K}^{\#} \, \boldsymbol{\delta} = p^* \, \tilde{p} \, \mathbf{P}^{\#} \quad . \tag{5}$$

从中解得

$$\boldsymbol{\delta} = \left(\frac{l^* \boldsymbol{p}^*}{E^* A^*}\right) \left(\frac{l\boldsymbol{p}}{\widetilde{E}\widetilde{A}}\right) (\boldsymbol{K}^{\#})^{-1} \boldsymbol{P}^{\#} \quad , \tag{6}$$

令
$$\boldsymbol{\delta}^{\#} = (\boldsymbol{K}^{\#})^{-1} \boldsymbol{P}^{\#}, \tilde{\boldsymbol{\delta}} = \frac{\tilde{l}\tilde{p}}{\tilde{E}\tilde{A}}, \boldsymbol{\delta}^{*} = \frac{l^{*}p^{*}}{E^{*}A^{*}},$$
则式(6)可表示为

$$\boldsymbol{\delta} = \boldsymbol{\delta}^* \, \tilde{\boldsymbol{\delta}} \, \boldsymbol{\delta}^{\,\sharp} \quad , \tag{7}$$

其中 δ^* 为各参数及荷载为主值时结构位移响应值; δ 为模糊因子, 取值范围为 $\delta = [\delta_L = (\tilde{l}_L \tilde{p}_L)/(\tilde{A}_R \tilde{E}_R), \delta_R = (\tilde{l}_R \tilde{p}_R)/(\tilde{A}_L \tilde{E}_L)]; \delta^*$ 为随机因子.

显然响应各分量的不确定性也是相同的,均由 δ 和 δ^* 决定,由随机变量函数的矩法可知 δ^* 的均值仍为 1.0. 当 $\delta^* = 1.0$ 时,由区间运算^[10]可知位移响应的取值范围为[$\delta_L = \delta_L \delta^*, \delta_R = \delta_R \delta^*$].

因随机因子 p^* , l^* , E^* 和 A^* 具有随机性, 根据代数综合法^[9]并注意到各变量之间相互独立, 可得到 δ 的模糊均值 μ_{δ} 和模糊均方差 σ_{δ} 分别为

$$\mu_{\boldsymbol{\delta}} = \tilde{\delta}(1 + \nu_E^2 + \nu_A^2 + \nu_E^2 \nu_A^2) \, \boldsymbol{\delta}^{\sharp} = \tilde{\delta}\mu_{\boldsymbol{\delta}}^{\sharp} \quad , \tag{8}$$

$$\sigma_{\delta} = \tilde{\delta}(\nu_l^2 + \nu_p^2 + \nu_E^2 + \nu_l^2\nu_p^2 + \nu_A^2 + \nu_E^2\nu_A^2)^{1/2} \, \delta^{\sharp} = \tilde{\delta}\sigma_{\delta}^{\sharp} \quad , \tag{9}$$

其中 μ_{δ}^{*} 和 σ_{δ}^{*} 分别是 μ_{δ} 和 σ_{δ} 的主值. 当 $\tilde{\delta}$ 分别取 $\tilde{\delta}_{L}$ 和 $\tilde{\delta}_{R}$ 时,可分别得到 μ_{δ} 和 σ_{δ} 取值的下界 $\mu_{\delta L}$, $\sigma_{\delta L}$ 和上界 $\mu_{\delta R}$, $\sigma_{\delta R}$.

由方程(8)和(9)可以求得结构位移响应的变异系数 vs 为

$$\nu_{\delta} = \frac{(\nu_l^2 + \nu_p^2 + \nu_l^2 \nu_p^2 + \nu_E^2 + \nu_A^2 + \nu_E^2 \nu_A^2)^{1/2}}{1 + \nu_E^2 + \nu_A^2 + \nu_E^2 \nu_A^2} \quad .$$
(10)

