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Abstract. When describing the plasma - field behaviour
in the heliospheric interface the difficulty arises that classi-
cal MHD concepts are not fully applicable to this compli-
cated multifluid interaction scenario. The classical MHD
concept of ideally frozen-in magnetic fields is only strictly
valid, if the magnetized medium is fully ionized. As is well
known, however, the heliospheric medium represents a par-
tially ionized plasma which contains neutral H-atom flows
interacting with the ions via resonant charge exchange pro-
cesses. Caused by this cross-interaction between the neutral
and the ionized media additional non-classical currents are
driven which induce additional magnetic fields. These latter
fields can be shown to show the tendency to diffuse relative
to the ion bulk motion. As we can show this non-classical
diffusion is especially pronounced near plasma boundaries
or shocks and there act in a way to dissolve the abruptness
in the transition structure of the plasma properties. Here we
give first estimates of these effects and point to a need to re-
vise the classical MHD theory at its application to partially
ionized media.

1 Introduction

As is well known since long (Baranov et al., 1970) the in-
teraction of supersonic flow of the local interstellar plasma
component (electrons and protons) with the supersonic solar
wind gives rise to the formation of an outer bow shock, a
tangential discontinuity (called heliopause) and an inner ter-
mination shock (see BS, HP and TS, respectively, in Fig. 1).
The region between BS and TS (the so-called interface) is
separated by the heliopause into two regions: the outer he-
liosheath (decelerated and subsonic flow of the interstellar
plasma component between BS and HP) and the inner he-
liosheath (decelerated and subsonic solar wind between TS
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Fig. 1. Qualitative picture of the solar wind interaction with the
supersonic flow of the local interstellar medium (LISM). Here BS
is the bow shock, HP is the heliopause, TS is the solar wind ter-
mination shock. The region between the BS and HP is called the
outer heliosheath, the one between TS and HP is called the inner
heliosheath.

and HP). In detailed studies of this interaction scenario, how-
ever, the important fact has to be taken into account that the
local interstellar gas is a partially ionized plasma. Respect-
ing this fact the interstellar H-atom flow, in addition to the
fully ionized plasma flow, needs a separate description. As
it turns out, this neutral flow cannot adequately be described
in the framework of a hydrodynamic approximation, because
the mean free path of H-atoms with respect to the dominant
process, i.e. resonant charge exchange with protons, is com-
parable with the characteristic length of the problem (for ex-
ample, with the extent of the heliosheath∼ 50 AU), i.e. the
H-atom distribution function, due to the essentially collision-
less situation, cannot be taken as a shifted Maxwellian.
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It is evident from classical literature that shocks and tan-
gential discontinuities can only be formed in the frame-
work of the ideal Euler hydrodynamics, where second order
derivatives are absent. Below we will consider a possible ef-
fect of the interstellar magnetic field on the outer heliosheath
structure taking into account the interstellar plasma compo-
nent as well as the neutral H-atom flow. The magnetohydro-
dynamic (MHD) eqnarrays to describe the partially ionized
flow around the heliopause (see, for example, Florinskii et
al., 2003) are critically analysed in Sect. 2. It is shown below
that under the actually prevailing conditions in the frame-
work of the classic MHD (Kulikovskii and Lyubimov, 1965)
a diffusion of the interstellar magnetic field in the outer he-
liosheath can become important due to ion currents (Baranov
and Fahr, 2003 a, b). It seems to us that the earlier results of a
kinetic-MHD approach (Baranov and Malama, 1993), again
used for the numerical solution of the above mentioned prob-
lem (Izmodenov et al., 2005), confirm the earlier assertion
by Baranov and Fahr (2003a,b). These latter results will be
shown in Sect. 3.

