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Abstract. This article discusses and tests the validity of the 1 Introduction
frozen in magnetic field paradigm (or ‘ideal magnetohydro-
dynamics (MHD) constraint’) which is usually adopted by An important question with respect to heliospheric physics
many authors dealing with heliospheric physics. is, whether the magnetic field is frozen into the plasma flow,
To show the problem of using ideal MHD in such a coun- or if topology changes of magnetic field can take place, e.g.
terflow configuration like the heliosphere, we first recapit- in the vicinity of the heliopause. The topology change would
ulate the basic concepts of freezing-in of magnetic fields,imply, that the heliosphere could become leaky due to mag-
respectively magnetic topology conservation and its viola-netic reconnection processes. Whether this happens or not
tion (= magnetic reconnection) in 3-D, already done by otherdepends on the shape of Ohm'’s law for the complex plasma
authors with different methods with respect to derivationsinterface region between the outer heliosphere and the Very
and interpretations. Then we analyse different heliospherid-ocal Interstellar Medium (VLISM).
plasma environments. As a model of the stagnation re- The question which velocity fields do transport magnetic
gion/stagnation point in front of the heliospheric nose, weflux and how this is connected with the velocity fields of
present and discuss the general solution of the ideal MHDplasma components was discussed, e.gNdycomb(1958.
Ohm’s law in the vicinity of a 2-D stagnation point, which Stern (1966 (and references given therein) gives a good
was found by us. review about the topology conservation of general vector
We show that ideal MHD either leads necessarily to a di-fields. Here we will apply these concepts to the heliosphere
verging magnetic field strength in the vicinity of such a stag- to shed light on the question, how leaky such an astrospheric
nation point, or to a vanishing mass density on the heliopaus®oundary can be due to non-ideal plasma processes.
boundaries. In the case that components of the electric field This paper is organized in the following way: First, in
parallel to the magnetic field do not exist due to the cho-Sect. 2 and partially in Sect. 4, a necessary review of the
sen form of the non-ideal Ohm’s law, it is always possible theorems respectively the equations which are important for
to formulate the transport equation of the magnetic field as ahe derivation of the transport equation for the flux of a vec-
modified ideal Ohm’s law. tor field with a vanishing divergence is given. To demon-
We find that the form of the Ohm’s law which is often used strate the connection between flux conservation and topol-
in heliospheric physics (see eBaranov and Fah2003), is ogy (conservation) of such a vector field the partial differen-
not able to change magnetic topology and thus cannot leatial equation (PDE) for a velocity is derived in Sect. 3. This
to magnetic reconnection, which necessarily has to occur aPDE guarantees the connectivity of the field lines during the
the stagnation point. The diverging magnetic field, for in- time dependent or stationary evolution of the electromagnetic
stance, implies the breakdown of the flux freezing paradignifield. In Sect. 4 a reasonable connection between magnetic
for the heliosphere. Its application, especially at the helio-reconnection and the possibility of defining flux transport-
spheric nose, is therefore rather doubtful. We conclude thatng velocity fields of non-ideal MHD flows, starting with a
it is necessary to search for an Ohm’s law which is able togeneralized non-ideal term on the right hand side of Ohm’s

violate magnetic topology conservation. law, is given. Then, in Sect. 5 it is shown, how the results
of Sect. 2 and Sect. 3 work in the vicinity of the magne-
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64 D. H. Nickeler and M. Karlicik: Magnetic flux or line conservation

more complicated (se®chliter, 1958 Kulikovskii and Lyu-
bimov, 1965.
If we now take also Faraday'’s law

oB
VXE=—— (2)
at

into consideration we get

oB
—=Vx((w,xB)—VxR. ©)

following condition: The magnetic flu®,, intersecting the
area which is enclosed by a closed fluid line with the sur-
Fig. 1. Flux conservation: The magnetic flux of a magnetic field, faqu, does no'F change_durlng the movement of the closed
intersecting a closed fluid line, does not change during the movefluid line (see Fig1). Using Ohm's law, Faradays law and
ment of the closed fluid line. the Gauss-Stokes theorem we can recapitulate the condition
for flux conservation in the form of the vanishing convective
derivative of the magnetic flugp,,, see e.g. the derivation in
tron inertia) is given. Section 6 presents an application to arPriest and Forbe000 :
Ohm’s law which is valid within the heliosphere: Here it is d

/ ot
/ / The criterion for magnetic flux conservation is given by the

shown how flux conservation works in a multifluid plasma. —— = 0= —/ B-df 4)
A discussion is started about the problem that a flux con- dt 7
serving velocity field should have a connection to a plasma 9B
species velocity or any other velocity related to the plasma f s -df + / B - (v,, X ds) (5)
(components). In Sect. 7 we discuss the ‘frozen in’ or ideal 3 5F
MHD paradigm of heliospheric physics and the problem of OB
validity in the vicinity of a stagnation point (here: the helio- = / o 4 - / (vp x B) -ds., (6)
spheric nose). In the last section we summarize the results of F dF
our discussion and draw conclusions, leading us to a Serie§ielding
of important questions, which remain open and could only
be answered by future investigations. dom _ 0 )
dt
0B d Vv B)-d 8
2 The derivation of the flux conserving velocity field - / ar Y ,/ x vy x B)-df (8
F F

