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ABSTRACT
The stem cell factor (SCF)-c-kit signal transduction pathway plays an important role in the prolif-
eration and migration of neural progenitor cells, but little is known about its function during the 
development of the cerebral cortex. We investigated the effects of SCF by directly administering it 
into the telencephalic ventricular space of 13.5-day-old mouse embryos. SCF produced the hetero-
topic accumulation of cortical cells in several distinct area of the cerebral cortex at the postnatal 
stage, including the subcortical periventricular area, marginal zone, and lateral ventricular space. 
Additional analysis revealed that the heterotopia included both neurons and astrocytes and that 
SCF initially increased the number of neural stem cells without affecting that of intermediate pro-
genitors and also disturbed their organization. These results suggest that SCF alters the timing of 
the genesis and migration of neural stem/progenitor cells, which may lead to formation of the ob-
served heterotopia.

Diverse neurons composing the cerebral cortex are 
sequentially generated from proliferating common 
cortical progenitors, and the postmitotic neurons 
then migrate to their destinations within the cortical 
plate (CP) (1). Impairment of either process causes 
ectopic accumulation of neurons (heterotopia), 
which is observed in the cerebral cortex of many 
patients with intractable epilepsy (4, 13). Although 
mutations of several genes encoding cytoskeletal 
molecules or their associated proteins are well-char-
acterized and have been shown to alter the migra-
tion of cortical neurons, these mutate genes are 
currently thought to be responsible for only a small 
portion of the genetic disorders leading to the corti-
cal heterotopia in humans (3). Therefore, for further 
understanding of the pathogenesis of cortical hetero-
topia, a larger number of animal models produced 

by different mechanisms are needed.
　Currently, evidence exists indicating that other 
pathogenetic mechanisms could cause ectopic accu-
mulation of neurons, such as modified proliferation 
and programmed cell death. Although intrinsic 
factors such as regulators of the cell cycle and 
cytoskeleton-related proteins are important in the 
development and behavior of cortical progenitor 
cells, growth factors and cytokines environmentally 
supplied by the cerebral cortex are thought to deter-
mine the timing of the genesis, survival, and direct-
ed migration of cortical neurons (19). Therefore, 
disturbance of the regulated availability of responsi-
ble growth factors or cytokines would alter these bi-
ological properties of the cortical neurons and be 
capable of causing heterotopia in the cerebral cortex.
　Stem cell factor (SCF) is a ligand growth factor 
for c-kit, a member of the type III receptor tyrosine 
kinase (RTK) family that includes the platelet- 
derived growth factor receptor, the colony stimulat-
ing factor 1 receptor, and fms-like tyrosine kinase 
ligand 3 receptor (2). SCF is a probable candidate 
for such environmental cues that control the genera-
tion, survival, and behavior of the cortical neurons 
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having been pre-incubated in DMEM for 3 h, the 
cortices were incubated for 0.5, 1, 2 or 6 h in 
DMEM (Nissui, Tokyo, Japan) containing 100 ng/mL 
of SCF (R&D systems, Minneapolis, MN). These 
cortices were then lysed with 20 mM Tris-HCl 
(pH 7.4) containing 150 mM NaCl, 2 mM EDTA, 
1% NP-40, 10 μg/mL aprotinin, 10 μg/mL leupeptin, 
50 mM NaF, 1 mM Na3VO4, 1 mM phenylmethyl 
sulfonyl fluoride, 0.1% sodium dodecyl sulfate (SDS), 
and 1% Na deoxycholate. The lysates were centri-
fuged, and the protein concentration of the superna-
tant was determined with a BCA Protein Assay Kit 
(Pierce, Rockford, IL). Each sample, containing 10 μg 
of protein, was subjected to SDS-polyacrylamide gel 
electrophoresis (PAGE) on 10% acrylamide gels. 
The proteins were then transferred to a polyvinyli-
dene fluoride membrane that was blocked for 1 h at 
room temperature with 5% skim milk in TTBS 
[20 mM Tris-HCl (pH 7.4) containing 0.5 M NaCl 
and 0.05% Tween-20]. Next the membranes were 
incubated with primary antibody against serine/thre-
onine kinase Akt (Cell Signaling, Beverly, MA) or 
phosopho-Akt (Cell Signaling) in Solution 1 (Canget 
Signaling, TOYOBO, Osaka, Japan), and then with 
alkaline phosphatase-conjugated secondary antibody 
(Promega, Madison, WI) in Solution 2. Finally, the 
specific protein bands were developed with nitro 
blue tetrazolium and 5-bromo-4-chloro-3-indoryl-
phosphate p-toluidine salt.

