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Abstract. We consider solar wind flow tubes as a magnetosonic wave-
guide. Assuming a symmetric expansion in edges of slab-modelled wave-
guide, we study the propagation characteristics of magnetosonic wave in
the solar wind flow tubes. We present the preliminary results and discuss
their implications.
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1. Introduction

Parker’s assumption (1963) that the solar wind may be fine-structured in the form of
flow tubes has also been supported by the HELIOS spacecraft observations (Thieme
et al. 1990). The wave propagation characteristics in such a magnetically-structured
and inhomogeneous medium have been investigated by Roberts (1981a, b). Magne-
tosonic waves may be trapped in solar wind flow tubes assuming Alfvén speed to
be less inside the tube than outside. The presence of the minimum Alfvén speed is
required for trapping the waves. This is also correct in a low-β plasma. The trapping
of waves can also be caused by the discontinuity of the flow. So, the structures may
support the propagation of trapped magnetosonic waves with stable transversal struc-
tures determined by the boundary conditions (Nakariakov et al. 1996). The trapping of
magnetosonic waves are due to reflection of waves from the tangential discontinuity
of plasma velocity or due to sudden variation of Alfvén or sound speed. Surface mag-
netosonic wave is evanescent both inside and outside of waveguide, while the body
magnetosonic wave is oscillatory inside the waveguide and evanescent outside. Both
the wave modes are localized and non-leaky.

Nakariakov et al. (1996) corrected the boundary conditions reported by Mann et al.
(1992) and have considered the steady flow inside and outside waveguide to study the
properties of trapped linear magnetosonic waves and also described the excitations
of different modes of magnetosonic waves within the solar wind flow tubes. Joarder
et al. (1996) have also studied the magnetosonic modes of magnetic structures in
the presence of inhomogeneous steady flows. Joarder and Narayanan (2000) have
examined the combined effect of non-parallel propagation and steady shear flows on the
properties of hydromagnetic surface waves. Considering the non-parallel propagation
of magnetosonic waves, Joarder (2002) have investigated these waves in the observed
fine structures of high-speed solar wind streams. In this paper, we study the propagation
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Figure 1. The solar wind flow tube model.

properties of magnetosonic waves. We also consider a symmetric expansion (δ) in the
edges of the slab and its effect on propagation properties. We have studied the effect
of magnetic field geometry of solar wind flow tubes on the propagation properties of
different trapped modes of magnetosonic waves. Our solar wind flow tube model is
more general in the sense that it supports both the body and surface magnetosonic
waves. Each of the type of waves is also classified as kink and sausage modes.

2. Waveguide model and dispersion relation

We consider a magnetic slab with finite dimension x = ±d and y = ±d, having
a background magnetic field in the z-direction, assuming the slab to be infinitely
long. The steady shear flow along the z-axis are U0 and Ue for inside and outside the
medium respectively. The sound speeds are CS0 and CSe for inside and outside the slab
respectively and similarly Alfvén speeds are CA0 and CAe. Plasma densities are ρ0 and
ρe inside and outside the slab respectively.

We consider a symmetric expansion in the edges of the slab (δ) (Fig. 1). This follows
the flux conservation law

B0zA0z = BzAz, (1)

where B0z and Bz are magnetic fields at the base and at any arbitrary height of the slab
respectively. The respective cross-sectional areas of the slab are A0z and Az.

Using equation (1) and the slab geometry shown in Fig. 1, we get

δ = ±B0zd
2

Bz

− d2

4d
. (2)
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Using the dimensionless parameter d ≈ 1, we have

δ = ±B0z − Bz

4Bz

. (3)

δ represents an areal expansion of the slab at any height which may affect the transver-
sal velocity structure both inside and outside the slab and can be incorporated in the
coordinates. The positive sign in equations (2, 3) corresponds to divergent magnetic
field lines geometry while the negative sign corresponds to convergent magnetic field
lines geometry in our solar wind flow tubes model. We used only +δ in our calcula-
tions, i.e., divergent magnetic field lines geometry of solar wind flow tubes. We have
studied the effect of this magnetic field geometry on the propagation properties of
magnetosonic wave modes.

