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In the analytical real options approach, the most important proposition that the value
of the investment opportunity increases as the volatility increases has been proved by
assuming the convexity of the drift of the stochastic differential equation defined as
the state variable. This paper demonstrates numerically that the convexity of the drift
is not necessary for that proposition in the real options approach.
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1. Introduction

The standard real options approach calculates the value of the investment op-
portunity when a firm faces uncertainty and the irreversibility of its investment
expenditure. Since we can regard investment decision making under uncertainty
as a financial option, the investment opportunity is similar to an American call op-
tion written on the underlying return on investment. The value of the investment
opportunity can then be calculated by the option pricing theory of financial engi-
neering (see e.g., Kijima (2002) and Chiarella (2002) for details about option pric-
ing theory). The main result obtained in this framework is that the value as well
as the optimal threshold for the investment decision of the firm increases as the
underlying market uncertainty increases. An excellent overview of the real op-
tions approach is found in Dixit and Pindyck (1994) and Trigeorgis (1996).

It may be recalled that in almost all standard real options models, the stochastic
process for the underlying uncertainty follows a linear stochastic differential
equation (hereafter SDE), a especially geometric Brownian motion. A geometric
Brownian motion is a diffusion process (a diffusion for short) with constant mean
growth rate and constant volatility. In this case, we can obtain the value and the
optimal threshold for the investment decision in closed form. However, it is a matter
of course that the state variable follows a variety of SDE according to the economic
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situation in which the firm considers the investment opportunity. What is of great
interest is whether or not the existing results in the real options approach remain
unchanged by the introduction of a nonlinear SDE for the state variable1).

Real options models which the state variable follows a nonlinear SDE are not
new. For example, Dixit and Pindyck (1994), Dixit et al. (1999), Alvarez and
Stenbacka (2001) examined such a model. Alvarez and Stenbacka (2001) in-
vestigated a model by using a nonlinear SDE with general drift and volatility struc-
ture, and showed analytically the proposition that the value of the investment
opportunity increases as the underlying volatility increases. Dixit and Pindyck
(1994) examined the comparative static in the volatility on the optimal threshold
when the state variable follows a nonlinear SDE. Dixit et al. (1999) examined
the effect of the discount factor on the value when the underlying state variable
follows a linear SDE, a nonlinear SDE, respectively.

In this paper, we investigate the impact of the volatility on the value of the in-
vestment opportunity when the underlying process follows a nonlinear SDE. We
note that the sufficient condition on the analytical approach to prove the most im-
portant proposition that the value increases as the volatility increases, is the convex-
ity of the drift on the state variable. When the drift on the underlying uncertainty
is not convex in the state variable, we cannot prove analytically the most important
proposition. We investigate whether the monotonicity of the volatility on the value
is obtained or not by using a numerical method when the drift is not convex in the
state variable. The reason that we have to use a numerical method is that we cannot
obtain an analytical expression for the value function in our setting. The main con-
tribution of this paper is to confirm that the result still holds without the assumption
of convex drift on the underlying SDE.

The paper is organized as follows. Section 2 formulates the corporate invest-
ment problem and describes the assumption necessary for the analytical proof of
the most important proposition in the real options approach. Section 3 examines
the impact of the volatility on the value of the investment opportunity numerically
when the state variable follows a SDE with concave drift. Section 4 concludes.

2. Some Preliminaries

Consider a firm having the possibility to make an irreversible investment that
increases his profits. We assume that the firm is risk neutral. We denote a state
variable that the revenue for the investment depends upon by (Xt)t∈R+ that is defined
on a complete filtered probability space (Ω,F , (Ft)t∈R+ ,P).

1) Recently, the basic model has been extended in various ways. One extension is to incorporate strategic
interactions. See, e.g., Weeds (2002) or Kijima and Shibata (2002) for details in a real options model
with strategic interactions. Another extension is to the situation of incomplete information. See e.g.,
Bernardo and Chowdhry (2002) or Shibata (2006) for details in a real options model with incomplete
information.



On the Value –Volatility Relationship in a Real Options Model 207

It is assumed that the revenue process (Xt)t∈R+ evolves according to

dXt = µ(Xt) dt + σ(Xt) dzt, X0 =: x ∈ R++, (1)

where both the infinitesimal driftµ : R+ → R+ and the infinitesimal diffusion
coefficient σ : R+ → R+\{0} are assumed to be Lipschitz continuous in order
to guarantee the existence and uniqueness of a strong solution for Equation (1).
Here, (zt)t∈R+ denotes a one-dimensionalP–standard Brownian motion. We will
also assume that both the lower boundary 0 and the upper boundary∞ are natural
for the revenue process (X)t∈R+ .