Tissue preparation. The animals were processed and 
analyzed as described previously (11, 12, 22, 23). 
Briefly, embryos were fixed in 4% paraformalde-
hyde solution (PFA), and postnatal mice were per-
fused via the heart with 4% PFA. Their brain tissues 
were removed and post-fixed overnight at 4°C. The 
brain tissues were soaked in PBS containing 20% 
(w/v) sucrose and frozen in embedding compound 
(Sakura Finetechnical Co., Ltd., Tokyo, Japan). Cor-
onal serial sections of 20-μm thickness were pre-
pared with a cryostat (model CM 1800; Leica, 
Wetxlar, Germany), attached to adhesive-coated 
slides (Matsunami, Osaka, Japan), and dried before 
being used for immunofluorescence studies.

Histological analysis. For analysis of the cellular 
architecture of the cerebral cortex, nuclei of the 
cells were visualized with Hoechst 33342 (Invitro-
gen, Carlsbad, CA). Immunohistochemical analysis 
was performed as described earlier (11, 12, 22, 23). 
Primary antibodies against MAP2 (microtubule- 
associated protein 2; 1 : 2000; Sigma, St. Louis, 
MO), GFAP (glial fibrillary acidic protein; DAKO, 

for the following reasons: 1) SCF and c-kit are ex-
pressed in cells of the developing mouse cerebral 
cortex, including migrating neuronal progenitors and 
CP neurons (15, 20); 2) by regulating the prolifera-
tion, differentiation, and migration of a variety stem/
progenitor cell types, the SCF/c-kit pathway plays 
key roles not only in hematopoiesis and embryonic 
development (31, 32) but also in the generation and 
progression of cancers (16); and 3) exogenous SCF 
promotes the survival and migration of cultured cor-
tical progenitor cells (9). However, the precise roles 
of SCF in the developing cerebral cortex are poorly 
understood.
　Our present results suggest that exogenous SCF 
induced the formation of heterotopia in various ar-
eas of the cerebral cortex by modifying the develop-
ment and/or migration of cortical progenitors.

MATERIALS AND METHODs

Animals. Pregnant ddY mice were purchased from 
Japan SLC (Shizuoka, Japan). The mice were han-
dled in accordance with the Guidelines of Experi-
mental Animal Care issued by the Office of the 
Prime Minister of Japan. Surgery and manipulation 
of animals were performed as described previously 
(11, 12, 22, 23).
　Briefly, pregnant mice carrying embryonic day 
13.5 (E13.5) embryos were deeply anesthetized with 
sodium pentobarbital (20 mg/g, i.p.), and the uterine 
horns were then exposed. After SCF or vehicle 
(phosphate-buffered saline, PBS) had been delivered 
via intrauterine injection, the uteri were placed back 
into the abdominal cavity to allow the embryos to 
continue normal development.

Semi-quantitative RT-PCR. Semi-quantitative RT-PCR 
was performed as described previously (12). The 
numbers of PCR cycles were optimized to be in the 
linear range of amplification by using specific prim-
ers. The following primer sets were used: β-actin,  
5’-GATGGTGGGAATGGGTCAGAAG-3’ and  
5’-GAGTCCATCACAATGCCTGTGG-3’; SCF,  
5’-ATGAAAAGCGGTCGTGCATTTT-3’ and  
5’-TTGGAGATGGCAGTTGTGCATT-3’; and c-kit, 
5’-GTCTCAGCCATCTGCAAGTCCA-3’ and  
5’-GGTTTGGGACAAACGTCAGGTC-3’. An ali-
quot of the PCR products was resolved by agarose 
gel electrophoresis and visualized by ethidium bro-
mide staining.