The linearized MHD equations for ideal MHD give the following differential equa-
tion for inside and outside the slab (cf., Mann et al. 1992; Nakariakov et al. 1996).

d2Vxi

dx2
− m2

i Vxi = 0, (4)

where i is either for inside or for outside the slab. The transversal plasma velocity is
Vxi(x) exp i(ωt − kz), and

m2
i = [a2

Ai − (a − Mi)
2][a2

Si − (a − Mi)
2]

a2
f i[a

2
T i − (a − Mi)2]

k2, (5)

where,

a = ω

kCA0
; a2

Ai = C2
Ai

C2
A0

; a2
Si = C2

Si

C2
A0

;

Mi = Ui

CA0
; a2

T i = C2
AiC

2
Si

C2
A0(C

2
Ai + C2

Si)
; a2

f i = C2
Ai + C2

Si

C2
A0

.

All variables are normalized with CA0, Mi is Alfvén Mach number and a is phase
speed in units of Alfvén speed CA0. a is the phase speed of different magnetosonic
modes. Boundary conditions are as follows (cf., Nakariakov et al. 1996):

Vx0(x = ±d)

ω − kU0
= Vxe(x = ±d)

ω − kUe

, (6a)

pT o(x = ±d) = p
T e

(x = ±d) (6b)

and

pT i(x) = iCA0ρia
2
f i[a

2
T i − (a − Mi)

2]

k(a − Mi)[a2
Si − (a − Mi)2]

dVxi

dx
. (6c)

The solutions for the transversal structures of modes outside the slab in our model are
given by,

Vxe(x) =
{

A1 exp[−me(x ± δ − d)], x > d

A2 exp[+me(x ± δ + d)], x < d

}
, (7)
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where A1 and A2 are constants. This equation is valid only in the case when the
wavelength of the perturbation is much shorter than the characteristic spatial scale of
the tube expansion according to the WKB approximation.

Solutions inside the slab for surface and body waves are:

Vx0(x) =




A sinh[m0(x ± δ)], for sausage surface modes
A cosh[m0(x ± δ)], for kink surface modes
A sin[n0(x ± δ)], for sausage body modes
A cos[n0(x ± δ)], for kink body modes


 , (8)

where A is constant and n2
0 = −m2

0.
We have taken Me = 0 and M0 →M because we have considered in our calcu-

lations the frame of reference related to the external flow. The M value is given by
M = (U0 − Ue)/CAo which represents the difference between Alfvén Mach number
inside and outside of solar wind flow tubes. Some unspecified acceleration mecha-
nism is likely to be present inside flow tubes, so we have taken the constant value
of steady flow. Nakariakov et al. (1996) also used the same approach in his calcu-
lations related to excitations of body magnetosonic waves in solar wind flow tubes.
Applying the boundary conditions (6) on solutions given by equations (7–8), we also
consider the incompressible plasma (γ → ∞), for which m0 (or n0) and me tends to
k. We get the following dispersion relations for surface magnetosonic waves:

[
tanh(kd ± kδ) + ρe

ρ0

]
a2 − 2Ma tanh(kd ± kδ)

+ (M2 − 1) tanh(kd ± kδ) − ρe

ρ0
a2

Ae = 0, for kink surface wave (9)

and [
coth(kd ± kδ) + ρe

ρ0

]
a2 − 2Ma coth(kd ± kδ)

+ (M2 − 1) coth(kd ± kδ) − ρe

ρ0
a2

Ae = 0, for sausage surface wave. (10)

When plasma β is small, then the Alfvén wave exceeds the sound speed. Surface mode
may or may not exist for low-β plasma. There cannot be two-sided surface waves in a
low-β plasma and it will not hold if only one side of the magnetic interface has a low-β
(Roberts 1981a; Wentzel 1979). That means the existence of one-sided normal modes
of surface waves. Under this limit following two relations given for single normal
mode of body waves, which may excite due to tangential discontinuity.