Suppose that the current time ist ∈ R+, and letτ be the stopping time at which
the firm adopts the investment opportunity after timet. We denote the set of ad-
missible strategies at timet (i.e., stopping times not less thant) by Tt. The risk
neutral discount factor is constant and equalsr ∈ R++. The value function of the
investment opportunity is given by

C(x) := ess sup
τ∈Tt

E
x
[
e−rτ {Xτ − I}

∣∣∣Ft

]
, Xt =: x ∈ R++, (2)

whereEx[·|Ft] denotes the conditional expectation operator evaluated at the initial
statex = Xt with respect to the risk neutral measureP, and whereI ∈ R++ denotes
the sunk cost incurred at the momentτ.

The Bellman equation that the value function for the firm must satisfy is as
follows:

C(x) = max
{
E

x
[
e−rdtC(Xt+dt)

∣∣∣Ft

]
, x − I

}
. (3)

The first term in (3) represents the value of delaying the decision, the second term
is the value when investing in the irreversible project. After some algebra, the value
must satisfies the following ordinary differential equation (ODE):

1
2
σ2(x)C′′(x) + µ(x)C′(x) − rC(x) = 0, x < x∗, (4)

wherex∗ denotes the optimal threshold. The corresponding boundary conditions
turn out to be

C(0) = 0, C(x∗) = x∗ − I, C′(x∗) = 1. (5)

The first condition is called the initial condition, the second condition is called
the value-matching condition, and the final condition is called the smooth-pasting
condition.

According to Theorem 2 or 3 in Alvarez and Stenbacka (2001), we state an
important lemma in the real options model.

Lemma 1.Assume that the drift term µ(x) on Equation (1) is convex in x. Then,
the value function C(x) is increasing and convex in x. Moreover, the value C(x)
increases as the volatility σ increases.
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Let us denote the diffusion process with volatilityσi(x) by (Xi
t)t∈R+ (i ∈ {1,2}).

Accordingly, the value function of the firm is denoted byCi(x). Lemma 1 implies
that if σ1(x) dominatesσ2(x), i.e.,σ1(x) ≥ σ2(x) for all x ∈ R+, then the value
functionC1(x) also dominatesC2(x) for all x ∈ R+.

For example, in the case of a geometric Brownian motion with driftµ(x) = µx
and diffusion coefficientσ(x) = σx, the value function is obtained as:

C(x) =
( x

x∗

)β
(x∗ − I) , x < x∗, (6)

where

x∗ =
β

β − 1
I. (7)

Here,β is a positive root to the quadratic equationQ(k) = 0, where is defined by:

Q(k) =
1
2
σ2k(k − 1)+ µk − r. (8)

It is readily shown that2)

Lemma 2.The value function C(x) is increasing and convex in x. Moreover,
the value C(x) increases as the volatility σ increases.

Also, it is readily verified that the optimal thresholdx∗ is increasing in volatility
σ (see Dixit and Pindyck (1994) for details).

3. Main Results

3.1. Model

In this section, we assume that the revenue process, i.e., the state variable, fol-
lows a non-linear SDE with concave drift. The evolution of the revenue process is
defined as:

dXt = κXt(m − Xt) dt + σXt dzt, X0 =: x ∈ R++, (9)

whereκ, m, andσ are some constants (i.e.,κ,m, σ ∈ R+). Equation (9) is often used
as a model for the growth of a population size in a stochastic, crowded environment.

2) Sinceβ > 1, the value is convex in the state variablex. Next, let us prove the monotonicity of the
value with respect to volatility. Differentiating Equation (6) with respect toσ gives

dC
dσ

=

(
∂C
∂x∗
∂x∗

∂β
+
∂C
∂β

)
∂β

∂σ

=

(
C(x) · log

( x
x∗

))
∂β

∂σ
,

where we have used the fact that∂C∂x∗ = 0. By differentiating Equation (8) with respect toσ, we obtain

the result∂β∂σ < 0. Hence we concludedC
dσ > 0 on the event{x < x∗}.
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The constantm is called the carrying capacity of the environment, the constantκ
is a measure of the quantity of the environment, and the constantσ is a size of the
noise in the system. Mathematically, Equation (9) implies that the logarithm of the
revenue process (Xt)t∈R+ follows a mean-reverting process. It should be noted that
the driftµ(x) of (9) is not convex, but concave inx.

We can obtain the explicit solution of the non-linear SDE defined by Equation
(9); (see, e.g., Gard (1988) or Øksendal (2003) for details). The solution of (9) is
given by:

XT =
e(κm− 1

2σ
2)T+σzT

x−1 +
∫ T

0
κe(κm− 1

2σ
2)t+σzt dt

. (10)

The proof is simple3). Note that the explicit solution is not necessarily obtained
in many nonlinear cases.