2 MHD-formulation of the problem

To solve the problem of the interaction between the super-
sonic flow of the interstellar gas and the solar wind in the
presence of an interstellar magnetic field in several cases in
the literature a multifluid model has been used (see, for ex-
ample, Florinskii et al., 2003; Fahr et al., 2000), although the
Knudsen number for H-atomsKn = l/L ∼ 1 (l is mean free
path of H-atoms with respect to resonant charge exchange
with protons,L is the characteristic length of the interaction
region, for example, the extent of the heliosheath). In this
case the momentum conservation eqnarrays for a partially
ionized hydrogen gas in the presence of an interstellar mag-
netic field have the form (stationary problem!):

(Vα · ∇)Vα = −
1

mαnα

∇pα + eα(E+
1

c
Vα × B)

+

∑
Rαβ , Rαβ =

Vα − Vβ

ταβ

, (1)

where the indicesα = e, p, H are representative for elec-
trons, protons and H-atoms,V, E, B andR are vectors of
the bulk velocity, the electric field, the magnetic field induc-
tion and the mutual interaction force due to exchange of mo-
mentum between componentsα and β due to mutual col-
lisions, respectively,m, n, p and τ are denote the mass of
the particle, the number density, the static pressure and the
mean free-flight time. The particle flux continuity eqnarray
has the form

∇ · nαVα = 0 (2)

and the eqnarray of the magnetic field induction can be ex-
pressed in a form which determines magnetic field freezing

in the proton flow (Florinskii and Zank, 2003; Baranov and
Fahr, 2003b)

∇ × (Vp × B) =0. (3)

To complete and close the system of eqnarrays one must
add the eqnarrays of state and of energy conservation for all
components as well as Maxwell eqnarrays for the electro-
magnetic fields.

On the basis of the above closed system of multifluid eq-
narrays we could obtain the eqnarrays of the classic one-fluid
MHD theory (see, for example, Kulikovskii and Lyubimov,
1962) by simple manipulations and redefinitions. Namely
the momentum and continuum eqnarrays take the form

(V · ∇)V = −
1

ρ
∇p +

1

c
j × B ; ∇ · ρV =0, (4)

whereρV =
∑

mαnαVα, ρ =
∑

mαnα, p =
∑

pα deter-
mine the bulk velocityV, the mass densityρ and the
static pressurep of the fluid consisting of electrons, protons
(ne], ≈ np) and H-atoms. The electric current is determined
by the formula

j = − ene(Ve − Vp), (5)

where|e| is the absolute proton or electron charge. Manip-
ulations with the momentum Eq. (1) give rise to the gener-
alized Ohm’s law for a partially ionized plasma in the form
(Kulikovskii and Lyubimov, 1965; Cowling, 1976; Baranov
and Fahr, 2003a)

j = σ(E+
1

c
V × B)+

eτep

me

(∇pe −
1

c
j × B)

+
3

B2

[
s

1 − s
∇p × B+

1

c
(j × B) × B

]
, (6)

where 3 = c(1− s)2ωeτepωpτpH , s = ne/(ne + nH ) and
σ = nee

2τep/me are the ionization degree and the elec-
tric conductivity, respectively,ωα(α = e, p ) is the gyrofre-
quency of charged particles in the presence of the magnetic
field, i.e. Larmor frequency. It should be noted here, that in
the outer heliosheath (see Fig. 1) one findsωαταβ � 1.

As was shown by Baranov and Fahr (2003) the last term
of Eq. (6) is comparable or larger than the termσ/c(V × B)

for the problem considered, i.e. the Eq. (6) can be re-written
in the following form

E = −
1

c
(V × B) −

−
3

B2σ

[
s

1 − s
∇p × B+

1

c
(j × B) × B

]
(7)

at ωeτep/ Rem � 1, where Rem = 4πσV∞L/c2
� 1, where

Rem is the magnetic Reynolds number. The last inequality
due to the finite electric conductivity can be proven to be ful-
filled in the region of the heliosheath considered here. In this
case the Hall current and the magnetic field diffusion due to
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the finite electric conductivity can be neglected. Equation (7)
leads to the eqnarray of the magnetic field induction (for the
stationary problem, i.e.∇ × E = 0) in the form

∇ × (V × B) = −∇

×

{
c3

B2σ

[
s

1 − s
∇p × B+

1

4π
[(∇ × B) × B)] × B

]}
.(8)

