苏铁蕨的化学成分

方云山,杨亚滨,杨明惠,杨雪琼,董刘宏,丁中涛

(教育部自然资源药物化学重点实验室, 云南大学化学科学与工程学院, 云南 昆明 650091)

摘要:从蕨类植物苏铁蕨(Brainea insignis)中分离得到1个新的苯乙烯基吡喃酮苷,利用波谱技术鉴定了 其结构。此外,还得到了1个已知的苯乙烯基吡喃酮苷和4个其它已知化合物。同时,还测定了分离得到 的两个苯乙烯基吡喃酮苷化合物的 DPPH 自由基清除活性。 关键词:蕨类植物;苏铁蕨;苯乙烯基吡喃酮苷;DPPH 自由基清除活性

中图分类号: Q 946 文献标识码: A 文章编号: 0253-2700 (2008) 06-725-04

Chemical Constituents from the Fern Brainea insignis (Blechnaceae)

FANG Yun-Shan, YANG Ya-Bing, YANG Ming-Hui, YANG Xue-Qiong, DONG Liu-Hong, DING Zhong-Tao^{**}

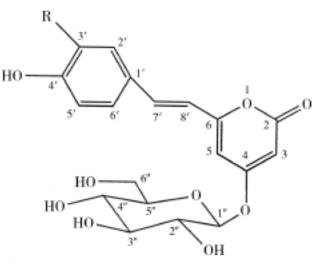
(Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China)

Abstract: A new styryl-2-pyrone glucoside (1) and a known styryl-2-pyrone glucoside (2), together with four other known compounds (3-6), were isolated from the ethanol extract of the fern *Brainea insignis*. The structures of these compounds were determined by means of spectroscopic analysis including 1D and 2D NMR, HR-MS. And the capacities to scavenge against DPPH radical of two styryl-2-pyrone glucosides were assayed.

Key words: Fern; Brainea insignis; Styryl-2-pyrone glycoside; DPPH radical scavenging activity

Braniea insignis (Hook .) J . Smith is a monotype genus plant belonging to Blechnaceae . As an ancient fern species, its early fossils belong to the Mesozoic era, near 400 million years ago . Now it is mainly distributed in the South of China, and used as a Chinese traditional medicinal herb for the treatment of common cold, suffer burn, trauma bleeding, ascarid disease etc . (Wu, 1990) . A new flavonoid glycoside and four lignans have been isolated from *Brainea insignis* (Murakami *et al.*, 1986; Wada *et al.*, 1992) . In the present paper, we report the isolation and structural elucidation of a new styryl-2-pyrone glucoside (1), a

known styryl-2-pyrone glucoside (2), and four other known compounds (3 - 6), from *Brainea insignis* (Fig. 1). And the activities of two styryl-2-pyrone glucosides in scavenging DPPH radical were also reported.


Compound 1 was obtained as a yellow amorphous powder . The positive-ion HRESI-MS spectrum gave a $[M + H]^+$ ion peak at $m \ z \ 393.1168$ (calcd . $m \ z \ 393.1186$), indicating a molecular formula of C₁₉ H₂₀ O₉, with ten degree of unsaturation . In addition, the ESI-MS gave a $[M + H-162]^+$ ion at $m \ z \ 231$, which showed that compound 1 might be a glycoside . Its ¹ H NMR and ¹³ C NMR spectra (Table 1) confirmed that it

Received date: 2008 - 08 - 19, Accepted date: 2008 - 10 - 15

Foundation item: The Natural Science Foundation of China and Yunnan Province (30560178)