We write down a generalized Ohm’s law N 0= / (—V x R)-df )
E+v,xB=R, 1) F

= VxXxR=0, (10)

whereE is the electric field and® is the magnetic field. Here
we introduce the ternR, a generalized non-ideal term (see
Priest and Forbe£00Q and references therein, p. 41),

whereF is the comoving surface enclosed by the fluid line,
andd F the closed fluid line itselfds the line element of the
closed fluid line, and f the corresponding surface element.

is a velocity which is not necessarily the ion velocity. The "=~ = . - N
. . e This implies, that it is a necessary and sufficient criterion for
velocity may be an averaged velocity of (all) existing plasma . ) )
flux conservation that the non-ideal term can be written as a

e e e e oy 12 /&gt i Ohm a is gven b Egil. The pysicl
P P ' P ? P lerpretation is, that any moving closed fluid line in this ideal

tifluid _chara<_:ter Qf the plasma and the corresponding Ohmsplasma (ideal conductor), which is intersected by the mag-
law will be given in Sect. 5.

Strictly speaking, the ideal Ohm's law is a ‘relic’ of the netic field, encloses the same (integrated) magnetic flux at

- . ) every moment, as illustrated in Fig.
goriir:g;ir?qléatlo‘?rigfic:g? r(fslezt(;gCellnrtehs?s:i\cg-tftlalilrgsthsec; In general the above shown procedure can also be inter-
Y, co 1Ing €.g. o P 1Y . L preted in the following way: for a giveE (x, r) andB(x, t)
called inertial terms, additional isotropic or anisotropic pres-

: a velocity fieldv(x, t) which represents the transport of the
sure terms, Hall term and so on (d&@est and Forbe2000). o : .
In the case of multifluid MHD, especially for partially ion- magnetic field, especially the magnetic flux, must be found

ized plasmas, or plasmas with different ion species, the termgUCh that™ defined by

on the right hand side of Ohm'’s law could look even much E* := E +v x B (12)
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D. H. Nickeler and M. Karliclg: Magnetic flux or line conservation 65

can be written as a gradient. The velocity field% v, is

not necessarily a plasma (species) velocity. The equationto ol + d@!) (v +3V) dt B(t + dt)
solve is then
VXx(E4+vxB)=0
B(t
@%—VX(VXB)zo, (12) ®

with v as an ‘abstract’ velocity field which describes the
movement of the magnetic field. Thus the vector field
nothing else than the transport velocity of the magnetic flux.
Therefore the relation Eq1®) also holds, if a kinetic de-
scription of the plasma has to be taken into account. The
relation above and also the field line conservation critereon
(see below Eq.28)) do only depend on the structure of the Fig. 2. This sketch shows how plasma elements are ‘mapped’
magnetic field and not on the question if a kinetic descrip-within time from one field line to another. In an ideal conductor
tion or a fluid theory is used. The EdL3) is therefore an  two plasma elements which are lying on one field line at a certain
exact definition for the flux conserving velocity field and is time are also connected by one field line after each time gtep
equivalent to Newcomb’s result, see the system B#). 4nd i.e. are also lying on one field line at a later timedt. This defines

Eq. 32). With additional appropriate boundary conditions, magnetic connection (magnetic topology) and enables to find topol-
this linear partial differential equation will have a unique so- °9Y conserving velocity fields (conserving the line connection).
lution for given respectively known magnetic fieRi(x, ¢).

For reasonable physical boundary conditions it may happen
that there is no solution, which is a criterion for magnetic
reconnection (see Sect. 4).

An example is given for an ideal MHD plasma, which has

. ' . e definitions in Eq.13), which we will show now: Using
only localized nonideal regions, see Sect. 4. In Sect. 4.1 an & Taylor expansion for the velocity fiekd(for a fixed time)
also Sect. 4.2 it can also be seen that there is a difference Y P y

betweenw, andv. In the case of a magnetic neutral sheet we get

the flux conserving velocity field is a field aligned flow, in sy = (51 - V)v (15)
contrast to the plasma flow, which may have perpendicular . )

components if e.g. a resistive term is present in this regiorAnd with the help of Fig2

around the current sheet, as discussed in Sect. 4.2. 51+ d (1) = 81 + (v + SV)di — vdi (16)

The above described behaviour defines magnetic connec-
tion, respectively magnetic topology (conservation) and en-
ables to find corresponding velocity fields with the help of

it follows

dsl
The condition for topology, respectively line conservation for dr
vector fields was derived in different ways, e.g.Nlgwcomb  \ysihy
(1958 andStern(1966. We will now derive this condition
for line conserving flows in a different way and show the con- 8§l x B =0 (18)
nection to flux conservation with a vivid respectively visual

