
Astrophys. Space Sci. Trans., 4, 7–12, 2008
www.astrophys-space-sci-trans.net/4/7/2008/
© Author(s) 2008. This work is licensed
under a Creative Commons License. Astrophysics andSpace Sciences

Tr ansactions

On the validity of ideal MHD in the vicinity of stagnation points in
the heliosphere and other astrospheres

D. H. Nickeler and M. Karlick ý
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Abstract. The paradigm of ideal MHD is investigated in the
vicinity of null points of flows and magnetic fields. These
null points determine the location and geometrical shape of
the heliopause (or other astropauses). We investigate the
question whether regular and stable solutions of the ideal
MHD equations in the vicinity of null points of flow and
magnetic field exist. This is done to test the validity of
ideal MHD in the vicinity of flow and magnetic field of
the plasma boundaries of stellar winds and their local inter-
stellar medium. We calculate the general solutions of ideal
MHD in the vicinity of magnetic null points and use the stan-
dard form of stagnation point flows to analyse all possible
time evolutions of these plasma environments. We show
that the solution space in 2-D consists almost exclusively
of either exponentially (in time) growing velocity or mag-
netic fields, or collapse solutions. Regular solutions must be
three-dimensional and seem to be unstable with respect to
small perturbations. This is an argument that reconnection
has to take place in such regions and that therefore nonideal
terms in Ohm’s law are necessary, allowing for reconnec-
tion. We conclude that the use of ideal MHD in the vicinity
of singular points of flow and magnetic field has to be anal-
ysed very carefully with respect to simulation results as those
simulations show numerical dissipation (resistivity). These
simulations can therefore produce unphysical reconnection
regimes. Thus one has to search for a realistic Ohm’s law,
allowing for reconnection at the heliospheric boundaries.

1 Introduction

The solar wind is interacting with its surrounding interstellar
medium (ISM) leading to the formation of the so-called he-
liopause (or astropause in more general). This heliopause is

Correspondence to:D. H. Nickeler
(nickeler@asu.cas.cz)

separating the solar wind plasma from the ISM plasma, forc-
ing the ISM material to flow around the obstacle formed by
the solar wind. At a certain point, the nose of the heliopause,
the velocity of the ISM plasma flow must vanish: this point
is called a stagnation point (see, e.g.Parker, 1963; Nickeler
et al., 2006). The heliopause is mathematically speaking a
separatrix. The classical heliospheric definitions are given,
e.g. inParker(1963) andFahr et al.(1993) or as an approx-
imation in Fahr et al.(1988). Another approach, addition-
ally taking the stability of the heliopause flanks into con-
sideration, was performed byBaranov et al.(1992). In the
aforementioned articles it is emphasized that the heliopause
is a free pressure equilibrium surface. A more precise topo-
logical definition (on which our investigation is based) of
such a separating surface or separatrix is presented, e.g. in
Arnold (1992); Reitmann(1996). In general, the stream-
lines (or field lines) of a vector field are equivalent to the
phase portrait of a corresponding dynamical system. The
stagnation point is the intersection of the 1-D-stable mani-
fold (= the stagnation line) with the 2-D-unstable manifold
(= separatrix surface or pause) in general 3-D problems (see,
e.g. Arnold, 1992; Reitmann, 1996). The stable manifold
consists of two streamlines of opposite direction, intersect-
ing at the location where the velocity vanishes: the stagna-
tion point. The unstable manifold is the separatrix surface,
where the streamlines leave, i.e. point out of the stagnation
point and flow outwards. Therefore in heliospheric physics
the heliopause is defined as the ‘hydropause’, separating the
two different plasmas, namely the solar plasma and the in-
terstellar plasma. The disadvantage of this definition is that
in a multifluid plasma there are different ‘pauses’ due to the
different species, respectively fluids, e.g. neutrals, ions, elec-
trons. Therefore a better definition of the heliospheric bound-
ary maybe the magnetopause. This point will be discussed in
Sect. 3.