1.3 模糊随机桁架结构的应力响应

由节点位移和单元应力之关系,可得第 e 个单元模糊随机应力响应 $\sigma^{(e)}$ 为

σ^(e) = E_e**Bδ**^(e) = (E^{*} δ^{*})(Ẽ)(E^{*}_e**Bδ**^{(e) #}) = σ^{*} σ**σ**^{(e) #}, e = 1,2,...,r,, (11) 其中 E_e 是第 e 个单元的弹性模量,**B**^e 为几何矩阵; **δ**^{(e) #} 是 e 单元各节点的位移响应主值; **σ**^{(e) #} 是当 $p_i = p_i^*, E_e = E_e^*, l_e = l_e^*, A_e = A_e^* \text{ th }$ **σ**^(e) 的主值; σ̃ = Ẽ δ = (l̃p)/Ã 是模糊因子, 且有 σ̃_L = l̃_L p̃_L/Ã_R, σ̃_R = $<math>l̃_R p̃_R / Ã_L; σ[*] = E[*] δ[*] = (l[*] p[*])/A[*]$ 为随机因子. 同理由代数综合法可得 **σ**^(e) 的模糊均值 μ_σ^(e) 和均方差 σ_σ^(e) 分别为

$$\mu_{\boldsymbol{\sigma}}^{(e)} = \bar{\boldsymbol{\sigma}} \boldsymbol{B} E_{e}^{\sharp} \mu_{\boldsymbol{\delta}}^{\sharp(e)} = \bar{\boldsymbol{\sigma}} \mu_{\boldsymbol{\sigma}}^{\sharp(e)} \quad , \quad e = 1, 2, \cdots, r \quad ,$$
(12)

$$\sigma_{\boldsymbol{\sigma}^{(e)}} = \tilde{\boldsymbol{\sigma}} \boldsymbol{B} E_{e}^{\sharp} \mu_{\boldsymbol{\delta}^{(e)}} \left[v_{\boldsymbol{\delta}^{(e)}}^{2} + v_{E}^{2} + v_{\boldsymbol{\delta}^{(e)}}^{2} v_{E}^{2} \right]^{1/2} = \tilde{\boldsymbol{\sigma}} \sigma_{\boldsymbol{\sigma}}^{\sharp_{(e)}} \quad , \quad e = 1, 2, \cdots, r \quad ,$$
(13)

其中 $\mu_{\sigma}^{\mathfrak{H}_{o}}$ 和 $\sigma_{\sigma}^{\mathfrak{H}_{o}}$ 分别是 $\mu_{\sigma}^{(o)}$ 和 $\sigma_{\sigma}^{(o)}$ 的模糊主值; 当 $\tilde{\sigma}$ 分别取 $\tilde{\sigma}_{L}$ 和 $\tilde{\sigma}_{R}$ 时,即分别得到了 $\mu_{\sigma}^{(o)}$ 和 $\sigma_{\sigma}^{(o)}$ 的下界 $\mu_{\sigma}^{(o)}{}_{L}$, $\sigma_{\sigma}^{(o)}{}_{L}$ 和上界 $\mu_{\sigma}^{(o)}{}_{R}, \sigma_{\sigma}^{(o)}{}_{R}$.

同理,由式(12)和(13)可求得结构应力响应的变异系数为

$$\nu_{\sigma_{(e)}} = \left[\nu_{\delta^{(e)}}^{2} + \nu_{E}^{2} + \nu_{\delta^{(e)}}^{2}\nu_{E}^{2}\right]^{1/2} \quad .$$
(14)

2 模糊随机桁架结构的广义可靠性分析

若结构第*i*个许用位移随机变量 δ_i 和所用单元许用应力随机变量 σ_i 的均值和方差给定,分别为 $\mu_{\delta_i}, \sigma_{\delta_i}^2, \mu_{\sigma_i}$ 和 $\sigma_{\sigma_i}^2,$ 由一次二阶矩方法,可求得第*i*个位移和第*e*个单元强度的广义可靠性指标分别为

$$\beta_{\delta_{i}} = (\mu_{\delta_{i}} - \mu_{\delta_{i}})(\sigma_{\delta_{i}}^{2} + \sigma_{\delta_{i}}^{2})^{-1/2} \quad , \tag{15}$$

$$\beta_{\sigma_{e}} = (\mu_{\sigma} - \mu_{\sigma_{e}})(\sigma_{\sigma}^{2} + \sigma_{\sigma_{e}}^{2})^{-1/2} \quad .$$
(16)