The right hand side (RHS) of this equation is determined by
the proton currentjp (see, for example, Baranov and Fahr,
2003a,b) which is given by

jp =
2eτpa(1 − s)2

mp

(
−

s

1 − s
∇p +

1

c
j × B

)
. (9)

We see from Eq. (8), that the magnetic field is not frozen
in into the plasma. To determine the coefficient of a differ-
ential diffusion let us consider the RHS last term of Eq. (8).
We obtain, when using some vector identities, the following
equalities

[(∇ × B) × B] × B = −B × [(∇ × B) × B]

= [−B2
∇ × B + B(B · ∇ × B)]. (10)

First we take into account only the first term on the RHS
of this equality and obtain

∇ × (B2
∇ × B) = −B2

∇
2B + ∇ × B2(∇ × B), (11)

where the first term of the RHS determines the diffusion of
the magnetic field. Our estimations then show (Baranov and
Fahr, 2003a) that

|∇ × (V × B)| ≤ κ

∣∣∣∇2B
∣∣∣ , (12)

where the diffusion coefficientκ due to the proton currentjp
is determined by the formula (see Eq. (8))

κ =
c3

4πσ
[
cm2

s
]. (13)

As is evident, we retain the ideal magnetic field freezing
in case of the fully ionized plasma, namely ats = 1. In the
framework of the multifluid MHD, whereKn< 1, and at
s 6= 1, we haveκ/V L ≥ 1, with L = 50 AU being the scale
of the heliosheath for the problem of the outer heliosheath
structure, i.e. the diffusion of the interstellar magnetic field
becomes important. In this case the bow shock is absent due
to the presence of the second derivatives in the system of
MHD eqnarrays. This result cannot be depending on the use
of a multi-fluid or one-fluid approximation, because the tran-
sition from first to second order approximation is a result of
identical transformations.

3 Mathematical formulation of a kinetic-MHD flow in
the outer heliosheath and first results of calculations.

The solution of the MHD structure of the outer heliosheath
will be satisfactorily correct, if in view ofKn ∼ 1 one uses

a kinetic- MHD approximation to describe the H-atom flow.
The MHD eqnarrays for the plasma components (only elec-
trons and protons) have the form

∇ · ρV=0, (14)

(V · ∇)V+
1

ρ
∇p =

1

4πρ
(∇ × B) × B + F1, (15)

∇ · ρV

(
V 2

2
+

γ

γ + 1

p

ρ

)
= F2, (16)

∇ × (V × B) =0, (17)

∇ · B =0, (18)

(V ≈ Vp, ρ ≈ mpnp). (19)

Here the functionsF1(fH ) andF2(fH ) determine the rate
of momentum and energy change of the plasma component
due to charge exchange interaction processes of H-atoms
with protons.

The already developed Monte-Carlo method (Baranov and
Malama, 1993) to obtain the solution of the coupled nonlin-
ear Boltzmann eqnarray for the H-atom distribution function
fH (the distribution function of the protonsfp is assumed to
be a shifted Maxwellian) is now used to determine the above
introduced functionsF1 andF2.

The axis-symmetric 2D problem of the solar wind in-
teraction with the partially ionized interstellar plasma in
the presence of the interstellar magnetic field was solved
by Alexashov et al. (2000) atB ‖ V, and more recently
the associated 3D- problem was calculated by Izmode-
nov et al. (2005). These authors kindly calculated for
us the enlightening unpublished results shown in Figs. 2
through 4. In these Figures the distributions of tempera-
ture, electron (proton) number density, and flow lines are
presented. To obtain these results it was assumed that
the number density, the bulk velocity and the tempera-
ture of the solar wind at the Earth’s orbit are equal to:
np,E = ne,E = 7.39 cm−3, VE = 432 km s−1, TE = 51 109 K,
respectively. The corresponding parameter values for
the local intercloud (LIC) medium are accepted to be
equal to: np,LIC = ne,LIC = 0.06 cm−3, VLIC = 26.4 km s−1,
TLIC = 6527 K. The angleθ between the interstellar magnetic
field BLIC and the vector of the bulk velocityVLIC at Figs. 2
through 4 is equal toθ = π/4, |BLIC | = 2.5µ G and the ratio
of solar radiation to gravitation forces is taken to beµ = 1.