From the topological point of view the magnetopause has
the same definition as the hydropause: both are separating
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surfaces. In the case of magnetic field lines an inversion of
this image is possible, i.e. here the 2-D manifold may also be
the stable manifold and the 1-D manifold the unstable one,
seeParnell et al.(1996). The eigenvalues of the linearized
vector field determine the type of null point, seeParnell et
al. (1996). Then the question arises, whether in ideal MHD
stationary solutions exist, which permit that the two types of
separatrix surfaces are identical, or whether they have to be
different. We show that in 3-D locally such an identity must
be fulfilled, but the question is whether the found solutions
are stable.

But to find regular solutions of the MHD equations in
the vicinity of singular points of flow (= stagnation point)
and magnetic field (= null or neutral point) is a problematic
task. In the case of 2-D configurations, it is obvious that the
poloidal components of magnetic and flow field have to be
parallel (see, e.g.Nickeler and Karlicḱy, 2006; Contopolous,
1999). Otherwise either at least one of the vector components
of the magnetic field or of the velocity field has to diverge as
shown, e.g. byNickeler and Karlicḱy (2006).

It is often stated that null line or null sheets of the mag-
netic field exist, if ideal MHD codes are used to calculate
a fluid model for the heliosphere, see e.g.Zank (2007). In
contrast to that it has been proven byHornig and Schindler
(1996) that configurations containing lines, surfaces, or re-
gions whereB = 0, have an unstable topology, i.e. no flux
conserving flow like in ideal MHD exists.

To represent a model heliosphere it is necessary to ask,
whether it is possible to calculate quasi-stationary MHD
states (non-unstable/decaying, non-diverging) at the noses of
astrospheres, i.e. in the vicinity of the stagnation and null
points of the large scale heliospheric MHD fields. A sim-
ilar task, concerning the stability of tangential discontinu-
ities with a stagnation point in hydrodynamics, was carried
out byBelov (1997), see also the review paper byRuderman
(2000). These authors also found instability in the vicinity of
the stagnation point for a tangential discontinuity, assuming
a potential flow.

Another application for small velocity fields can be found
in pre-solar-flare stages. Thus we make assumptions, allow-
ing only for small velocity fields compared to the speed of
sound: Is it then possible to find (asymptotical) stationary
flows or intermittent/oscillatory flows? In Sect. 2 we restrict
our investigation to general solutions of ideal Ohm’s law in
the vicinity of null points of magnetic or velocity field, as-
suming that global regular and bounded solutions exist. We
find restrictions for the (general) solution of the ideal Ohm’s
law using characteristic method by inserting the characteris-
tic solutions into mass continuity equation and Euler equa-
tion. Finally, we want to shed light on the problem of sta-
tionary ideal MHD solutions in the vicinity of 3-D magnetic
null points (Sect. 3).

2 Illustrative example of the problem: the potential
magnetic null point and the stagnation point of sub-
sonic flows

The distribution of null points of a vector field determines the
global topology and the geometry or shape of the outermost
separatrix: the pause. Singular points seem to be a natural
‘ingredient’ in different heliophysical scenarios: (i) in the
scenario of the quasi-stationary heliosphere the global shape
of field lines and stream lines is determined by the struc-
ture of field- and streamlines in the vicinity of the stagnation
point; (ii) in the case of the quasi-static magnetic structures
in the solar corona, the important null points are the magnetic
ones. As in the vicinity of magnetic nulls or stagnation points
in 2-D no stationary flows can exist that are not field aligned,
seeNickeler and Karlicḱy (2006), we search for oscillating
structures.

To avoid the occurence of magnetic instabilities we take a
null point without free magnetic energy: an example of mag-
netic structures are potential fields in the solar corona. The
plasmaβ is small in the solar corona, according to the aver-
aged values of pressurep: p ≈ 2× 10−2 Pa, and the magnetic
field B ≈ 10−2 T, thusβ = p/(B2/2µ0) ≈ 5× 10−4. There-
fore it is often argued that the pressure gradient is zero,
i.e. it can be neglected, and thus the Euler equation can
be neglected (so called kinematic approach, where only the
Laplace equation and the ideal Ohm’s law are solved). If we
regard the vicinity of magnetic neutral points the plasmaβ

converges to infinity, in contrast to the before shown estima-
tions. Thus the pressure gradient cannot be neglected.

