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ADJUVANT THERAPY
FOR DECOMPRESSION ILLNESS
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Current Knowledge

The definitive treatment of DCI is administration of
oxygen in a recompression chamber.  However, in
recreational diving a chamber is rarely available on site,
often necessitating delays of several hours before
recompression can be initiated.  This is potentially a “golden
period” during which simple measures may make a
significant difference in outcome.

Surface (First Aid) oxygen

In severe DCI, which can be complicated by
aspiration of water or vomitus, administration of oxygen is
a standard first aid measure to reverse hypoxaemia and
enhance oxygen delivery to under-perfused tissue.
Additionally, when breathing 100% oxygen, the partial
pressure gradient for diffusion of inert gas from bubble into
tissue (“oxygen window”) is increased.  This has been
observed in experimental animal preparations.1,2  The
effectiveness of oxygen administration to injured divers is
supported by clinical experience.  Analysis of 2,192
recreational diving accidents reported to the Divers Alert
Network revealed that 68% of divers who received surface
oxygen reported partial or complete resolution of symptoms
before recompression versus only 40% who had no
supplemental oxygen.

Blood glucose control

Both brain3 and spinal cord4 injury can be worsened
by hyperglycaemia.  The most likely mechanism is
accelerated production of lactate producing intracellular
acidosis.  The effect appears to become significant above a
threshold plasma glucose of around 200 mg/dl (11 mM).5,6

Administration of even small amounts of glucose, for
example one litre of intravenous 5% dextrose solution, even
in the absence of significant hyperglycaemia, may worsen
neurological outcome.7  Therefore, unless treatment of
hypoglycaemia is required, it is best not to administer
glucose containing intravenous solutions.  If there is reason
to suspect hyperglycaemia (e.g. if high dose corticosteroids
are prescribed) plasma glucose should be measured, if
feasible, and appropriate treatment initiated.

Fluids

Interaction of bubbles with vascular endothelium
causes a capillary leak resulting in loss of plasma volume.
Haemoconcentration, often of severe degree, has been
reported in DCI,8-11 and post-treatment residual symptoms
have been correlated with the degree of haemoconcentra-
tion (see Table 1).  Fluid administration can replenish
intravascular volume and reverse haemoconcentration,
thereby increasing tissue perfusion.8

Indirect evidence suggests that aggressive hydration
during minor surgical procedures can result in more rapid
elimination of anaesthetics,12 from which one might infer
that a similar approach in divers with decompression
illness may accelerate the washout of excess inert gas.  It
has been demonstrated that augmentation of central blood
volume and cardiac preload using supine position,13 head
down tilt14 and head out immersion13,14 significantly
increase the rate of inert gas washout.  Therefore, fluid
administration may be advantageous, even in patients with
DCI who are not dehydrated.

Rapid intravenous administration of hypotonic
fluids can cause CNS oedema,15 whereas administration of
fluids which are hypo-oncotic but not hypo-osmolar has no
effect on CNS water.  There is therefore no advantage of
colloidal solutions over crystalloids,16,17 and any isotonic
IV fluid without glucose, such as normal saline or Ringer’s
solution, will suffice.  Theoretical objections have been
raised to the use of fluids containing lactate (e.g. Ringer’s
lactate or Hartmann’s solution) on the grounds that liver
metabolism may be reduced, especially if the patient is
hypothermic, and that lactic acidosis can result.  However,
lactate is metabolised by most tissues, not only by the liver,
and the small amounts of lactate in Ringer’s lactate solution
are unlikely to contribute significantly to acidosis.

TABLE 1

HAEMATOCRIT IN DIVERS WITH DCI AND IN CONTROLS (from Boussuges et al)11

Haematocrit (%)
Number Median Minimum Maximum

Controls 16 42.5 39.0 48.0
DCI without neurolgical sequelae 39 42.0 35.0 57.0
DCI with neurological sequelae 19 47.5 32.0 69.5
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IV administration of fluid is the most rapid method
of rehydration and for critically ill patients it is generally
agreed that IV administration is preferable to the oral route.
However, there is disagreement about whether there is any
advantage to parenteral fluid administration for divers with
less severe disease, particularly for divers with pain as the
only symptom.  In dehydration due to other clinical
situations, such as cholera, moderately severe dehydration
can be satisfactorily treated using appropriate oral fluids.18

Therefore, it is argued that many divers with DCI, provided
they are alert and not nauseated or vomiting and sufficient
volumes of fluid can be ingested without undue
interruption of oxygen administration, can be satisfactorily
rehydrated orally.

Ingestion of plain water stimulates urine output via
a decrease in plasma osmolality and inhibition of
antidiuretic hormone (ADH) secretion, producing a false
impression of adequate rehydration.19,20  Therefore a
solution containing electrolytes, particularly sodium, is
preferable.  Maximum water absorption occurs at a sodium
concentration of 60 mM and glucose concentration in the
range of 80-120 mM.  Gastric emptying rate may be
reduced by protein or glucose concentrations greater than
5% (252 mOsm/kg).  An ideal solution for rehydration in
diarrhoea has been suggested as containing approximately
30-60 mM sodium, 70-150 mM glucose and osmolality of
around 240 mOsm/kg,21,22 a mix attained by few
commercially available beverages, which are usually low
in sodium and high in carbohydrate (see Table 2).

