$MCeO_3$: Eu³⁺ (M=Sr, Ba)的合成及发光性质研究

符史流,尹 涛,丁球科,赵韦人

汕头大学物理系,广东汕头 515063

摘 要利用高温固相反应法合成了 Eu^{3+} 掺杂的 $MCeO_3$ (M=Sr, Ba)发光粉末样品,采用 X 射线衍射技术 和荧光光谱等测试手段分别对其物相组成和发光性质进行了研究。X 射线衍射结果显示, Eu^{3+} 离子容易替 代 $MCeO_3$ 晶格中 M^{2+} 离子的位置。荧光光谱测试结果表明, Eu^{3+} 掺杂的 $SrCeO_3$ 和 $BaCeO_3$ 样品在紫外波 段存在着非常宽的吸收带,峰值分别位于 311 和 320 nm 左右,它们属于 $Ce^{4+}-O^{2-}$ 的电荷迁移带, $SrCeO_3$ 和 $BaCeO_3$ 基质与 Eu^{3+} 离子之间存在着能量转移。在 $MCeO_3 : Eu^{3+}$ 样品中, Eu^{3+} 的发射主要来自于⁵ D_0 激发态能级,其中以磁偶极跃迁⁵ D_0 —⁷ F_1 发射强度为最大;此外样品中还存在着较高的⁵ D_1 激发态能级的辐射 跃迁。SrCeO_3 : Eu^{3+} 样品的发射强度远大于 $BaCeO_3 : Eu^{3+}$ 样品。

关键词 SrCeO₃; BaCeO₃; Eu³⁺; 物相组成; 光谱特性 中图分类号: O482.3; O614.3 文献标识码: A 文章编号: 1000-0593(2007)05-0854-04

引 言

1998 年 Danielson 等^[1]利用组合化学方法发现了高效的 Sr₂CeO₄ 蓝色发光材料,引起了人们的关注^[2,3]。在该发光 体中含有 CeO₆ 八面体通过共用边形成的一维链状结构,其 发光来源于 CeO₆ 八面体终端 Ce⁴⁺一O²⁻ 键的电荷迁移跃 迁。四价稀土离子 Ce⁴⁺ 没有 4 f 电子, 在紫外波段存在着很 强的 Ce4+ -- O2- 电荷迁移吸收带, 有向激活剂离子进行能量 传递的可能,这预示着以 Ce4+ 形式存在的氧化物有可能成 为性能良好的光致发光基质材料。2000 年 Sankar 等^[4]合成 了 Eu³⁺ 掺杂的 Sr₂CeO₄ 发光材料,发现 Sr₂CeO₄ 基质与 Eu³⁺离子之间存在能量传递。后来揣晓红^[5],Nag^[6]和石士 考等[7]对该掺杂发光体的合成及发光机理进行了进一步的探 讨。2004 年 Fujihara 等^[8] 报道了 CeO₂ : Eu³⁺ 和 CeO₂ : Sm³⁺发光材料,发现样品在 330 nm 附近存在着 Ce⁴⁺---O²⁻ 电荷迁移吸收带。SrCeO3 和 BaCeO3 是重要的质子导电材 料,人们对稀土离子掺杂的 SrCeO3 和 BaCeO3 质子导电材 料进行了广泛的研究^[9,10],而稀土离子在这类基质中的发光 性质的研究报道甚少。我们合成了 Eu³⁺ 掺杂的 SrCeO₃ 和 BaCeO3 样品,发现样品中存在着 Ce4+-O2-与 Eu3+离子之 间的能量传递。本文报道 Eu³⁺ 掺杂的 MCeO₃ (M=Sr, Ba) 样品的合成及光谱特性。

1 实验方法

实验所用原料 SrCO₃ 为分析纯, CeO₂ 和 Eu₂O₃ 的纯度 为 99.99%。按化学式 M_{1-x} Eu_xCeO₃ (M=Sr, Ba)中各物质 的量比称取各原料,在玛瑙研钵中充分研磨后装入陶瓷坩 锅,置于马弗炉在 1 150 ℃的空气气氛中灼烧 10 h,然后重 新粉碎研磨,在相同的气氛中再灼烧 10 h。样品的晶体结构 用日本 SHIMADZU 公司的 XD-610 型 X 射线粉末衍射仪测 定,辐射源为 CuKa 线(λ =0.154 05 nm)。激发和发射光谱 采用 Perkin Elmer 公司的 LS55 型荧光光谱仪测定,用 Xe 灯 作激发光源。

2 实验结果与分析

2.1 样品的物相组成与结构

在 $MCeO_3$ (M=Sr, Ba) 中掺杂 Eu³⁺ 离子, Eu³⁺ 可能进 入 M^{2+} 格位或 Ce⁴⁺ 格位。在合成 Eu³⁺ 掺杂的 SrCeO₃ 样品 时,分别按在 Sr²⁺和 Ce⁴⁺格位掺杂 Eu³⁺的化学计量比制备 了两种样品,其 XRD 谱如图 1 所示。由图 1(a)和(b)可看 出,两种不同的混和粉料经高温灼烧后均反应生成了SrCeO₃ 物相(JCPDS23-1412),而且 Eu³⁺的掺杂对 SrCeO₃ 衍射峰无 明显影响。这说明 Eu³⁺ 的掺杂没有改变 SrCeO₃ 的晶体结 构, SrCeO₃ 属于正交晶系。对于 Sr : Ce : Eu = 1 :

收稿日期: 2006-03-16, 修订日期: 2006-07-31

基金项目:国家自然科学青年基金项目(50001010)和广东省汕头市科技计划项目(152011)资助 作者简介:符史流,1966年生,汕头大学物理系副教授 e-mail:gongy@stdx.com