2.1 Assumptions and basic MHD equations

If we want to find a quasi-static solution for the ideal MHD
equations in the vicinity of null points, the velocity field (e.g.
oscillating structures) should be small compared to typical
velocities like the speed of sound (the Alfvén velocity is zero
at the null point). The nonlinear part of the Euler equa-
tion can be neglected but not the partial derivative, imply-
ing v� vS, v · ∇ ≈ 0 and∂/∂t 6= 0. In addition we assume
a barotropic lawp = p(ρ) and solve the problem in pure
2-D, i.e. ∂/∂z = 0, but all variables are in principle (para-
metrically) time dependent . Based on the aforementioned
assumptions we introduce the set of equations that has to
be solved in the vicinity of null points: The equation of
mass continuity Eq. (1), the barotropic law Eq. (2), the Eu-
ler or momentum equation Eq. (3), thez-component of ideal
Ohm’s law Eq. (4) that guarantees flux and field line freezing,
and the Laplace equation Eq. (5)

∂ρ

∂t
+ ρ∇ · v = 0 , (1)

p = p(ρ) , (2)

ρ
∂v
∂t

= −∇p , (3)
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∂A

∂t
+ v · ∇A = 0 , (4)

1A = 0 , (5)

whereA is the magnetic flux function, i.e. thez-component
of the vector potential of the magnetic field, writing
B = ∇ × (Aez) = ∇A × ez = ∇φm, p is the thermal pres-
sure,ρ the mass density andv the plasma velocity. The
Laplace equation, Eq. (5), reflects the fact that∇ × B ≡ 0,
i.e. that the magnetic field is a potential field and therefore
current-free, thus these fields do not contain free magnetic
energy. From the Euler equation Eq. (3) and the barotropic
law Eq. (2) we can conclude, that the curl of the plasma ve-
locity vanishes (∇ × v = 0) and that thus the velocity can be
expressed as a gradientv = ∇ϕ i.e. the velocity field is curl-
free and can therefore be written as a gradient of the velocity
potentialϕ. With the help of the velocity potentialϕ we can
rewrite the system of Eqs. (1) – (5) as

g′(
.
ϕ)

..
ϕ +g(

.
ϕ)1ϕ = 0 , (6)

ρ = g(
.
ϕ) , (7)

∇ϕ · ∇A = −
∂A

∂t
, (8)

1A = 0 , (9)

where the densityρ can be expressed as a function of the
time derivative of the velocity potentialϕ. We point out that
Eq. (7) is a consequence of Bernoulli’s theorem

ϕ̇ +
1

2
|∇ϕ|

2
+ W(ρ) = const, (10)

where

W(ρ) =

∫
dp

ρ
(11)

is the gas enthalphy, neglecting the small specific flow
kinetic term v2

≡ |∇ϕ|
2. To solve the system (6) – (9) of

quasi-static MHD equations either boundary conditions or
constraints must be prescribed by us. We use the constraint
of a potential magneticX-point in the next section.

2.2 Example: the standard form of a potential field in the
vicinity of a magnetic neutral point

We take the potential approximation to avoid instabilities that
occur due to free magnetic energy. Low energy fields usually
do not show unstable behaviour.

With A(x, y, t) = A0(t)xy we find the general solution of
ideal Ohm’s law, Eq. (8), by applying the method of charac-
teristics, see e.g.Bronstein and Semendjajew(1979),

∂A

∂x

∂ϕ

∂x
+

∂A

∂y

∂ϕ

∂y
= −

∂A

∂t
(12)

⇒ A0y
∂ϕ

∂x
+ A0x

∂ϕ

∂y
= −

.