Western blotting. Cerebral cortices from E13.5 
mouse embryos were dissected out in PBS. After 
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induced the accumulation of cells in several distinct 
areas of the cerebral cortex, including the subcorti-
cal periventricular area (Fig. 3 A, b), marginal zone 
(mostly in the somatosensory area of the cortex; 
Fig. 3 A, c), and lateral ventricular space (data not 
shown, Table 1). Administration of a higher dose of 
SCF (20 ng/embryo) induced more severe pheno-
types; i.e., 2 mm-diameter heterotopia developed be-
yond the cranial bone over the cerebral cortex at 
birth. In this case, the pups had a balloon-like swol-
len belly and could not survive beyond 2 days after 
birth (data not shown). Because of our interest, we 
focused on the heterotopia in the subcortical peri-
ventricular area and in the marginal zone induced 
by the injection of 10 ng SCF. Immunohistochemi-
cal study revealed that the heterotopia included both 
neurons and astrocytes, independent of their loca-
tion. In most cases, many neurons and fewer astro-
cytes were located in the center of the heterotopia 
(Fig. 3 B, C).
　Next, to examine the phenotype of the cortical 

Glostrup, Denmark), Sox2 (SRY-box containing 
gene 2; 1 : 1000; Millipore, Temecula, CA), Cux1 
(orthologue of the Drosophila cut gene; 1 : 500; 
Santa Cruz Biotechnology, Santa Cruz, CA), CTIP2 
(COUP-TF [chicken ovalbumin upstream promoter 
transcription factor-interacting protein 2]; 1 : 500; 
Abcam, Cambridge, UK), and Tbr2 (T-brain gene-2; 
1 : 1000; Millipore, Temecula, CA) were used. 
These primary antibodies were visualized with goat 
anti-mouse IgG conjugated to Alexa 488 or 546 
(1 : 1000; Molecular Probes, Oregon), and the fluo-
rescent signals were observed with a confocal laser 
microscope (Model LSM 510; Carl Zeiss, Jena, Ger-
many). Fluorescent images were converted digitally 
into reversed monochrome by using Photoshop 
(Adobe System, SanJose, CA), if the sections had 
been immunostained with a single primary antibody.

RESULTS AND DISCUSSION

Expression of SCF and its receptor, c-kit, during 
development of cerebral cortex
We examined the expression of SCF along with that 
of its receptor, c-kit, in the developing cerebral 
cortex by using RT-PCR (Fig. 1). Tissues from the 
E15.5 cortex contained a level of SCF mRNA 
nearly 2-fold higher than that found in the E13.5 
cortex (Fig. 1A, B). On the other hand, the mRNA 
expression of c-kit at E15.5 was slightly but signifi-
cantly lower than that at E13.5 (Fig. 1A, C).
　Next, we tested to see if SCF could activate c-kit 
expressing in the developing cortex. Cortical tissue 
was isolated at E13.5, and cultured from 30 min to 
6 h in medium containing 100 ng/mL of SCF. Then, 
we analyzed the phosphorylation of Akt (pAkt), a 
representative SCF/c-kit signal transducer known to 
be activated in cultured spermatogonial stem cells 
(7), hematopoietic cells (17), and cortical neurons 
(6). The phosphorylation of Akt was rapidly en-
hanced by SCF within 30 min to 1 h, but pAkt de-
creased to its original level by 2 h of incubation 
(Fig. 2).
　These results indicate that SCF and functional 
c-kit were expressed in the E13.5 cortex, i.e., c-kit 
could transduce the SCF signaling into the cortical 
cells via phosphorylation of Akt.