3 Line conservation
=8v=(8l-V)V. (17)

method: The sketch in Fi shows how plasma elements as initial condition, it is necessary for line conservation (con-
' servation of line connection), i.e. for magnetic topology con-

are ‘mapped’ within time from one field line to another. In . : LS LS
anideal conductor, butin general also in a non-ideal but mag_servatlon to demand that the time derivative of the initial con-
’ ition Eq. (L8) vanishes, i.e.

netic topology conserving plasma flow, two plasma elementsd
which are lying on one field line, connected by the arc length4(51 x B)
or line elemen®! at a certain time are also connected by dt

one field line after each time stej, i.e. are also lying on . .
one field line at a later time+ dz. The plasma elements are The left hand side of Eq1) resuits in

=0. (19)

then connected by the line elemeit+ d(8l), and the cor-  d(5l x B)  d(5]) dB

responding tangential vectors to the magnetic field lines are  ;; =~a = B+l x dr (20)
given by =[l-V)V] x B

81 =|81|B/|B| =38l B/|B (13) +8I x [(B-V)V—B(V-V)—V x E*]. (21)

and by analogy With the help of the convective derivative Bf the ‘convec-
8l +d(l) = (81 +d(8l)) B/|B]. (14) tive’ electric fieldE* in Eq. (L1), and Faraday’s law (Eg2))
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66 D. H. Nickeler and M. Karlicik: Magnetic flux or line conservation

the operator on the left hand side of EG2Y can be writ- 4.1 The caseB # 0 everywhere
ten as:
To ensure the ideal transport of the magnetic flux and to en-

9B =-VXE=Vx(—E*+VxB) (22) sure topology conservation it is necessary to find a function

ot N X and a vector fieldl such that for knowrE and B, and an
=B -V)V-(V-V)B—-(V-V)B—-V x E™. (23) Ohm’s law given byE + v, x B =R,

With Eqg. (13) we see that E+vxB=VX < E+v,xB=R, (29)

(81 -V)Vx B=—581 x (B-V)V (24)

wherew, is a plasma velocity an& a given non-idealness.

is valid. Thus, the first term and the first term in brackets of BY S0IVing forv the magnetic flux is frozen-in with respect

the line conserving constraint E@1) cancel each other and © Velocity fields

it follows Bx(R-—VX
V:v,,—x(—z)—i-vB (30)
0=6l x [-B(V -Vv) — V x E*] (25) |B|
= -8l x (V x E*). (26)  or, equivalently
As 81 | B we can therefore conclude that v E- ;)'(2) B  -p (31)
B x (VxE*=0 (27) . ,
9B which was found first byNewcomb (1958. Here v, re-
< — —Vx(VxB)=21B. (28)  spectivelyd are functions in space and is the solution of
at
the PDE
This equation is similar to the well known induction equation
of ideal MHD and is a differential equation for calculating B-VX=R-B=E-B. (32)

the line respectively topology conserving velocity fielébr
a given magnetic field. The difference to the usual induction
equation is the terma B which corresponds to the freedom of
the motion of the flux-/line conserving velocity field in the
direction of the magnetic field. For vanishiagve conclude
that v conserves magnetic flux, for non-vanishihgnag-
netic lines are conserved (magnetic flux is transported alon
the fieldlines). For ergodic vector fields, i.e. for magnetic
fields for which no first integrals exist, must be a constant.
This implies that the general solution of EG8| has a ‘con-
tinous spectrum’ and the form of an eigenvalue problem.
With this it is shown:

That this equation needs appropriate boundary conditions

and/or auxiliary conditions had not been noted\wcomb

(1958. The fulfillment of Eq. 82) is a necessary condi-

tion for the fulfillment of Eq. 81). The system Eq.32) and

Eqg. 31) is equivalent to Eg.12). Note: The whole proce-
ure, discussed in this section, is only necessary and reason-
ble if R is not itself a gradient.

The parallel transport of the magnetic field, described by
the termvB respectivelyp B does not influence the flux-
freezing properties of the flow with respect to the magnetic
field. Nevertheless, we briefly discuss the meaning of the the
functionv respectivelyi: these functions are connected with
— Flux conservation implies line conservation, but not the parallel Alven Mach number of the flows 4 by

vice versa $tern 1966)!