A0 xy (13)

⇒ dy: dx = A0x: A0y and dϕ: dx =
(−Ȧ0)xy

A0y
(14)

⇒ ζ : = ϕ + G
x2

2
and ξ : = x2

− y2 , (15)

whereξ = const, andζ = const are the equations of the char-

acteristics andG : = Ȧ0
A0

is the specific flux growth rate. Thus
for a potential fieldA = A0(t)xy, the ideal Ohm’s law Eq. (8)
has the general solution

ϕ = f (ξ, t) −
Gx2

2
, (16)

whereξ : = x2
− y2, andf is an arbitrary function ofξ and

t and can only be determined by initial or boundary condi-
tions or additional equations, like Eq. (6) (we will follow this
way to solve the quasi-static system simultaneously). We
can use the above general solution of the ideal MHD induc-
tion equation Eq. (8) to restrict the solution of the complete
ideal MHD system. This can be done by inserting the general
solution Eq. (16) into the mass continuity equation Eq. (6).

2.3 Case I: Isothermal approach

In the isothermal casep(ρ) =
kB

µ
ρT0 is the equation of

change of state withT0 as constant temperature. Thus we
can infer that

p′(ρ) =
kB

µ
T0 ⇒ g(

.
ϕ) = ρ0 exp

[
−µ

.
ϕ −

.
ϕ0

kBT0

]
. (17)

Inserting Eq. (17) into Eq. (6) results in

−
µg(

.
ϕ)

kBT0

..
ϕ +g(

.
ϕ)1ϕ = 0 ⇒ −

1

v2
S

..
ϕ +1ϕ = 0 , (18)

with the definition v2
S : = kBT0

µ
. The velocity vS is the

isothermal sound speed. The general solution of the differ-
ential equation Eq. (18) is obtained, inserting the general so-
lution of the ideal Ohm’s law, Eq. (16), into the linear wave
equation Eq. (18). This gives

4(x2
+ y2)f ′′

− G(t) −
1

v2
s

(f̈ − Gx2/2) = 0 (19)

⇒ 4(2x2
− ξ)f ′′

− G(t) −
1

v2
s

(f̈ − Gx2/2) = 0 , (20)

where the prime denotes the derivatives with respect toξ and
like usual dots the time derivatives. Asξ , x and the timet
are independent coordinates of the problem one can sort the
terms and recognize that

f ′′
=

G̈

−16v2
s

: = f0(t) (21)

⇒ f =
1

2
f0(t)ξ

2
+ f1(t)ξ + f2(t) (22)
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is a necessary assumption to guarantee that the term withx2

vanishes. The remaining equation is

−4ξf0 − G −
1

v2
s

f̈ = 0 (23)

⇒ −4ξf0 − G −
1

v2
s

[
1

2
f̈0ξ

2
+ f̈1ξ + f̈2

]
= 0 (24)

⇒ G = −
1

v2
s

f̈2 , f̈0 = 0 and − 4f0 −
1

v2
s

f̈1 = 0 (25)

⇒ G = −
8

3
v2
s f01t

3
− 8v2

s f00t
2
+ G1t + G0,

f0 = f01t + f00

and f1 = −
2

3
v2
s f01t

3
− 2v2

s f00t
2
+ f11t + f10 , (26)

wheref01, f00, f11, G1 andG0 are integration constants. As

G =
d

dt
ln

A0

A00
⇔ A0(t) = A00 exp

[∫
G dt

]
, (27)

whereA00 is an integration constant, we can conclude that
the flux function grows with

A0(t) = A00 exp

[
−

2

3
v2
s f01t

4
− v2

s

8

3
f00t

3
+

G1

2
t2

+ G0t

]
(28)

and from Eq. (17) we can present the leading order of the
time dependence of the densityρ

ρ ∝ exp

[
−

2

15
v2
s f01t

5
]

. (29)

We can conclude that the magnetic field will decay and the
complete region around the null point will be evacuated of
matter, or, in the case of a negative value of e.g.f01, a catas-
trophic pile-up of matter and field strength will take place.

2.4 Case II: Polytropic approach

With p = Kργ , γ = (C − Cp)/(C − CV ), with Cp andCV

as heat capacities at constant pressure, respectively con-
stant volume, andC as the actual heat capacity (seeChan-
drasekhar(1957) or Emden(1907) for details of the poly-
tropic change), we get the differential equation
..
ϕ +(γ − 1)

.
ϕ 1ϕ = 0 . (30)

If we insert the general solutionϕ = f (ξ, t)−
G
2 x2 into the

nonlinear mass continuity equation, Eq. (30) we get restric-
tions for the homogenous partf (ξ, t) of the general solution
and the inhomogenuous part of the solution represented by
G(t). The solution method is analogous to the isothermal
case, so that we present here only briefly our preliminary re-
sults:

1.
.