SCF induced heterotopia in the cerebral cortex
To determine the effect of SCF on the development 
of the cerebral cortex, we injected 10 ng of SCF 
into the lateral ventricle of E13.5 mice and per-
formed microscopic analysis on Hoechst-stained 
sections prepared from the P6 cerebral cortex. SCF 

Fig. 1　Expression of the genes for SCF and its receptor, 
c-kit, in the embryonic mouse cortex during the neurogene-
sis period. (A) Total RNAs from E13.5, 14.5, and 15.5 corti-
ces were subjected to RT-PCR using primers specific for 
SCF, c-kit, and β-actin. The PCR products were electropho-
resed on 2% agarose gels, and the gels were stained with 
ethidium bromide. The intensity of the target bands for SCF 
(B) and for c-kit (C) was densitometrically quantified, and 
the ratio of the intensity of each stage band to that of the 
β-actin band was calculated. Values represent the mean ± 
SE. *P < 0.05, **P < 0.01, Student’s t test; n = 3.
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Fig. 2　SCF stimulated the phosphorylation of Akt in the E13.5 mouse cerebral cortex. Western blots for Akt (A, upper 
panel) and phosphorylated Akt (pAkt; B, upper panel) from freshly isolated E13.5 cortical tissue stimulated for 30 min to 6 h 
with SCF. The intensity of the target band was densitometrically quantified (lower panel of A: Akt or B: pAkt). Values repre-
sent the mean ± SE. *P < 0.05, Student’s t test; n = 3.

Fig. 3　SCF induced heterotopic accumulation of cortical cells. (A) Coronal sections of vehicle-treated (a) or SCF-treated (b, 
c) cortex were stained with Hoechst. The SCF-treated cortex shows periventricular (b) or marginal zone heterotopia (c). The 
arrowheads indicate the edge of each area of heterotopia. Scale bar is 500 μm. The periventricular area (a, b) and margin-
al zone area (c, d) were immunostained with anti-MAP2 antibody (B) or anti-GFAP (C). The photographs shown in (a, c) 
and (b, d) indicate the vehicle-treated and SCF-treated cortex, respectively. The scale bar is 200 μm.
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neurons comprising the marginal zone heterotopia, 
we performed double-immunolabeling with anti-
Cux-1 antibody (a marker of layer II–IV neurons) 
and anti-CTIP2 antibody (a marker of layer V neu-
rons). Consistent with previous knowledge, most of 
the Cux-1-positive cells were observed in layer II to 
IV but hardly detected in the other layers of the 
control cortex including the marginal zone (Fig. 4 
a–d). Many CTIP2-positive cells with large nuclei 
were found in layer V and those with small nuclei 
were mainly found in the layer VI and sparsely ob-
served in layers I–IV (Fig. 4 b). On the other hand, 
the SCF-induced heterotopia in the marginal zone 
contained a large number of Cux-1-positive neurons 
and many CTIP2-positive cells with large and small 
nuclei (Fig. 4 e–h). The results indicate that the 
SCF-induced heterotopia, regardless of its location, 
mainly consisted of neurons and that the marginal 

zone heterotopia contained both upper and deep 
layer neurons.

SCF altered the development and migration of neu-
ral stem/progenitor cells
In order to analyze how SCF induced the heterotop-
ic accumulation of neurons, we examined its effect 
on the differentiation of cortical progenitors. In the 
mouse cerebral cortex, the generation of neurons ex-
tends from E11 to early E17 (30). During this peri-
od, intermediate neuronal progenitors are generated 
from neural stem cells, have limited mitotic activity 
of 1–3 cycles, and produce only neurons as daugh-
ter cells (8, 25). These 3 types of cortical cells, i.e., 
neural stem cells, intermediate neuronal progenitors, 
and cortical neurons, specifically express Sox2, 
Tbr2, and βIII-tubulin, respectively (8, 25). Consis-
tent with previous studies, many Sox2- and Tbr2-

Fig. 4　Expression of lamina-specific marker proteins in the marginal heterotopias induced by SCF. P6 mouse cerebral cor-
tex that had been treated with SCF (e–h) or vehicle (a–d) at E13.5 was double immunostained with anti-Cux1 (a marker of 
layer II–IV neurons) and anti-CTIP2 antibody (a marker of layer V neurons). The images in d and h show the enlarged 
views of the boxed area shown in c and g, respectively. Note that the heterotopia induced by SCF contained both deep (ar-
rows) and upper layer neurons. Single scale bar is 200 μm. Double scale bar is 100 μm.