Author for correspondence; Tel: +86-0871-5033726; E-mail: ztding@ynu.edu.cn

作者简介: 方云山 (1980-) 男, 硕士, 主要从事天然产物化学研究, 现在昆明学院工作。

1 R=H 2 R=OH

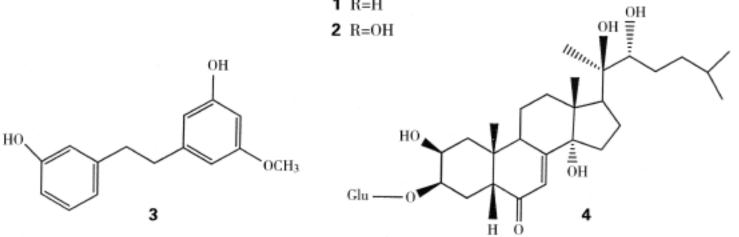


Fig . 1 Structures of compounds 1-4

	-	
No .	С	Н
2	165.1	
3	94.0	6.21 (1H, s)
4	170.3	
5	101.8	6.22 (1H, s)
6	162.0	
1	128.7	
2	131.5	7.48 (1H, d, 7.8)
3	118.4	7.14 (1H, d, 7.8)
4	162.3	
5	118.4	7.14 (1H, d, 7.8)
6	131.5	7.48 (1H, d, 7.8)
7	136.8	7.53 (1H, d, 16.4)
8	118.1	6.67 (1H, d, 16.4)
1	102.7	5.73 (1H, d, 7.4)
2	76.1	4.27 (1H, br d, 6.6)
3	80.0	4.30 (1H, m)
4	72.5	4.32 (1H, m)
5	80.9	4.11 (1H, m)
6	63.7	4.34 (1H, br d, 11.2)
		4.29 (1H, br d, 12.2)

Table 1 $^{-1}$ H NMR (500 MHz) and 13 C NMR (125 MHz) data of compound 1 in C₅D₅N

was a mono-O- -glucoside with the anomeric proton at 5.73 (1H, d, J = 7.4 Hz, H - 1) and the anomeric carbon at 102.7 (C-1). The ¹ H NMR spectrum exhibited an AA BB system at 7.48 (2H, d, J = 7.8Hz, H - 2, 6), 7.14 (2H, d, J = 7.8 Hz, H - 3,

5), indicating the presence of a p-disubstituted phenyl ring . And the ¹ H NMR signals of a *trans* double bond was noted at 6.67 (1H, d, J = 16.4 Hz, H -8), 7.53 (1H, d, J = 16.4 Hz, H - 7). The HM-BC spectrum showed the correlations (Fig. 2) between H-8 and C-1 (128.7) suggesting the presence of an E-styryl moiety . The 2-pyrone unit was suggested by a detail comparison of 13 C NMR and 1 H NMR data with the literatures (Kraut et al., 1996; Mcglacken and Fairlamb, 2005), and was identified as a 4, 6-disubstituted 2-pyrone with two proton signals at 6.22 (H

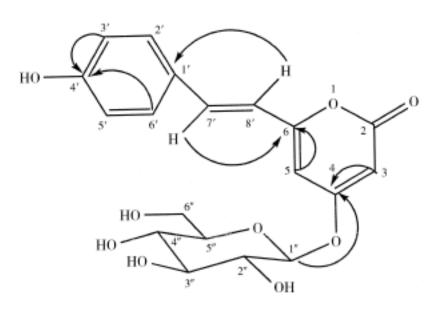


Fig . 2 Key HMBC correlations of compound 1

-5, s) and 6.21 (H - 3, s) in ¹ H NMR spectrum . The HMBC correlations clearly revealed that H - 7 in the E-styryl moiety was long-range coupled to the C - 6 in 2-pyrone unit, and the anomeric proton (H - 1) of the glucose moiety was long-range coupled to the C - 4 (171.3). Therefore, compound 1 was determined to be bisnoryangonin-4-O- -D- glucopyranoside .