由上述推导可知β。和β。亦具有模糊性,且有

$$\begin{split} \beta_{\delta_{i}} &= \left[\beta_{\delta_{i}L} = (\mu_{\delta_{i}} - \mu_{\delta_{i}R})(\sigma_{\delta_{i}}^{2} + \sigma_{\delta_{i}R}^{2})^{-1/2}, \beta_{\delta_{i}R} = (\mu_{\delta_{i}} - \mu_{\delta_{i}L})(\sigma_{\delta_{i}}^{2} + \sigma_{\delta_{i}L}^{2})^{-1/2}\right] , \\ \beta_{\sigma_{e}} &= \left[\beta_{\sigma_{e}L} = (\mu_{\sigma} - \mu_{\sigma_{e}R})(\sigma_{\sigma}^{2} + \sigma_{\sigma_{e}R}^{2})^{-1/2}, \beta_{\sigma_{e}R} = (\mu_{\sigma} - \mu_{\sigma_{e}L})(\sigma_{\sigma}^{2} + \sigma_{\sigma_{e}L}^{2})^{-1/2}\right] . \end{split}$$

3 算 例

结构各参数均为第一类模糊随机变量,其模糊取值以正态模糊数 $y = (y^{*}, \alpha, \beta)_{LR}$ 形式给出: 弹性模量 $E = (7 \times 10^{10}, 0.1 \times 10^{10}, 0.1 \times 10^{10})_{LR}$,单位为 Pa, 杆长 $L = (l, 2, 2)_{LR}$,单位为 mm,截面积 $A = (A_{i}^{*}, \beta)_{LR}$

第1期

0.002,0.002)_{LR},单位为 cm²; 各杆截面积的名义值分 别为 { A_1^{\sharp} , A_2^{\sharp} , A_3^{\sharp} , A_4^{\sharp} } = {6.1,16.8,7.1,8.7},单位 为 cm². 取 λ = 1.365×10⁻¹¹ 做水平截集后,各参数分 别转化为区间数: $E = [6.5 \times 10^{10}, 7.5 \times 10^{10}],$ A = [A - 0.01, A + 0.01], L = [l - 10, l + 10].结构 各参数的概率分布均为正态分布.荷载作用在节点5 处,幅值为模糊随机变量且不确定性相同,取值为正态 模糊数 $P = (P^{\#}, 0.2 \times 10^{4}, 0.2 \times 10^{4})_{LR}$,荷载主值向 量为 $P^{\ddagger} = \{p_{1x}^{\ddagger}, p_{2y}^{\ddagger}, p_{3z}^{\ddagger}\} = \{10, 20, -60\} \times 10^4, 做水$ 平截集后 $P = [P^{*} - 1 \times 10^{4}, P^{*} + 1 \times 10^{4}], 单位为$

图1 杆空间模糊桁架结构 (单位:mm)

界和上界.为验证文中方法的可行性,采用了 Monte-Carlo 法对结构进行了1500次模拟,模拟中对所有不确 定结构参数采用了类似的分布. δ_{zz}^* 两列则给出了按照 Monte-Carlo 法计算得出的位移和应力响应的 种方法的计算结果较相近.

变量	ĩ	\widetilde{E}	\widetilde{A}	\widetilde{P}	õ	$\tilde{\sigma}$
下界	0.984	0.929	0.988	0.944	0.857	0.918
上界	1.016	1.071	1.012	1.056	1.169	1.086
变量	δ_{5z}/cm	σ_1/MPa		$\delta^*_{5z}/\mathrm{cm}$	$\sigma_1^* \ / \mathrm{MPa^2}$	
名义值	-1.090	165.5		-1.086		165.3
下界	-0.934		151.9	-0.948	156.7	
上界	-1.274		179.7	-1.259		171.6

表 1 各模糊随机变量的模糊因子取值

表 2 采用了 6 种模糊随机模型,计算了节点 5 在 z 方向上位移响应 δ_{z} 和最大应力响应 σ_{1} 的模糊均值和 均方差.结果以 $y = (y^*, y_L, y_R)$ 形式给出,其中 y^* 为y的主值, y_R 和 y_L 分别是上、下界.

从表2可以看出:

N,其概率分布仍为正态分布.