. EMy
= — 33
— A non-ideal term is necessary for violation of line or Mo p (33)
flux conservation, but not sufficient. . . .
SinceM 4 is defined by
2
H 3 1 L H 7 A
4 Searching for ‘redefined’ velocity fields |v”|2 _ Ol\)l B2, (34)

The chosen plasma velocity field, in generalized Ohm's L : .
law E +v, x B =R, whereR is a given non-idealness, is it follows thatv respectively is connected with the magnetic

only flux conserving, ifR can be written as a gradient. & field. Here the mass density,jzs The magnetic field aligned
cannot be written as a gradient it is possible to find a ‘sub-cOmPonent of the velocity field ig. _ _
stitute’ or ‘redefined’ velocity field which is flux consery- 10 find solutions of Eq. 32), appropriate constraints
ing/transporting instead. In the first subsection we will show @nd/0r appropriate boundary conditions are needed. In most

how this works for the general cage=0, and in the sec- CaS€s in astrophysical plasmas, thex B-drift velocity

. 2 . .
ond subsection the problem will be briefly discussed for the(?.L := E x B/|B|) is the perpendicular component of the
special cas® = 0 locally. plasma velocity , and is a good approximation for the flux

transporting velocityv almost everywhere (selriest and
1Due to the initial conditior! x B =0. Forbes 2000. Thus only in a small subset of the domain
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D. H. Nickeler and M. Karliclg: Magnetic flux or line conservation 67

the perpendicular component of the flux transporting veloc-of general 3-D magnetic fields. The reason for that is that
ity is different from the velocity of thé x B-drift. Thiscan  no first integralX exists in the case of ergodic fields (see
happen e.g. due to MHD, multifluid-MHD- or electrostatic the discussion and the references in the bodR’b&eseleer
turbulence, leading to non negligible non-ideal terms or re-1990).

sistive terms (current driven) on the right hand side of Ohm’s  The converging o’ — v, is therefore guaranteed by the
law. The deviations from the drift velocit x B are often  boundary condition

strictly localized in space, which has to be taken into account .

for the boundary conditions of the potenti&l Thus the X =const Vx € D\ Dg and especially 08Dg,  (40)

flux conserving velocity field inside this non-ideal regibr ~ only, which is discussed in similar form iRriest et al.

must converge to the usual flux conserving velocity field be-(2003, but with a slightly different interpretation. Using the
tween the boundary of the ideal and the non-ideal region, i.ejdentities

on the boundary D of the non-ideal domai®g. We con-

clude here: To enable the convergenge— v outside the E-B=R-B, (41)
non-ideal domain, it is necessary to assumeYh#itx B =0 V.- (XB)=B-VX, (42)
outsideDy in Eq. 31). This leads us to
we calculate

VX =uB, (35)

B-VXdV = R-BdV 43
where . is a scalar function. Taking the curl of EQB5) / _/ (43)
we get b
VuxB+uVxB=0, (36) = /V~(XB)dV=fE~BdV (44)
yielding b b
(VxB)-B=0. 1 fXB-dS:/E-BdV (45)

3

This equation implies either only perpendicular currents, P Pr
writing e / B-dS = / E-Bdv. (46)
j-B=0 (38) aD Dg

with respect to the magnetic field, or with =const it =0

follows One can see very easily that the left hand side due to the
boundary conditions Eq40) can only be fulfilled, if and
VxB=0, (39) only if the right hand side integral in Ec4§) vanishes iden-

implying that the magnetic field must be potential. This fically. In contrast to the authors Priest et al(2003, who
result allows only a very special class of magnetic fieldsConclude thatthere will be no solution in generakasB # 0

to be transported by th& x B-drift velocity. In additon N the non-ideal domain, we see at least a possibility to
the influence of thekZ := (E-B) p should be minimized. 9uarantee the existence of (continuous) flux velocities: This

e |BI? . means that deviations from the ‘ideal’ conditid- B =0
Strong electric field components will accelerate each of thente rated over the non-ideal domain should onlv be statisti-
charged particle species in a different way, e.g. with respec{ g Y

to the different masses of ions and electrons. This will IeadCal fluctuations, canceling each other, so that the whole in-

to strong charge separation, induce additional collisions be;egral vanishes. Only the ‘isotropic’ turbulence for the case,

tween the particles and thus destroy the quasi-neutrality thatE.' B #0in D, WOUId enabl_e to fulfll the bo_undary
the plasma and the idealness of the plasma. Due to this reé)_ondltlon forX. If the right hand side does not vanish, then

. . . the flux transporting velocity field inside the non-ideal region
son it makes sense to assume that outside the non-ideal r%'oes ot converae to tHe x B-drift ouside the non-ideal do-
gion Dg, E|=0. InfactE - B=0 is the (necessary) condi- Y x

tion for ideal MHD?, because this condition implies (i) mag- Lnoizagfxc%ir:j?t?;:izligo?ré;hfilzﬁs;dizrz ggﬁ-\l—:rﬁr:?ne
netic topology conservation and (ii) the fact that without any y ' 9

restrictionX can be set constant everywhere outside the nonfunction outsideDg. This implies a discontinuity of the flux

ideal domainDx. There is another reason thatmust be transporting velocity, which can be interpreted as a ‘shock’
zero or at least constant on the boundary: Assuming tha
the field is ideal, i.eE - B =0, outside a non-ideal domain
Dpg the equationB - VX =0 cannot be fulfilled in the case