[
tan(kd ± kδ) ± ρe

ρ0

]
a2 − 2Ma tan(kd ± kδ)

+ (M2 − 1) tan(kd ± kδ) − ρe

ρ0
a2

Ae = 0, for kink body waves (11)
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and [
ρe

ρ0
− cot(kd ± kδ)

]
a2 + 2Ma cot(kd ± kδ)

+ (1 − M2) cot(kd ± kδ) − ρe

ρ0
a2

Ae = 0, for sausage body waves. (12)

Dimensionless parameter (kd ± kδ) in degree (◦), is employed in equations (9–12).

3. Magnetic slab with flow

We have considered a flow (M = 1.46) and actual solar-wind data of Thieme et al.
(1990). We have used the parameters of solar wind flow tubes, Alfvén speed inside
solar wind flow tubes CAo = 65 km s−1, sound speed inside solar wind flow tubes
CSo = 65 km s−1, outside of flow tubes Alfvén speed CAe = 100 km s−1 and sound
speed CSe = 70 km s−1. Steady flow inside of flow tubes U0 = 750 km s−1 and outside
it Ue = 655 km s−1. ρe/ρ0 = 0.583, a2

Ae = 2.37, d = 1.6 × 106 km are also used
in our calculations. Figure 2 shows increasing phase velocity pattern for kink-surface
modes. The phase velocities are greater for expanded tubes compared to the uniform
magnetic flux-tubes. However, the flux-tube geometry does not have any effect at lower
wavelengths.

Figure 3 shows two sausage surface modes. This could possibly be categorized as
fast sausage surface wave and slow sausage surface wave. The lower limit of the fast
sausage surface wave is (aA0 + M). The upper limit of slow sausage surface wave is
found at (M − aSe). The effect of boundary perturbations is decreased for the phase
velocities of two kinds of surface-sausage waves, but not affected at lower wavelengths.

Figures 4 and 5 show the phase velocity pattern of kink and sausage body waves
respectively. Both the modes exhibit the increasing phase velocity pattern with veloc-
ities of two types of modes. We have plotted the phase speeds (a) of kink and sausage

Figure 2. Dispersion curves for kink mode of surface magnetosonic wave in magnetic slab
with flow (M = 1.46).
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Figure 3. Dispersion curves for sausage mode of surface magnetosonic wave in magnetic slab
with flow (M = 1.46).

Figure 4. Dispersion curves for kink mode of body magnetosonic wave in magnetic slab with
flow (M = 1.46).

modes of surface and body magnetosonic waves with respect to kd in Figs. 2–5. kd

is a dimensionless number. Since waveguide approach supports waves having wave-
lengths of the order of d or greater than d (i.e., λ ≥ d), so the wave number k multiplied
by d yields a dimensionless number.

4. Concluding remarks

We have studied the propagation characteristics of different modes of magnetosonic
waves, considering a magnetic slab with different outside and inside steady flows. We
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Figure 5. Dispersion curves for sausage mode of body magnetosonic wave in magnetic slab
with flow (M = 1.46).

also considered a symmetric expansion in edges of the slab at any arbitrary height.
We find that surface waves may exist due to magnetic field discontinuity. When we
approximated the tube embedded in plasma with different plasma-β inside the tube, we
see that it supports the existence of surface waves. We also find one normal and single
mode of body wave due to tangential discontinuity and we have not considered higher
modes of compressible plasma. With steady flow (M = 1.46), kink mode velocity
increases as kd increases while sausage mode of surface wave exhibits decreasing
velocity pattern with kd. In case of sausage modes with flow, two modes exist. The
first has a lower limit of phase speed (aA0 +M) while the second has an upper limit of
phase speed (M − aSe). These may be categorized as fast and slow modes. Kink and
sausage body waves show increasing velocity pattern. The ‘δ’ factor does not affect
the phase velocities, particularly at higher wave number.
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