Inspection of Fig. 2 and Fig. 3 tells us that there are abrupt
jumps of plasma temperature and number density in the case
of B = 0 (dotted lines), i.e. a typical bow shock is formed,
if the interstellar magnetic field is absent. In contrast, solid
lines are drawn for the caseB 6= 0 revealing the fact that in
presence of a finite interstellar magnetic field one has to ex-
pect a smooth transition of the plasma parameters, i.e. the
typical bow shock is dissolved. The last claim is also con-
firmed by smooth flow lines presented in Fig. 4. We think
that results presented in Fig. 2 through Fig. 4, calculated
on the basis of this above mentioned magnetohydrokinetic
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Fig. 2. Solutions for the plasma temperature as function of the solar
distance are shown on the upwind axis: Dashed lines are obtained
for vanishing interstellar magnetic field (i.e. B = 0), fully drawn
lines are valid for a finite magnetic fieldB = 2.5µG ≥ 0.

MHD approximation, confirm our conclusions already ob-
tained in Sect. 2 on the basis of a pure MHD approximation
(the bow shock cannot be formed as solution of a system of
MHD eqnarrays which keep the second order derivatives).

4 Kinetically enforced deviations from frozen-in flows

As demonstrated above it indeed turns out that under nor-
mal interstellar conditions, except for regions close to shocks
and discontinuities, MHD theory essentially allows to con-
clude a magnetic field behaviour which can be described as
a field-freezing into the mass-weighted plasma (ion!) bulk
flow with flux-conservation within closed loops, i.e. con-
vected flux tubes, transported with the ion bulk flowVp.
Under kinetic studies of the behaviour of charge exchang-
ing fluids in the heliosheath regions (see Fahr and Bzowski,
2004a/b; Chashei and Fahr, 2005; Chashei, Fahr and Lay,
2005) it, however, becomes evident that non-negligible de-
viations from the adopted, highly relaxated HD distribution
functions, i.e. shifted Maxwellians, will occur - not only for
neutral atoms - but also for ions. These non-equilibrium ion
conditions may partly violate the above conclusions and may
require a revision of the usual ideal MHD fluid concepts.

Usually, when applying multifluid MHD to the heliosheath
problem, one arrives at the following current eqnarray (see

Fig. 3. Solutions for the plasma density as function of the solar dis-
tance are shown on the upwind axis: Dashed lines are obtained for
vanishing interstellar magnetic field (i.e. B = 0), fully drawn lines
are valid for a finite magnetic fieldB = 2.5µG≥ 0.

e.g. Gombosi, 1998)

j =
1

4π
∇ × B =

σ0

1 +
τe,i

τe,a

[
1

ene

∇Pe + (E + Vp × B)]

' σ ∗

0 [(E + Vp × B)] (20)

where the latter step can only be made under the neglect of
electron pressure. Then the above eqnarray can be rewritten
in the following form

∇ × [
1

4πσ ∗

0
∇ × B] = ∇ × E + ∇ × [Vp × B] (21)

This eqnarray is even correct, if the electron pressure is kept,
since∇ × ∇Pe always vanishes. For stationary conditions,
i.e. ∇ × E = ∂B/∂t = 0, one can try to solve this eqnarray
by settingB = B0 + B1 with the frozen-in part of the field
fulfilling

∇ × [Vp × B0] = 0 (22)

and the diffusive part solving

∇ × [
1

4πσ ∗

0
∇ × B] = ∇ × [Vp × B1] (23)

The field B0 is taken to be the completely frozen-in field
component convected by the ion bulk flowVp, and the non-
frozen perturbationB1 is a small non-frozen-in field pertur-
bation due to the kinetic, i.e. non-fluid-like behaviour of the
charge-exchanging media.
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Assuming that the remaining, charge-exchange induced
electric currentsj ex = ∇ × B/4π are ion currents connected
with kinetically induced deviations from the relaxated ion
fluid distribution function in connection with charge ex-
change injected newly created ions, i.e. deviations from the
shifted ion Maxwellian, we then can fulfill Eq. (23) by