TABLE 2

COMPOSITION OF BEVERAGES

Beverage Sodium Potassium Glucose Osmolality
(mM) (mM) (mM) (mOsm/kg)

Ideal replacement 30-60 70-150 240

Water 0 0 0 0

Apple juice 7.8 19.1 784 730

Club soda 9.7 0.5 0 20

Coca Cola Classic™ 1.8 0.0 628 750

Diet Coke™ 1.0 1.4 5 10

Gatorade™ 23.0 3.0 256 330

Ginger Ale 3.2 0.4 527 535

Orange juice 14.5 28.2 708 793

Powerade™ 10.7 3.4 471 499

Snapple™ Kiwi Strawberry 0.0 - 818 818

Sprite™ 6.0 0.0 595 607

Beer 2.0 8.0 600

Pedialyte™ (Ross) 45.0 20.0 139 269

Rehydralyte™ (Ross) 75.0 20.0 139 329

WHO-Oral Rehydration Solution 90.0 20.0 167 387

The rate at which rehydration can be achieved after
mild dehydration in normal volunteers have revealed mixed
results.  In one study dehydration of 4% of body weight
(12% reduction in plasma volume) was induced by
exposure to a hot, dry environment.19  Administration over
four hours of fluid equal to the volume lost, using either
demineralised water or glucose-electrolyte solution (sodium
22 mM, osmolality 444 mOsm/kg), failed to normalise
plasma volume, although urine output had increased to 180-
380 ml/hour.  Even after an additional 24 hours of ad lib
fluid intake plasma volumes were 2.4-5.5% below pre-test
values.  On the other hand, in a study of dehydration
induced by exercise plasma volume was restored within 20
minutes by ingesting water with sodium chloride (sodium
concentration 77 mM) but not until one hour using a
sucrose solution.20

A palatable oral rehydration fluid with appropriate
electrolyte and carbohydrate concentration can be
improvised by mixing one part orange or apple juice with
two parts water and adding 1 teaspoon of salt to one litre of
the mixture.  If salt is not available, the appropriate sodium
concentration can be achieved by diluting the juice with a
mixture of one part sea water and 9 parts fresh water.23

Provided that the patient is not vomiting, an intake
of 1,000-2,000 ml per hour is safe and tolerable.  End points
for fluid therapy should include normal haemodynamics and
haematocrit.  Urine output should exceed 1 ml/kg per hour,
bearing in mind that if large volumes of hypotonic fluids
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are used, the urine output may be elevated out of proportion
to the rehydration.  However, fluid should not be withheld
just because an ideal liquid is not available.

If fluids are not available rehydration can be
simulated by immersion to the neck in water, which
redistributes 500-800 ml of blood from the extremities to
the thorax, increasing cardiac output.  Provided that the diver
can be kept warm, head out immersion, although
impractical during transport, enhances inert gas washout.13

Corticosteroids

Use of pharmacological doses of glucocorticoids to
treat neurological DCI has had variable results.  In a
retrospective review of arterial gas embolism (AGE) Pearson
and Goad reported that after initial improvement secondary
deterioration occurred less often in divers who had received
glucocorticoids.24  However, glucocorticoids have not been
shown to be beneficial in the treatment of head injury,25-27

or in animal models of decompression illness.28  In a series
of AGE cases analysed retrospectively for a possible
relationship between glucocorticoid administration and
outcome, no benefit was evident.29  However, in traumatic
spinal cord injury there is evidence that early
administration (within 8 hours after injury) of
methylprednisolone (30 mg/kg intravenously over one hour
followed by 5.4 mg/kg/hour for 23 hours) can improve
outcome six months after injury.30  Such high doses have
not yet been specifically tested in DCI, either in animals or
humans.  Moreover, the only systematic animal studies have
used only short term outcomes, with somatosensory evoked
responses as the end point, a measurement which, in
humans, correlates poorly with clinical neurological
function.  There are currently no published data providing
unequivocal support for the use of corticosteroids in DCI,
although the evidence to the contrary may only be due to
the lack of a trial using an appropriate dose.  Therefore, the
issue of efficacy of these compounds in this disease remains
an open question.

Lignocaine

In models of AGE in both cats31 and dogs,32

lignocaine administration designed to achieve standard
clinical plasma drug levels has improved short term
neurological outcome.  Randomised trials of lignocaine in
humans have not yet been reported, although anecdotal
reports support its use in DCI.33,34

Safe intravenous administration of lignocaine
requires an infusion pump and the capability of dealing with
untoward effects such as seizures.  Early experience with
intramuscular administration in the “field” for arrhythmia
prophylaxis in acute myocardial infarction suggests IM
injection is a safe method of administration of this drug to

divers with DCI immediately after the onset of symptoms.35

Injection of 200-400 mg into the deltoid muscle results in
therapeutic plasma concentrations for up to two hours.
Routine recommendation of such a regimen would require
demonstration of benefit in an appropriately designed trial.