Pf the flux transporting velocity field. Thus the field lines
are transported different at the boundary of the non-ideal
domain and this gives an ‘observer’ the impression of field
line tearing, i.e. of a discontinous transport of magnetic flux
2The necessary condition for the ideal transport of the magneticand magnetic field lines: magnetic reconnection takes place.
field is only thatR could be written as agradient. Magnetic reconnection is a breakdown of magnetic topology
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68 D. H. Nickeler and M. Karlicik: Magnetic flux or line conservation

conservation, therefore the flux- or line-conserving velocity For 3-D isolated null points of the magnetic field it is pos-

fields either must not exist or must have a discontinuity. sible to find velocity fields, see the discussionTitov and
There is a connection of generalized helicity which is a Hornig (2000 and Sect. 7.

generalized gauge independent concept of magnetic helic- How can we apply the above concept and discussion in the

ity and is based on the value ¢{E - B) dV (see the above case of non-ideal plasmas to different space plasma regimes,

boundary conditions) with the concept of flux conserving ve-for example the magnetopause region of the Earth, or for our

locity fields. This concept was developped®ghindler and interest, under heliospheric conditions, i.e. at the heliopause?

Hessg1988 and has the advantage that it is gauge invariant.

The changing of magnetic helicity in an ideal plasma with

localized non-idealnesR changes magnetic topology (def- 5 Application to the two fluid case/Hall-MHD

inition for general magnetic reconnection) if and only if the

integral overE - B does not vanish. This is equivalent to the

problem of satisfying the boundary condition in E40Y for

the flux conserving velocity field with respect to the integral

expression Eq4®). Thus for non-reconnective flows

We will briefly show how flux conservation can be valid
in a non-ideal plasma environment. In the vicinity of the
| Earth’s magnetopause, the ion inertia length becomes com-
parable to typical lengthscales of the magnetopause. There-
fore sometimes the following approximation of two-fluid the-
d ory is used, which is called Hall-MHD, séeeidberg(1987)
E/ [(A+Ao) - (B — Bo)] dV and for discussion of applicabilitpreher(1997. As it has
D only to serve as an example for the difference of flux- and
field line conservation we drop the Ohmic teryi. Then
Hall Ohm'’s law is written asu is the ion velocity,P, is the

= (=2 /(E -B)dV =0, (47)
Dr electron pressure):

where Bg and Ag are reference fields for the magnetic field 1
B and the magnetic vector potentidl, chosen in such E+v; xB= e [/ x B+ VP,] (48)
a way that boundary conditions and initial conditions like 1
dS -9B/dt =0on the boundary of the plasma far away from = E+v.xB=_—VPF, (49)
Dg, and alsoE x dS =0, wheredS is the boundary of the 1
plasma far away fronD, are satisfiedDy, is again the non- = R = — VP, (50)

ideal domain. In our case no non-ideal domain exists, where
E - B #0, as will be discussed in Sect. 6, iE. B=0 ev- due toj =ne (v; —v.). The used relations take strictly the
erywhere. Thus the generalized magnetic helicity cannot beuasi-neutral and quasi-stationary conditions of the plasma
changed with the given non-idealness R in our manuscript. into account.
If we assume a barotropic lawP, = P, (n) it follows that
4.2 The caseB =0 locally
VxR=0 (51)

Current sheets are not a problem in reality, as they have a , . . .
e : ; . o S which guarantees flux conservation. Thus the magnetic flux
finite width and e.g. withR =5 j there is in principle also

a possibility to define a redefined velocity field which in 'S ffoZeén into the electron velocity.. Although in general

. . .~ the electron pressurg, is not constant on field lines, i.e.
general is not the plasma plasma bulk velocity, respectively . . .
. . . . "E-B=B-VP,#0, implying that we here are talking about
plasma velocity. To find such a flux transporting velocity

o o T . non-ideal MHD, the transport of the magnetic field is ideal,
field is, of course, easiestifj is a gradient in special sys-

. X i.e. conserves magnetic flux.
tems. Only therv=v,, is valid. Current sheets do not nec- A non-barotronic lawe. = P. () in aeneral does not allow
essarily imply magnetic neutral shees=£ 0), even in sym- f on-barotropic lawf. = P (n) in general does notallo

metric systems, so that the large current can be generateé)rflux conservation, as the Jacobian determinanigind

by some magnetic shear component, i.e. components of thﬁS 20 UO;I\(;?\?Iti)htr?gﬂafzgi)?;?]rggtr;z?raqﬂowtlgg relaatloh (Wh'Ch
magnetic field in the invariant direction (direction of symme- IS equIv ! AL, n)/9(xi, X))

try) or for 180 degrees shear without magnetic neutral IineW'th i#jandi, j=123)

with a magnetic jump across a boundary line. Only in_ the _, Vnx VP, = xB (52)
case of 180 degrees shear with neutral sheets, e.g. antiparal-

lel magnetic fields above and below a magnetic neutral linejs only able to lead to line conservation as the Jacobian and
and also in the case of an magnetic null line in 2-D (null therefore Eq.%2) does not allow vanishing’s. The above
point from the 2-D perspective) the method of Newcomb is equation results in

in general not valid. In this case only parallel flows are flux

conserving, see the discussion in Sect. 7 about null lines in B - V2 =0 (53)