Compound 2 was also obtained as a yellow amorphous powder. It displayed a $[M + H]^+$ peak at m z409.1117 (calcd . $m \ge 490.1135$) in the positive ion HRESIMS, indicating a molecular formula of C_{19} H_{20} $O_{\scriptscriptstyle 10}$. Compared with 1, all of the $^{\scriptscriptstyle 13}$ C NMR data were very similar to that of the compound 1, except for the signals 149.2 (C-4), 146.5 (C-3). This indicated that there are two o-hydroxyls in E-styryl moiety of compound 2. In ¹ H NMR spectrum, the signals 6.96 (1H, d, J = 6.2 Hz, H - 6), 6.78 (1H, of d, J = 6.2 Hz, H - 5), 7.05 (1H, s, H - 2) also proved this conclusion. Therefore, the structure of compound 2 was established as hispidin-4-O- -D-glucopyranoside, which had been isolated from fern Pteris ensiformis (Chen et al., 2007).

Compound 3 was identified as batatasin (III) by analysis of its ¹H, ¹³C NMR and MS spectra (Gao *et al.*, 2006). Compound 4 was identified as ponasteroside A by comparison of its physicochemical and NMR data with the reported in the literature (Zhu *et al.*, 2000; Hikino *et al.*, 1969). And -sitosterol (5), daucosterol (6) were identified by comparison with their authentic samples .

The research into natural products as health protecting factors against oxidative damage is an interesting field .DPPH (1, 1-diphenyl-2-picrylhydrazyl) is a stable free radical that loses its purple color when accepts an electron from an antioxidant compound (Bao *et al.*, 2004; Marino *et al.*, 2007) . In this paper, the radical scavenging capacities of the isolates (1 and 2) from *B. insignis* were evaluated by investigating them against the DPPH radical .The substances were assayed at three certain concentration of 0.01, 0.03, 0.06 mg ml, and their activities were compared with rutin, a known natural antioxidant compound .The results were reported in Table 2 .

Table 2Radical DPPH scavenging activity					
Concentration	Dertin	Scavenging activity (SC%)			
(mg ml)	Rutin	Compound 1	Compound 2		
0.01	75.78	6.17	15.52		
0.03	90.71	17.87	42.95		
0.06	92.06	29.07	73.43		

Our previous investigation showed that the extract of *B*. *insignis* exhibited high phenolic content and strong radical DPPH scavenging activity (Ding *et al.*, 2008). In this work, all the substances showed activity against the radical DPPH, but rutin was more active than compound 1 and 2 at the tested contraction. Because compound 2 bears two phenolic hydroxyl groups on molecular skeleton, its observed activity was stronger than that of compound 1 which only has one phenolic hydroxyl group in its structure. This indicted that the phenolic hydroxyl group is the mainly active group for the activity against the radical DPPH.

Experimental

General Experimental Procedures Optical rotations were measured with a Jasco DIP-370 digital polarimeter . 1 H, 13 C NMR and 2D NMR spectra were measured on a Bruker DRX-500 NMR spectrometer (TMS as internal standard, in ppm, *J* in Hz) . HRESIMS were obtained on an agilent G3250AA mass spectrometer . For column chromatography, silica gel (200 - 300 mesh, Qingdao Marine Chemical Inc ., China) . Lichroprep RP-18 (40 - 60 μ m, Merck, Darmstadt, Germany) and Sephadex LH-20 (25 - 100 μ m, Amersham Biosciences, Sweden) were used . A shimazu UV-VIS-PC 2410 spectrometer was used in DP-PH radical scavenging activity test .

Plant Material The whole plant of *Brainea insignis* (Hook .) J. Smith was collected in February 2006, in Yunnan province, P. R. China . A voucher specimen (2006D011) was deposited in the school of Chemical Science and Technology of Yunnan University, and was identified by Prof. Shu-Gang Lu.

Extraction and Isolation The air-dried plant powder of *Brainea insignis* (1.4 kg) was extracted with EtOH for 24 h and filtered . The filtrate was evaporated in vacuo to give a residue . Then the residue (55 g) was subjected to column chromatography on silica gel, and was eluted with CHCl₃-MeOH (9 1) to give four fractions . Fr . III was subjected to Sephadex LH-20 column chromatography eluting with MeOH to afford compound 1 (25 mg), 2 (12 mg), 4 (15 mg), 6 (30 mg), and were purified by RP-18 column chromatography eluting with CH₃OH-H₂O (9 1).