1

σ ∗

0
j ex = [Vp × B1] + ∇8B1 (24)

where for the most general case a scalar field8B1 has to
be admitted. Now we may aim at the derivation of the
charge-exchange induced currentj ex and according to Fahr
and Bzowski (2004a) and Chashei, Fahr and Lay (2005) one
finds that this current can be given by

j ex ' eδn · ((Va − Vp) · B0/B0)(B0/B0) (25)

where δn is the partial ion density of local perturbations
induced by freshly charge-exchange injected, non-relaxated
ions, establishing and maintaining a nonequilibrium pertur-
bation δn which, for stationary cases, is given by the bal-
ance condition between injection and removal of new ions in
the form (see Fahr and Bzowski, 2004b; Chashei, Fahr and
Lay, 2005)

δn ' nanpVrel(H, p)σrel(H, p)τpp (26)

where H-atom densities and unperturbed proton densities are
denoted byna andnp, respectively, whereσrel is the average
charge exchange cross section of proton - H-atom collisions
with an average relative velocity ofVrel(H, p) given by:

Vrel(H, p) =

√
128

9πmp

(TH + Tp) + (Va − Vp)2 (27)

Furthermoreτpp is the period of the most effective ion (pro-
ton) relaxation process, i.e. either Coulomb relaxation or
wave-particle relaxation (see Chashei, Fahr and Lay, 2005).
Then with the assumption8B1 = const one obtains with
Eqs. (25), (26) and (27) the following eqnarray for a par-
ticular solution forB1

1

σ ∗

0
0((Va − Vp) ·

B0

B0
)(

B0

B0
) = [Vp × B1] (28)

where0 = 0(H, p)= enanpVrel(H, p)σrel(H, p)τpp.

To solve forB1 we carry out a vector multiplication of the
above eqnarray withVp and obtain

1

σ ∗

0
0

(Va − Vp) · B0

B2
0

[Vp × B0]

=
1

c2
[Vp(Vp · B1) − B1V

2
p ] (29)

Since the left side only contains a vector perpendicular toVp

one thus finds thatB1 also has to be perpendicular toVp, and
hence that the following relation should be valid:

B1 = −
1

σ ∗

0
0

c(Va − Vp) · B0

V 2
pB2

0

[Vp × B0] (30)

Fig. 4. Plasma density contours and plasma flow lines are plotted
for the case of a finite interstellar magnetic fieldB = 2.5µG ≥ 0.

which means that we simply can calculate a particular solu-
tion for B1 from first order MHD quantities like:n, Tp, Vp

andB0 given within the frame of a multi-fluid MHD simula-
tion which models the outer heliospheric interface.

To evaluate on the order of magnitude of the kinetically-
induced additional fieldsB1 one may write for regions, where
|Va| '

∣∣Vp

∣∣ is valid, and with representative data for the
outer heliosheath like:

na = 0.1cm−3

n = 0.1cm−3

Vrel(H, p) ' |ua| ' 20km/s

σrel(H, p) ' 4 · 10−15cm2

τpp ' 4 · 107s

σ ∗

0 ' ne2τe,i/me

τe,i ' 2.8 · 10−1Te

√
Te

nLC

' 11.2 · 105s

ωg =
eB0

mec
' 18.0s−1

(LC = Coulomb logarithm)
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the following relation:

|B1|

|B0|
'

1

σ ∗

0
0c

1

|B0|
= (τpp/τe,i)

νa

ωg

' 10−4 (31)

with the charge exchange frequency
νa = naVrel(H, p) σrel(H, p) ' 3 · 10−8 s−1. Only for re-
gions close to the inner and outer surface of the front part
of the heliopause where|Va| �

∣∣Vp

∣∣ is valid, one may
find results different from the above relation, namely rather
given by:

|B1|

|B0|
' (τpp/τe,i)