2-D ideal MHD flows. B-VP,=0 (54)
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The equations Eqs58) and 64) imply, that the functiory is Baranov and Fahr on the other hand. We only want to shed
dependent o, andn, the latter can be used as Euler poten- new light on the question what kind of shape Ohm’s law must
tials of the magnetic field. These conditions E§2-64) are  have to violate the frozen in condition seriously, leading to
severe restrictions of possible configurations, allowing linemagnetic reconnection. Thus to refer to Baranov and Fabhr,
conservations. or Florinski and Zank is only to show with this example of
an Ohm’s law that there are open questions which need more
intensive discussion and research.

Nevertheless, th& x B-term on the right hand side of
Eq. 65) has maybe a value which is not negligible at the he-
liopause: Due to the fact that thin current sheets can exist
at the location of the heliopause tNex B-term can change
the value of the whole term by orders of magnitude. In simu-
lations this behaviour can lead to numerical reconnection, as
discussed byratkiewicz et al(2004).

6 Application to the heliospheric plasma flow

We now turn to the problem which initially/actually should
be addressed, the problem of the multi-fluid interface of the
outer heliosphere/VLISM region. In this case the non-ideal
termR is supposed to have the following shape (Baeanov
and Fahy2003 and references therein):

R = (1—a)2c? |:0t VP x B In spite of this interesting and important ansatz for finding
o Kiq 1+« points where reconnection probably will take place, we will
B see in the next section that the existence of singular points of
+— x ((Vx B) x B)} : (55)  the flow (= stagnation points) leads to the demand of finding
Ho a multi-fluid Ohm’s law with terms suitable to violate the
whereK;, is the resistance coefficient, discussedHiyrin-  frozen in condition and to lead teal magnetic reconnection.

ski and Zank (2003 and in references therein, that is

proportional to the charge exchange collision rate, and

«:=n/n+ n, is the degree of ionization, with, n, asnum- 7  Stationary ideal MHD in the vicinity of a
ber densities of the ions and neutral atoms. standard stagnation point

Ohm’s law,E + v x B = R, can be written as
E+vxB=0 (56) A singular. point. whgre the veloqity of a flow vanishes
(= stagnation point) is always sufficient and necessary for
with the determination of a separatrix, i.e. a contact surface or
1— )22 [aVP 1 a so called ‘pause’. Here two f[opologically dis_tinct rov_vs
V=v— [ — — ((Vx B) x B)} . (57) encounter. In the case of the interstellar medium flowing
Kia 1+e  uo around the cavity of a stellar wine=(astrosphere) a so called
This implies that it is possible for every parameter range‘astropause’ forms (see e.ilickeler et al, 2009. In the
of the transport coefficients to find a flux conserving velocity case of the counterflow between the sun and the interstellar
field given by Eq. 7). Therefore the non-ideal term given medium this separatrix is called the heliopause. The defini-
by Eq. 65) representing charge exchange processes, canndion of an existing domain/structure as an astro- or a helio-
lead to a change of magnetic topology. Hence the charge exsphere requires that a quasi-stationary structure exists, which
change process described by Esg)(cannot be responsible represents the mean physical values of such a counterflow
for magnetic reconnection. configuration. It is therefore reasonable to assartte ~ 0,
Initially the term in Eq. b5) was supposed to represent ad- neglecting ‘oscillations’ of the system. As an example we
ditional interactions (some kind of ‘anomalous’ collisions), use the image of a region in the direct neighbourhood of the
to violate the frozen in paradigm for the heliosphere. Thestagnation point in a 2-D ideal MHD flow. We briefly show
remaining question is therefore, whether there may be addiand discuss the solution for such a scenario, discussed also in
tional multi-fluid or charge exchange processes, which carlNickeler and Fah¢2006. The logical conclusion which can
lead to non-ideal terms, inducing magnetic reconnectionbe drawn from such a solution (with respect to heliospheric
However, from Eq.%7) it is not clear in advance, which com- research), namely the breakdown of ideal MHD in the vicin-
ponent of the plasma is responsible for the flux transport: thety of a stagnation point, will be discussed in more detail in
flux transporting velocity field is in general not known, but  the remaining of this section.
must be determined from solving the whole set of multifluid  In the vicinity of the heliopause nose, i.e. at the front stag-
equations. Thus is neither a particular species velocity nor nation point of the heliopause, the mass density should have
the plasma velocity. In the discussion betw@&aranov and a maximum due to the fact that at this location there exists a
Fahr(2003 andFlorinski and ZanK2003, it seems that the ‘stagnation region’. The maximum in the density would lead
frozen in velocity is approximately represented by the ionto small gradients of density. Thus “incompressibility” is an
velocity for such a multifluid plasma with neutral particles. approximation; this assumption does not directly contradict
Our paper should not be misunderstood as a continuatiothe observations of Voyager that the flow is compressible
of the dispute between Florinski and Zank on one hand andlirectly behind or in the vicinity of the termination shock.
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Fig. 3. Streamlines in the vicinity of a standard stagnation point. Fig. 4. Magnetic field lines resulting from a solution of E&8}
They also lead to a stagnation of the magnetic flux, but a divergentvith the densityp o« £4 o (xy)?#. This solution represents the mag-
one. netic field for a prescribed velocity field in the vicinity of a stag-
nation point. The magnetic field structure and its topology is much
more complex than that of the streaming, i.e. velocity field. The
Therefore we can demand that at least along the stream linesagnetic field shows additional separatrices, which are obviously
the density should be constant. Applying a two dimensionalcrossed by the flow whose stream lines can be seen iBFighe
picture here should illustrate the problem of demanding theplasma flow crossing magnetic separatrices is normally a critereon
flux conserving or ‘flux freezing constraint’, i.e. that some ©Or atleast a hint for magnetic reconnection in 2-D.
plasma velocity transports the magnetic flux in such a way,
that flux conservation is valid. We therefore introduce the
streaming vector/pv:=w = V¢ x e, to represent the in- One can calculate the Laplacian®fand see, that the field
compressible flow, where again is not necessarily the ion is not a potential field, i.eAa = —puo/; # 0, wherey; is the
velocity or any other plasma velocity(¢) is the mass den-  current density irg-direction. The singularities of the mag-
Sity’ and{(x’ y) is a Correspoding potential_ Curves given netic field (the magnetic field on the Separatrices is |nf|n|ty)
by ¢ (x, y) = const are streamlines and the mass density is a¢@n be removed by demanding a vanishing mass density on
explicit function of the stream function. By introducing ~ the separatrices: In this case the magnetic field would re-
B =Vu(x,y) x e, the corresponding ideal Ohm’s law can Main finite, but show a much more complex topology than