G = 0 andf ′′
= 0, exponentially unstable (interesting

for flares);G0 < 0 andγ < 1 or G0 > 0 andγ > 1 de-
livers with respect to time unbounded solutions of the
flow.

2.
.

G = 0,
.

f = 0 andf ′′
6= 0,ϕ = f (ξ) − G0x

2/2 (station-
ary flow); the magnetic field decays or grows exponen-
tially.

3.
.

G 6= 0 and f ′′
= 0, (i) oscillating flux function, but

diverging non-parallel parts of the flow (finite time
singularity ∝ tan(t)) or (ii) unbounded parallel flow
∝ cosh(t), but bounded flux function∝ tanh(t), or (iii)
flux function and non-parallel flow velocity obey finite
time singularity∝ 1/(t − t0).

2.5 Illustrative example: Standard stagnation point of a
vortex free velocity field

Again we want to use velocity fields that allow only for ve-
locities that are small compared to the speed of sound on the
linear scale around the stagnation point. We focus our atten-
tion now on the hydrodynamical aspect, i.e. the stagnation
point. The velocity potential must have a form that guaran-
tees the existence of a null point of the flow with a separatrix.
For this the most general Ansatz is

ϕ = a(t)x2
− b(t)y2

+ c(t)xy + d(t)x + e(t)y , (31)

and inserting this into the nonlinear mass continuity equa-
tion, Eq. (30), we get at the end that

.
a ∝

.

b and therefore
a(t) ∝ t andb(t) ∝ t . Thus the flow is unbounded with re-
spect to the subsonic constraint and the needed fluid topol-
ogy or is stationary witha, b = const. The assumptiona = b

leads to
..
c = 0 (the ordinary differential equation ist the same

for the other coefficients) and therefore to an unbounded
growth of the velocity field in the non-trivial case.

2.6 Preliminary results for the 2-D case

In the vicinity of magnetic null points several kinds of break-
down of the slow or quasi-static ideal MHD approach can
occur: Either due to exponential instabilities/decay or other
unbounded solutions or due to finite time singularities. These
instabilities are useful for explaining the onset of eruptive
processes on the solar surface. On the other hand no non-
trivial and reasonable asymptotic stationary case can be
found that can be used as a model of the vicinity of the he-
liospheric nose.

Many problems remain: is the appearance of these finite
time singularities an inherent property of the dynamic in the
vicinity of a null point? We would like to find solutions for
the fully non-linear problem and use more general barotropic
laws instead of a polytropic law in the future.

3 Problems of 3-D null

We now turn to the investigation of stationary 3-D null
points. Assume that a functionX and a velocity fieldw ex-
ist, so thatE + w × B = ∇X. The existence of such fields
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X, w guarantees that magnetic topology is conserved, respec-
tively the magnetic field is frozen with respect tow (Hornig
and Schindler, 1996). To get stationary background states
of the MHD fields in the vicinity of null points, respectively
stagnation points, we have to solve the following equation
∇ × E = 0≡ ∇ × (−w × B), i.e.

− (w · ∇)B − (∇ · w)B + (B · ∇)w = 0 . (32)

This is the induction equation of ideal MHD, and in the fol-
lowing we analyse the structure of the solutions in the vicin-
ity of singular points of flow and field.

3.1 Heliopause = hydropause

First we analyse the case if the stagnation point and the cor-
responding fluid separatrix is regarded as heliopause. We
calculate the magnetic field with the help of the ideal Ohm’s
law at the position of the stagnation point, i.e.