νa

ωg

|Va|∣∣Vp

∣∣ ' 10−4 |Va|∣∣Vp

∣∣ (32)

5 Conclusions

As we have shown in the sections above, ideal MHD condi-
tions for motions of partially ionized and magnetized plas-
mas, usually leading to magnetic fields exactly frozen into
the ion fluid, may break down under the influence of charge-
exchange induced electric currents. This we have shown
when deriving the generalized form of the induction eqnar-
ray for partially ionized gases with low or moderate ioniza-
tion degreess where charge exchange coupling between H-
atoms and protons becomes magnetohydrodynamically im-
portant (i.e. ionization degreess ≥ 0.5). The additional elec-
tric currents that are induced lead to a term in this induction
eqnarray which describes magnetic field diffusion, a kind of
freedom of the magnetic fields with respect to a strict como-
tion with the ion fluid. This term becomes especially im-
portant near structures where abrupt spatial changes of the
magnetic field in magnitude or direction occur, i.e. for in-
stance as expected near the heliopause or the outer helio-
spheric bowshock. In the following we shall give a short es-
timate of how much influence the charge-exchange induced
non-ideality has on the transition profile of the interstellar
magnetic field at the bowshock.

In the following we intend to briefly estimate the charge-
exchange induced non-idealness at the MHD bowshock tran-
sition. Assuming the situation that the LISM magnetic field
is oriented perpendicular to the LISM inflow onto the he-
liosheath, one then would obtain with the extended induction
eqnarray given by Eq. (12) the following relation describing
the behaviour ofB andV at the passage of the magnetized
LISM plasma over the bowshock:

∇ × (V × B) = κ1B (33)

Applying this to the region near the symmetry axis of
the LISM inflow (i.e. the so-calledz−axis) one can then,
due to symmetry reasons (i.e.∂/∂x = ∂/∂y = 0), derive
from the above vector relation the following scalar differen-
tial eqnarray:

−
d

dz
(VzBx) = κ

d2Bx

dz2
(34)

We shall solve this differential eqnarray explicitly in a
forthcoming paper, since the detailed elaboration of this so-
lution via reducing the above eqnarray to a Ricatti-type dif-
ferential eqnarray would extend this paper here too much.
Instead we give an estimate of the solution by entering into a
dimensional argumentation. Let us assume a transition scale
1 to be typical for the bowshock transition. Then, on the
basis of purely dimensional arguments, one can simplify the
above eqnarray to the form:

Vz1B1x − Vz2B2

1
' κ

B2x − B1x

12
(35)

leading to the following result:

B2x ' B1x

V1z + (κ/1)

V2z + (κ/1)
= B1x

V1z

V2z

1 + K1

1 + K2
(36)

What one notices in the above expression is that forκ = 0
one regains the normal frozen-in flux behaviour valid for
ideal MHD, for κ ≥ 0 one, however, obtains a non-ideal
behaviour, i.e. violation of magnetic flux conservation, de-
scribed by

B1x ≤ B2x ≤ B1x

V1z

V2z

(37)

Taking the values already used earlier in this paper for the
quantityκ = (1− s)2v2

AτpH one would find withL ' 50 AU:

K1 = (κ/V1z1) ' (
κ

LV1z

)(
L

1
) = (

L

1
) (38)

and:

K2 = (κ/V2z1) ' (
κ

LV1z

)(
V1z

V2z

)(
L

1
) = σ(

L

1
) (39)

where σ = V1z/V2z denotes the compression ratio at the
bowshock. Taking the value for the most efficient proton re-
laxation periodτep ' 2.5 · 107 s calculated by Chashei, Fahr
and Lay (2005) one may then estimate the shock transition
scale by1 ' V1zτep = 4 AU and finds

B2x ' B1xσ
1 + (L/1)

1 + σ(L/1)
' B1xσ

13.5

1 + σ12.5
(40)

meaning that the magnetic field compression to be expected
under these non-ideal conditions is much less pronounced
compared to the ideal MHD case withB2x = B1xσ.
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