be written as the velocity field (see Fig4, for a mass density given by
pxc?oc(xy)?). The velocity fieldv diverges on the sep-

() 08 da  9f da 5 Eo (58)  aratrices, but no mass is transported, igiw = pv — 0.

d(x,y) 0x dy dy dx Additional separatrices occur, and the general solution given

by Eg. 69) shows that singular current sheets exist in that

\é\l_:fé?(f;o Est[]aenggrr:jsigt :;f.gt:c ;!;“Itd.n'?hgh.enég\ﬁ”?gs.bledomain. But even with density structures which converge
rection. gnation point1 ! P PCmuch more quickly to zero density on the separatrices than
case can be represented by using axy, see the stream-

X LT . T that density used to calculate the magnetic field structure in
lines drawn in Fig.3. Herea is a normalization constant.

The potentiak represents the potential for the linearized ve- Fig. 4, no solution of the Euler equation could be found by us
locity field around the stagnation point. This linearization of (including isotropic plasma pressure) for the magnetic fields

the velocity field in the vicinity of the stagnation point does g;:;ezgggeral solution given by Ecp9) (seeNickeler and

not exclude globally asymmetric configurations.
The general solution of Eg58) leads to the occurrence of
logarithmic singularities:

Such singularities for the magnetic field would also occur
in compressible flows in 2-D Cartesian geometry. From sta-
tionary ideal Ohm’s law it follows

E
o= —Z? N/ (klln (x/x0)% + (1 + k1) In (y/yo)z) - (59 v,B, —vyB, = —Eo, (60)
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whereEg # 0 is the constant component of the electric field tion of the whole set of multifluid equations, and is therefore
in z-direction. Thus at the stagnation point the magneticneither a determined plasma species velocity nor a weighted
field, or at least one component has to be infinitely, whichmean of the plasma species velocities. Thus it would be in-
is not a reasonable physical result. This leads to the conteresting as a future perspective to get more insight into the
clusion that ideal MHD cannot be used in the vicinity of a relation between the plasma velocities (e.g. species veloci-
stagnation point. Only for a flow which is field aligned ev- ties or bulk velocity) and the flux- or line-conserving velocity
erywhere in the poloidal plane, implying thA&p is zero, the fields in the frame of multifluid theory.
problem could in principle be solved. It is also shown that in the vicinity of stagnation points
The diverging of the magnetic field seems to be a gen-within the frame of stationary MHD flows with symmetry,
eral problem for symmetric and stationary systems in idealadditional non-ideal terms have to be considered to avoid the
MHD, see e.g.Contopoulos(1996, where the vanishing occurence of magnetic singularities. If no non-ideal terms
electric field component into the invariant direction (direc- are present in Ohm’s law, stationary or quasi stationary solu-
tion of symmetry) leads to the demand of a pure field alignedtions show a divergent behaviour on the separatrices, or need
flow or, for non-vanishing electric field, to an infinite mag- a diverging velocity field, or, as one of our suggestions, an
netic field strength at the stagnation point. This can be seefexotic’ density distribution. This may give a hint that the
by inspecting the poloidal part of Ohm'’s law, ideal Ohm’s la breaks down at the heliospheric nose or at

stagnation points in general.