0 = ∇ × (w × B)w=0 =
↔

J w B , (33)

with
↔

J w : = −(∇ · w)
↔

1 +(∇w)T . But there is the prob-
lem of the ambiguous meaning ofw (plasma, electron, par-
ticle velocity, neutral particles). Thus the question arises if
we can identify the magnetic flux transporting velocity field
w with some plasma species velocity, i.e. what has to ‘stag-
nate’= stop at the stagnation point? A better way to define
such a boundary surface in a unique manner is maybe to iden-
tify the separatrix of the magnetic field, the magnetopause,
with the heliopause.

3.2 Heliopause = magnetopause of the solar wind

For that case in which we regard the correponding magnetic
separatrix (= the magnetopause), defined and determined by
the magnetic null point, as the heliopause, we get:

0 = ∇ × (w × B)B=0 = −(w · ∇)B =
↔

J B w , (34)

where
↔

J B : = (∇B)T is the transposed Jacobian matrix
of B.

3.3 Discussion

If the rank(
↔

J w)< 3, then either 2-D magnetic singularities
occur, or the solution must have parallel poloidal compo-
nents of magnetic and velocity field, seeNickeler and Kar-

lický (2006). This statement also holds if the rank of
↔

J B is
smaller than 3. Either the velocity field in this case would
diverge at the magnetic null point or the poloidal flow would
be field aligned. If the rank= 3, then 3-D allows only for
magnetic field and velocity fields with a ‘spiral null’(‘spiral-
field-crossing’), seeTitov and Hornig(2000), the so called
SFC-flows. The matrix has complex Eigenvalues with non-
vanishing real parts, a hint that these equilibrium flows are

probably generally unstable in linear perturbation analysis.
The 3-D magnetic null point in ideal MHD implies also that it
is a 3-D stagnation point, therefore the magnetopause and the
heliopause are at least locally identical: this result must be
clearly seen in simulations if they approach quasi-stationary

states. The matrix
↔

J w of the 3-D flow null point, the stag-
nation point, must also show a rank larger than 2, otherwise
the problem leads to the conclusion that the magnetic field is
not unique at the stagnation point, respectively that the flow
is completely field aligned. Thus we are able to infer that lo-
cally heliopause and magnetopause are identical and that in
3-D ideal MHD stagnation points also have to be null points
of the magnetic field and vice versa.

4 Conclusions

In the first part we study all possible time evolutions in the
vicinity of a 2-D magnetic null or stagnation point. We cal-
culate for the isothermal and polytropic case the complete so-
lution space of the system of the ideal (M)HD equations. No
bounded stationary solutions in the vicinity of such stagna-
tion points or magnetic null points can be found, only purely
field aligned flows, seeNickeler and Karlicḱy (2006). This
implies that due to the symmetry∂/∂z = 0, the conserved
quantity, the constant electric field inz-direction, leads to sin-
gular configurations. For the non-stationary case it is obvious
that with respect to time no bounded or non-decaying solu-
tions with small velocity exist at 2-D stagnation points (mag-
netic null points) within the framework of ideal (M)HD. Thus
the solutions are unstable or represent collapse processes.

In the second part we extend our investigations to 3-D.
We find that for the 3-D stationary case the magnetic null
point must also be a null point of the flow, i.e. a stagna-
tion point. Based on the results ofTitov and Hornig(2000)
we can conclude, that the ‘fan’ plane, i.e. the 2-D mani-
fold (magnetic separatrix = magnetopause) of the magnetic
null point is identical to the fluid separatrix (= classical he-
liopause). This implies that the tangential surface of the mag-
netopause (between the solar wind magnetic field and the in-
terstellar magnetic field) and the heliopause are identical at
the stagnation point. The magnetopause around the stagna-
tion point(= magnetic null point) is therefore at least locally
identical to the heliopause. The situation in 3-D allows only
for a special class of stationary solutions: Either the flow
must be completely field-aligned or must be a so called SFC-
flow, found byTitov and Hornig(2000). In the future it has
to be checked whether these flows are stable to small per-
turbations to see, whether ideal MHD can be used to model
quasi-stationary states for the heliosphere. It has therefore
also to be checked whether such states can be found in sim-
ulations or whether unphysical reconnection regimes can be
found, although ideal MHD is used. If the latter is the case
then one has to find and use an Ohm’s law, which allows for
reconnection at the heliospheric nose.
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