Anticoagulants

Because of the potential for bubble-blood
interactions to cause platelet deposition and vascular
occlusion refractory to recompression, it has been
speculated that inhibitors of platelet function and soluble
clotting factors might offer some benefit in DCI.  In
asymptomatic divers administration of aspirin and other anti-
platelet drugs reduces the mild drop in platelets observed
after routine dives.36,37  A single case report of heparin
administration to a patient with neurological bends indicated
neither benefit nor harm.38  However, animal studies in
which single agents were administered have shown no
benefit of anticoagulants, except for one study,39 in which
only a triple combination of indomethacin, PGI2 and heparin
resulted in a beneficial short term effect in a canine model
of AGE.

Histological evidence of haemorrhage has been
described in arterial gas embolism,40 inner ear
decompression sickness41 and spinal cord decompression
sickness,42-45 suggesting that antiplatelet drugs or other
anticoagulants may actually worsen outcome in DCI.
However, in individuals with severe neurological bends and
leg weakness, deep vein thrombosis (DVT) and fatal
pulmonary thromboembolism have been described.46

Therefore in these patients some form of prophylaxis against
DVT, which may include low dose heparin or low
molecular weight heparin,47 is recommended.

The analgesic effects of aspirin and nonsteroidal anti-
inflammatory drugs (NSAIDs) prescribed for the
discomfort of pain-only bends may render it difficult to
assess the clinical response to recompression.

Body temperature

Animal models of CNS injury have demonstrated that
outcome is significantly worsened by hyperthermia.48  So
fever in a patient with DCI should be vigorously treated.

Whether hypothermia may be beneficial has been an
open question.  In a recently published study of closed head
injury (Glasgow Coma Scale 3-7), the effect of induced
hypothermia on outcome was examined in 82 patients.49

Forty patients were in the experimental group and were
cooled to 33°C using cooling blankets and chilled
nasogastric lavage fluid.  Minimum body temperature was
achieved on average 10 hours after injury.  The patients were
kept at 32-33°C for 24 hours then rewarmed.  All patients
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were mechanically ventilated during the experimental
period.  Twelve months after injury, 62% of the patients in
the hypothermia group and 38% of those in the
normothermia group had good outcomes (Glasgow Outcome
Score of 4 or 5: moderate, mild, or no disabilities).  For
patients with severe neurological DCI active cooling might
be a modality worthy of investigation.

Future developments

Pressure and oxygen remain the mainstays of
treatment for DCI.  However, there are relatively few
degrees of freedom in the choice of ambient pressure, time
of treatment and PO2.  Unless there is a major advance in
the prevention of oxygen toxicity it is unlikely that any new
treatment tables will offer major therapeutic advantages over
current implementations.  I believe that the next major
improvement in DCI treatment will be in pharmacotherapy.

Fluorocarbons

Both oxygen and inert gases are highly soluble in
fluorocarbons.  Thus, intravenous administration of these
agents in doses sufficient to increase the transport of these
gases in plasma should simultaneously increase tissue
oxygen delivery as well as accelerate insert gas washout.
Animal studies have in fact demonstrated a reduction in
mortality in gas embolism.50,51  Perfluorocarbons may
become available for clinical use in other settings, which
would facilitate human studies in DCI.

Adjunctive agents

Prolonged anoxia due to interruption of blood
supply can produce rapid cell death due to depletion of
intracellular energy sources.  Reperfusion of ischaemic brain
before cell death has occurred can result in rapid recovery
of cellular respiration and ATP synthesis and return of
electrical activity.  However, increased production of
oxygen free radicals can lead to neuronal death due to
ischaemia-reperfusion and death delayed many days
(apoptosis).  Understanding of the mechanisms underlying
these events may lead to the development of compounds
which may improve outcome after DCI.  These concepts
have been reviewed by Warner.52

After CNS injury there is a release of excitatory
neurotransmitters such as glutamate, which then facilitates
the entry of calcium, which is neurotoxic, into cells.53

Blockade of voltage-dependent calcium channels by
nimodipine and nicardipine has been shown to ameliorate
somewhat the damage due to subarachnoid haemorrhage
and ischaemic stroke,54 but to have little effect upon
outcome after global ischaemia induced by cardiac arrest.55

Calcium entry into cells can also occur with
activation of specific glutamate receptors, such as N-
methyl-D-aspartate (NMDA), a-amino-3-hydoxy-5-methyl-
4-isoxazole propionate (AMPA) and 1-aminocyclopentyl-
trans-1,3-dicarboxylic acid (t-ACPD).  After an ischaemic
insult, blockade of these receptors might conceivably
reduce entry of calcium into the cell, thus preserving
neuronal function.  NMDA receptor blockers can protect
against focal insults,56 and AMPA receptor blockers
protect against both focal and global injury.57-62

Compounds related to the corticosteroids, but
without many of the side effects of corticosteroids
(“lazaroids”), have been tested in subarachnoid haemorrhage
with both positive63 and negative64 results.
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