v; B, — v, B, = constantr (61)

which leads to flows being field aligned in pure 2-D axissym-
metric systems, if the constant is zero. Hafé¢ = 0 with ¢

as coordinate (angle around the axisjs the distance to the
axis, andz the z-coordinate. If the constant is not zero, for
the stagnation region, — 0 andv, — O at least one mag-
netic field component has to diverge, so it it is not possible
to get regular solutions of the ideal MHD equations. Thus
the above statements show clearly, that ideal MHD cannot
be valid in the vicinity of stagnation points, as the magnetic
field should, of course, be finite everywhere.

If components in the invariant direction exist, it is not
necessary that the flow is field aligned. But the case that
Ypoloidal | Bpoloidal iS very special and excludes realistic sym-
metric ideal MHD flows which have an angle between the
poloidal velocity and the poloidal magnetic field compo-
nent. Solutions withvpoloidal [l Bpoloidal dO represent situa-
tions which characterize very idealized situations, but at least
it is doubtful, whether they occur in nature.

An extension to generic 3-D solution (without an ignor-
able coordinate respectively symmetry) of the ideal transport
problem has been done Bytov and Hornig(2000. But
their solution is restricted to a special magnetic topology in
the vicinity of a 3-D stagnation point and gives no hint for a
configuration without a null point of the magnetic field. This
implies that this is a structure which can lead to magnetic
reconnection, but does not likely lead to stationary or quasi-
stationary MHD configurations.

8 Conclusions

In this article criteria for magnetic field line conservation and
magnetic flux conservation are reviewed to show their im-
portance for heliospheric physics. In the application to helio-
spheric plasma physics we showed, that the often used Ohm’s
law leads to a possibility to determine a flux conserving ve-
locity field: However this velocity field depends on the solu-

www.astrophys-space-sci-trans.net/2/63/2006/

Therefore some open questions and unsolved problems

remain:

— Is there any way to define a flux conserving velocity in
a partially ionized plasma which is directly coupled to a
plasma species velocity or to any other plasma velocity?

Therefore: How is it possible to define magnetic recon-
nection in a partially ionized plasma?

Flux conservation is defined by the criterion éw-
comb (1958, but not sufficiently, ignoring the impor-
tance of the expressioR - B and a minimal flux pre-
serving velocity field as boundary condition, as was
shown in Sect. 4. For the case of the heliosphere or for
any other partially ionized plasma the up to now used
model of e.g.Baranov and Fah¢2003 lacks a term
which can violate magnetic flux respectively magnetic
topology conservation, due to the fact that B =0.

Is there any additional term which for physical reasons
has to be added to Ohm’s law, so that this term leads
to a violation of the frozen in paradigm and therefore
to magnetic reconnection processes, e.g. due to charge
exchange processes?

The transport equations used IBaranov and Fahr
(2003, Florinski and Zank(2003, based on the re-
search ofSchliter (1958, Kulikovskii and Lyubimov
(1965 andCowling (1976 are only one possibility how
the interaction of neutrals, and ions and electrons can
look like. The *“friction force” F;; in these models is
represented as linear relation, which is the most simplest
form one can think of (even complicated enough) by a
constant coefficienk;;: F;; =4 K;;(v; —v;). Maybe
things can be much more complicated, thus there is
enough “material” for discussion, but this is beyond the
scope of this paper.

— Is ideal MHD valid in the vicinity of a 3-D stagnation
point or does the ideal theory break down there?

Astrophys. Space Sci. Trans72, 886
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To answer the last question, results from numerical simu-D’haeseleer, W. D., Hitchon, W. N. G., Callen, J. D., and
lations should be analyzed carefully with respect to the topol- Shohet, J. L.. Flux coordinates and magnetic field structures,
ogy of field and streamlines in the vicinity of the stagnation ~ Springer-Verlag, Berlin Heidelberg, 1991.
point. The calculation of the characteristic surfaces in 3-DKulikovskii, A. G. and Lyubimov, G. A.: Magnetohydrodynamics,
can help to find out whether regular and stable solutions of Addison-Wesley-Longman, Reading, Mass., 1965.
flux conserving flows in the vicinity of a stagnation point can NeWcomb. W. A.: Motion of magneticlines of force, Ann. Phys., 3,

N S 347-385, 1958.
be found. This investigation must be left for future work. Nickeler, D. H. and Fahr, H.-J.: Two dimensional stationary resis-

tive MHD flows: Borderline to magnetic reconnection solutions,
Adv. Space Res., 37, 1292-1294., 2006.
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