Similar to derivation of (4), the Bellman equation that the value function must
satisfy in the continuation region is equal to:

1
2
σ2x2C′′(x) + κ(m − x)xC′(x) − rC(x) = 0, x < x∗. (11)

Also the value function must satisfy the boundary conditions (5) as before.
Since the value function and optimal threshold are unknown in this model, we

have to obtain both the solution of Equation (11) and the optimal threshold simul-
taneously. This type of problem is known as a free-boundary value problem. As
we cannot, however, obtain both the value function and optimal threshold in closed
form under the given boundary condition when the state variable follows Equation
(9), we examine the solution (i.e., the value and the optimal threshold) numerically
in the next subsection.

3.2. Value of the Firm

In this subsection we use a numerical method to calculate the value of the firm
and optimal threshold. The parameters have been chosen so that the value is not
diverging. That is because our aim here is to focus on the shape of the value and
the comparative statics. We set the basic parameters asI = 5, m = 5, r = 0.05,
σ = 0.1, andκ = 0.02.

Figure 1 depicts the valueC(x) with respect to the initial statex4). Figure 1
shows that the valueC(x) is no longer convex for allx; it is concave for small value
of x. Here, we conclude the following proposition:

3) By using the Ito formula fory = X−1, the derived equation turns out to be linear iny:

dy =
{
κ + (σ2 − κm)y

}
dt − σy dzt .

Here, the explicit closed form fory can be obtained. On the other hand, we can verify that Equation (10)
is the unique (strong) solution of Equation (9). This result follows by the same arguments as Example
4.3 in Gard (1988).
4) With these parameters, we find that the optimal thresholdx∗ is calculated as 7.5692.
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C(x) : (value)
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Figure 1 Value of the firm.

Proposition 1.We assume that the state variable follows Equation (9). Then,
the value C(x) is not necessarily convex in x.

This result is exactly the same as that of Figures 5.12 and 5.13 in Dixit and
Pindyck (1994). In the analytical real options model proposed by Alvarez and
Stenbacka (2001), the uniform convexity of the state variablex on the value is
inevitable in the proof of the most important proposition that the value increases as
the volatility increases. Hence, according to analytical results on the real options
model, we cannot prove the most important proposition in our setting. In what
follows, we investigate whether the monotonicity of the volatility on the value is
obtained or not by using numerical methods when the value is not convex for allx.

3.3. Comparative Statics

In this subsection, we examine the comparative statics of some parameters on
the value of the investment opportunity. Figure 2 depicts the value for several
choices of volatilityσ. These numerical simulations suggest the following result.

Proposition 2.The value C(x) increases as the volatility σ increases even when
the state variable follows the nonlinear SDE (9), while it is not convex for all x.

Surprisingly, this result demonstrates that the valueC(x) increases as the volatil-
ity σ increases even when the valueC(x) is concave for small value ofx. This result
is exactly the same as the proposition obtained by the model with the linear SDE
in standard real options models; See McDonald and Siegel (1986), and Dixit and
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Figure 2 Comparative statics with respect to the volatility parameterσ.

Pindyck (1994). Such a monotonicity of the volatility on the value is the same as
that of financial options developed originally by Black and Scholes (1973). Our
numerical experiments indicate that the value increases as the volatility increases
even when the real options model is extended to the model with the nonlinear
SDE5).

In Figure 3, we examine the value for different levels ofκ. Numerical simulation
results can be summarized as:

Proposition 3.The value C(x) does not increases monotonically as the param-
eter κ increases.

In standard real options models, there are many cases in which the value is
monotonically increasing or decreasing in some parameters. In contrast, Figure 3
shows that the value increases and decreases asκ increases whenx < m, when
x > m, respectively. The reason of this result can be explained as follows. When
x < m, since the drift term on (9) is positive and the rate of change on the revenue
is positive, the value increases as the parameterκ increases, and vice versa when
x > m6).

5) With these parameters, we find that the optimal thresholds are calculated as 6.8654,7.5692, and
8.3556 forσ = 0.05,0.10, and 0.15, respectively.
6) In Figure 3, we see under our parameters that the optimal thresholdx∗ decreases asκ increases. The
optimal thresholds are calculated as 6.8509,6.4545 and 6.2848 forκ = 0.00, 0.01 and 0.02, respectively.
This result is exactly the same as that of Figure 5.16 in Dixit and Pindyck (1994).
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Figure 3 Comparative statics with respect to the speed parameterκ.

4. Conclusions

The standard real options framework has shown to be quite useful in the analy-
sis of investment under uncertainty. The tools of option pricing theory can be ap-
plied to real investment analysis. However, the standard framework of formulating
strategies is not necessarily relevant to real-world applications.

This article provides some analogous results for analyzing the monotonicity
of volatility on the value of the investment opportunity. The result is found only
numerically, and has potentially wide applications. For example, the convexity of
the drift in the underlying SDE is not always necessary to guarantee that the value
increases as the volatility increases in the real options framework.

We demonstrate that the monotonicity of volatility on the value is quite robust.
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