30卷

Fr . II was subjected to silica gel column chromatography eluting with EtOAc-MeOH (96 4) to afford compound 3 (10 mg). Compound 5 (50 mg) was from Fr . I .

Bis noryangonin-4-O- -D-glucopyranoside (1): yellow amorphous powder . [] $_{D}^{22.5}$ - 44.13 (c 0.64, MeOH) .¹ H- and ¹³ C-NMR data see table 1 . HR-ESI-MS: m z 393.1168 [M + H]⁺ (calcd . for C₁₉ H₂₁ O₂ 393.1186) .

DPPH Radical Scavenging Assay DPPH radical scavenging activity was examined by the described method (Bao *et al.*, 2004; Marino *et al.*, 2007) . In brief, 3.0 ml each sample in ethanol was added to 2.0 ml DPPH (2.0×10^{-4} mol L) solution and incubated at room temperature for 30 min . Then the absorbance of the reaction mixture was determined at 517 nm on a shimazu UV-VIS-PC 2410 spectrometer .

References:

- Bao ZJ (保志娟), Yang XQ (杨雪琼), Ding ZT (丁中涛) et al., 2004. Simultaneous determination of magnolol and honoliol by UV spectrophotometry and study on free radical scavenging activity [J]. Nat Prod Res Dev (天然产物研究与开发), 16:435—438
- Chen YH, Chang FR, Lin YJ et al., 2007 . Identification of phenolic antioxidants from Sword Brake fern [J] . Food Chem, 105: 48-56
- Ding ZT, Fang YS, Tai ZG et al., 2008. Phenolic content and radical scavenging capacity of 31 species of ferns [J]. Fitoterapia, in press (doi: 10.1016 j.fitote.2008.01.011)
- Guo XY (郭晓宇), Wang Y (王钰), Wang NL (王乃利) et al.,

2006. Constituents from *Pholidota yunnanensis* and their inhibitory effects on nitricoxide production [J]. *ChinTrad Herbal Drugs*(中草 药), 37: 492—496

- Hikino H, Rihaya T, Takemoto T, 1969 . Ponasteroside A, a glycoside of insect metamorphosin substance from *Pteridium aquilinum* var. *latiusculum*: structure and absolute configuration [J]. *Tetra hedron*, 25: 3909-3917
- Kraut L, Mues R, Speicher A et al., 1996 . Carboxylated -pyrone derivatives and flavonoids from the liverwort Dumortiera hirsute [J]. Phytochemistry, 42: 1693—1698
- Marino SD, Gala F, Borbone N et al., 2007 . Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity [J] . Phytochemistry, 68: 1805—1812
- Mcglacken GP, Fairlamb IJS, 2005 . 2-pyrone natural products and mimetics: isolation, characterization and biological activity [J]. Nat Prod Rep, 22: 369—385
- Murakami T, Wada H, Tanaka N et al., 1986 . Chemical and chemotaxonomical studies of ferns . LXV . A few new flavonoid glycosides [J] . Yakugaku Zasshi, 106: 982-988
- Wada H, KidoT, Tanaka N et al., 1992 . Chemical and chemotaxonomical studies of ferns . LXXXI . Characteristic lignans of blechnaceous ferns [J] . Chem Pharm Bull, 40: 2099–2101
- Wu CY (吴征镒), 1990. A Compendium of New China Herbal Medicine [M]. Vol.3, Shanghai: Shanghai Science and Technology Press
- Zhu WM (朱伟明), Yang XS (杨小生) He HP (何红平) et al., 2000. Phytoecdysons from Porana discifera [J]. Acta Bot Yunnan (云南植物研究), 22: 351-357