1) 模型 I ~ W中, 当 E, A, l 和 P 分别为模糊随机变量且其不确定性相同时, 它们对位移响应模糊随机 性的影响基本相同;而 E 对应力响应随机性的影响要大于其他 3 者(模型 Ⅲ 中应力响应均方差的主值更 大), E 对应力响应模糊性则无影响(模型 III 中应力响应均值和均方差的主值、下界和上界分别相同). 这主 要是因为 E,A,l 和 P 在位移响应的模糊因子和随机因子中两两分别位于分子和分母上且幂次相同,因此它 们对位移响应的影响基本相同,在应力响应均方差中 νε 的影响进一步增强,而在应力响应模糊因子中分子 和分母上的E则约去了,因而E对应力响应的模糊性无影响.

2)由模型 W 和 V,荷载和结构参数分别为模糊随机变量 目不确定性相同时,结构参数的不确定性对结 构响应不确定性的影响不容忽视.

表 3 给出考虑荷载 P 和弹性模量 E 的模糊随机性,第5个节点 z 方向上的允许位移δ₅ 为随机变量且其 均值为 μ_{δ} = 1.45 cm 时,将随机变量 δ_{5z} 的变异系数和模糊随机变量 E, P 的变异系数、模糊因子取为 3 组值 的情况下,结构位移广义可靠性指标和广义可靠度的计算结果.

可见对于3种模型,当前的结构设计方案均可满足位移可靠性约束,但模型Ⅲ计算结果的可靠性要明显 高于 Ⅰ 和 Ⅱ,表明变量模糊随机性的改变对广义可靠度有显著的影响;由于模型 Ⅰ 中参数和荷载的模糊随机 性大于模型Ⅱ和模型Ⅲ,故而导致结构的广义可靠性指标显著下降.

73

表 2 空间 4 杆模糊随机桁架结构静力响应分析结果

分析模型	位移响应 δ_{5z}/cm	应力响应 σ_1/MPa^2
确定性模型	-1.09	165.5
模糊随机模型 Ⅰ	$\mu_{\ast} = (-1, 09, -1, 04, -1, 14)$	(165 5 157 2 172 8)
$ u_l = 0.1, \tilde{l} = \begin{bmatrix} 0.95, 1.05 \end{bmatrix}$	1°_{5z}	$\mu_{\sigma 1} = (105.5, 157.2, 175.8)$
$ \nu_A = \nu_E = \nu_P = 0, \widetilde{A} = \widetilde{E} = \widetilde{P} = \begin{bmatrix} 1, 1 \end{bmatrix} $	$\sigma_{\delta_{5z}} = (-0.109, -0.104, -0.114)$	$\sigma_{\sigma^1} = (16.55, 15.72, 17.38)$
模糊随机模型 Ⅱ	$\mu_{\ast} = (-1, 101, -1, 048, -1, 159)$	
$ u_A = 0.1, \widetilde{A} = [0.95, 1.05]$	$1^{v_{5z}}$	$\mu_{\sigma^1} = (105.5, 157.4, 174.1)$
$oldsymbol{ u}_l = oldsymbol{ u}_E = oldsymbol{ u}_P = 0$, $ ildsymbol{ ildy} ildsymbol{ ildy} ildsymbol{ ildy} ildsymbol{ ildy} ildsymbol{ ildy} ildy ild$	$\sigma_{\delta_{5z}} = (-0.109, -0.104, -0.114)$	$\sigma_{\sigma^1} = (16.55, 15.76, 17.43)$
模糊随机模型 Ⅲ	$u_{s} = (-1, 101, -1, 048, -1, 159)$	(165 E 165 E 165 E)
$ u_E = 0.1, \widetilde{E} = [0.95, 1.05] $	$\mu_{\sigma_{5z}}$	$\mu_{\sigma^1} = (165.5, 165.5, 165.5)$
$oldsymbol{ u}_l = oldsymbol{ u}_A = oldsymbol{ u}_P = 0, oldsymbol{ ilde{l}} = \widetilde{A} = \widetilde{P} = oldsymbol{ ilde{l}}$ 1,1]	$\sigma_{\delta_{5z}} = (-0.109, -0.104, -0.114)$	$\sigma_{\sigma 1} = (23.41, 23.41, 23.41)$
模糊随机模型 Ⅳ	$u_{1} = (-1, 09, -1, 04, -1, 14)$	
$ u_P = 0.1, \widetilde{P} = \begin{bmatrix} 0.95, 1.05 \end{bmatrix}$	$\mu_{\delta_{5z}}$ (1.00, 1.01, 1.1)	$\mu_{\sigma 1} = (165.5, 157.2, 173.8)$
$ u_l = u_A = u_E = 0, \tilde{l} = \widetilde{A} = \widetilde{E} = \llbracket 1, 1 brace$	$\sigma_{\delta_{5z}} = (-0.109, -0.104, -0.114)$	$\sigma_{\sigma^1} = (16.55, 15.72, 17.38)$
模糊随机模型 V	$u_{2} = (-1, 112, -0, 959, -1, 293)$	
$ u_P = 0, u_l = u_A = u_E = 0.1, $	Pro _{5z} (1111), 11100,	$\mu_{\sigma^1} = (165.5, 149.8, 182.9)$
$\widetilde{P} = \llbracket 1, 1 brace$, $\widetilde{l} = \widetilde{A} = \widetilde{E} = \llbracket 0.95, 1.05 brace$	$\sigma_{\delta_{5z}} = (-0.189, -0.163 - 0.220)$	$\sigma_{\sigma^1} = (32.64, 29.54, 36.07)$
模糊随机模型 VI	$\mu_{\hat{s}} = (-1.1118, -0.9101, -1.3582)$	u = (165 5 142 3 102 0)
$oldsymbol{ u}_A = oldsymbol{ u}_E = oldsymbol{ u}_E = oldsymbol{ u}_P = 0.1, oldsymbol{ ilde{l}} = \widetilde{A} = \widetilde{P} =$	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	$\mu_{\sigma l} = (100.0, 142.0, 192.0)$
$\widetilde{E} = \begin{bmatrix} 0.95, 1.05 \end{bmatrix}$	$\sigma_{\delta_{5z}} = (-0.218, -0.178, -0.266)$	$\sigma_{\sigma_1} = (36.41, 31.31, 42.24)$