Table 1　Summary of phenotypes induced by SCF administration

Phenotype number of the animals
Heterotopia  8

Subcortical periventricular heterotopia  2
Marginal zone heterotopia  6

Accumulation of cells  4
in the lateral ventricular space

Total 12 (total 15)
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self-renewal and the proliferation of hematopoietic 
stem cell (21), these results indicate that SCF may 
have a similar effect on the cortical progenitor cells, 
making possible an extension of the period of neu-
rogenesis and an increase in the number of neurons 
(Fig. 5).
　The increase in the number of Sox2-positive cells 
is not likely the sole reason for the ectopic cell ac-
cumulation. Since SCF is also known to act as a 
chemoattractant toward cultured cortical neurons (9) 
and hematopoietic cells (31), we examined the 
distribution of Sox2- and Tbr2-positive cells 1 day 
after the injection of a high dose of SCF (20 ng/em-

positive cells were observed in the ventricular zone 
(VZ) and subventricular zone (SVZ), respectively, 
of the control cortex at E13.5 (data not shown). As 
neurogenesis approaches completion, neural stem 
and neuronal progenitor cells decrease in the num-
ber. At that time (E17.5) only a few Sox2-positive 
cells were detected in the intermediate zone (IZ), 
and fewer Tbr2-positive cells in the SVZ, of the 
control cortex (Fig. 5). In the SCF-treated cortex, 
most of the cortical progenitor cells strongly ex-
pressed Sox2 in the VZ without affecting the num-
ber or distribution of Tbr2-positive cells (Fig. 5). 
Taken together with the fact that SCF promotes the 

Fig. 5　SCF increased the number of Sox2-positive cells without affecting that of Tbr2-positive cells. (A) This illustration 
shows the locations of the ventricular zone (VZ), subventricular zone (SVZ), intermediate zone (IZ), and cortical plate (CP). 
(B) Coronal sections of the E17.5 cortices were immunostained with anti-Sox2 (a, b) or anti-Tbr2 (c, d) at 4 day after vehi-
cle (a, c) or SCF (b, d) administration on E13.5. Scale bar is 200 μm.

Fig. 6　SCF altered the distribution of ventricular progenitor cells. Coronal sections of E14.5 cortices prepared 1 day after 
SCF (20 ng) administration on E13.5 were immunostained with anti-Sox2 antibody (a, anterior cerebral cortex; b, mid- 
posterior cerebral cortex) or anti-Tbr2 antibody (c, mid-posterior cortex, section adjacent to that shown in b. Scale bar is 
200 μm.
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periventricular heterotopia (26). These heterotopias 
involve not only gene-transfected cells but also a 
large number of non-transfected neural cells. If the 
transfected cells may secrete a growth factor or a 
cytokine such as SCF, it is possible that they would 
attract the non-transfected cells or stimulate the pro-
liferation and survival of these non-transfected cells. 
SCF is known to act as a chemoattractant for vari-
ous types of the cells including cortical progenitor 
cells (9) and hematopoietic stem cells and mast cells 
(31) via the c-kit/PI3K/Akt pathway (10, 33). More-
over, we showed that SCF induced the phosphoryla-
tion of Akt in the developing cortex (Fig. 2), 
stimulated the self-renewal and/or proliferation of 
the cortical progenitor cells (Fig. 5), and disturbed 
the structure of the proliferating zone, probably via 
migration of cortical progenitor cells (Fig. 6). Fur-
ther investigations are necessary to be clarity the 
molecular mechanism underlying the SCF-induced 
formation of heterotopia. This SCF-induced mouse 
model, however, would be a useful tool to better un-
derstand the pathogenesis of cortical heterotopia in 
patients with refractory epilepsy.
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