表 3 空间 4 杆桁架结构位移广义可靠性指标及广义可靠度分析结果

分析模型	位移 δ_{5z}/cm	位移广义可靠性指标 $\beta_{\hat{\sigma}_{5z}}$	位移广义可靠度 P _{ð5z}
模糊随机模型Ⅰ			
$\widetilde{P}=\widetilde{E}=$ [0.95, 1.05], $v_P= u_{\delta_{5z}^*}=$	1.09	(1.7005,1.6123,1.8264)	(0.95543,0.94638,0.96599)
$\nu_E = 0.1$			
模糊随机模型 Ⅱ			
$\widetilde{P}~=~\widetilde{E}~=$ [0.995, 1.005], $v_P=$	1.09	(1.7005,1.6869,1.7297)	(0.95543,0.95431,0.95811)
$\nu_{\hat{5}z} = \nu_E = 0.1$			
模糊随机模型 Ⅲ			
$\widetilde{P}~=~\widetilde{E}~=$ [0.995, 1.005], $v_P=$	1.09	(17.0052,16.8691,17.2974)	(1.00000,1.00000,1.00000)
$\nu_{\hat{5}z} = \nu_E = 0.01$			

4 结束语

利用双因子法,只需对确定性结构进行一次静力分析即可获得模糊随机结构的不确定静力位移和应力 响应及其模糊数字特征;该法具有简便易行、计算量小、计算效率较高的特点.

参考文献:

- [1] Schuëller G I. Comprtational Stochastic Mechanics—Recent Aadvances[J]. Computers & Structures, 2001, 79(4): 2225-2234.
- [2] 高伟,陈建军,马娟,等. 基于信息熵模糊桁架结构有限元分析[J]. 西安电子科技大学学报,2004,31(3):413-416.
 Gao Wei, Chen Jianjun, Ma Juan, et al. Finite Element Analysis for Fuzzy Truss Structures Based on Information Entropy[J]. Journal of Xidian University, 2004, 31(3): 413-416.