(1-x): x的样品[见图 1(a)], 当 x=0.01 时, 样品中未发 现明显的杂相;而当 x=0.02 时, XRD 谱中在 2θ 为 28.4°和 30.1°等处分别出现明显的杂相衍射峰,且随着掺杂量的继 续增加,杂相的衍射峰强度随着增大,即使增加灼烧时间, 杂相衍射峰也不会消失。上述 20 为 28.4°处的衍射峰属于样 品中剩余的原始粉料相 Eu₂O₃ (JCPDS34-392); Eu₂O₃ 的剩 余将导致 SrO 过剩, 而 SrO 又与 SrCeO3 反应生成最后稳定 的 Sr₂CeO₄ (JCPDS22-1422)^[3], XRD 谱中 2θ 为 30.1° 处的衍 射峰来自于该种物相。对于 Sr: Ce: Eu = (1-x): 1: x 的 样品[见图 1(b)], 当 x = 0.02 时, 样品中未发现明显的杂 相;但当掺杂量增加到x=0.04时,在 $2\theta=28.5$ °处出现明显 的杂相衍射峰。这说明当 Eu³⁺掺杂浓度较高时, Eu³⁺未能 全部掺入到 SrCeO₃ 晶格中 Sr²⁺的位置,从而导致 Eu₂O₃ 和 CeO2 过剩。图 1(b)中的杂相衍射峰介于 Eu2O3 的最强衍射 峰和 CeO₂ 的最强衍射峰(2θ =28.6°)之间,它应属于两者的 贡献。

(a): Sr : Ce : Eu=1 : (1-x) : x; (b): Sr : Ce : Eu=(1-x) : 1 : x +: Eu₂O₃; -: Sr₂CeO₄; *: CeO₂

根据上述实验结果,当x=0.02时,Eu³⁺ 替代Sr²⁺的样品没有出现杂相,而Eu³⁺ 替代Ce⁴⁺的样品则出现明显的Eu₂O₃和Sr₂CeO₄物相,这说明Eu³⁺离子容易替代SrCeO₃晶格中Sr²⁺的位置。这可能与各离子的半径大小有关,Eu³⁺的离子半径(0.101 nm)大于Ce⁴⁺离子(0.087 nm),而小于Sr²⁺离子(0.118 nm),因而在SrCeO₃中掺杂的Eu³⁺离子倾向于优先占据Sr²⁺的位置。

2.2 MCeO3: Eu³⁺ (M=Sr, Ba)的发射光谱

图 2 为 M_{1-x} Eu_x CeO₃ (M=Sr, Ba)样品的发射光谱。由

图 2(a) 可见, $Sr_{1-r}Eu_rCeO_3$ 样品的发射均表现为 Eu^{3+} 的 4 f" 电子组态内的线状跃迁, 539 和 553 nm 处的发射峰分别 属于⁵ D_1 激发态到⁷ F_1 和⁷ F_2 能级的跃迁,而 594,616 和 625, 657 nm 等处的发射峰分别属于 D_0 激发态到 F_1 , F_2 , ${}^{7}F_{3}$ 能级的跃迁,其中 ${}^{5}D_{0}$ 一 ${}^{7}F_{1}$ 跃迁发射强度最大。当 Eu^{3+} 掺杂浓度较小时(x < 0.02), ${}^{5}D_{0} - {}^{7}F_{1}$ 和 ${}^{5}D_{0} - {}^{7}F_{2}$ 跃迁发 射强度随 Eu³⁺ 掺杂浓度的增加而增大, 两者的比值约为 1.6; 随着 Eu³⁺ 掺杂浓度的继续增加(x=0.03), ${}^{5}D_{0}$ — ${}^{7}F_{1}$ 跃迁强度下降,而 $^{5}D_{0}$ — $^{7}F_{2}$ 跃迁强度增大,两者的比值降至 1.1 左右。对于来自于较高激发态能级⁵D₁ 的辐射跃迁,其 发射强度较弱,而目随着 Eu³⁺掺杂浓度的增加,它们的发射 强度先增加而后逐渐减少。在 BaCeO3 中掺杂 Eu3+离子 「见 图 2(b),其发射光谱形状与 Sr_{1-x}Eu_xCeO₃ 的结果类似,但 发射强度远弱于 $Sr_{1-x}Eu_x CeO_3$ 样品。实验时制备了 CeO_2 : Eu^{3+} 样品,发现 Eu^{3+} 在 CeO_2 基质中的发射强度比在 SrCeO3基质中弱得多。

Fig. 2 Emission spectra of $M_{1-x}Eu_xCeO_3$ (M=Sr, Ba) samples

(a): $Sr_{1-x}Eu_xCeO_3(\lambda_{ex}=311 \text{ nm});$ (b): $Ba_{0.98}Eu_{0.02}CeO_3(\lambda_{ex}=320 \text{ nm})$

 Eu^{3+} 的⁵ D_0 —⁷ F_1 跃迁属磁偶极跃迁, ⁵ D_0 —⁷ F_2 跃迁属 电偶极跃迁。当 Eu^{3+} 处于严格反演对称中心格位时, Eu^{3+} 发射以允许的⁵ D_0 —⁷ F_1 磁偶极跃迁为主; 当 Eu^{3+} 处于偏离 反演对称中心格位时,由于 Eu^{3+} 的 4 f^n 电子组态中混入了 相反宇称的组态,电偶极跃迁不再是严格禁戒的跃迁,而且 ⁵ D_0 —⁷ F_2 跃迁对此效应极为灵敏。在 SrCeO₃ 和 BaCeO₃ 中 掺杂 Eu^{3+} 离子, Eu^{3+} 的发射以⁵ D_0 —⁷ F_1 跃迁为主,说明 Eu^{3+} 占据反演对称中心的位置,在正交结构的 SrCeO₃ 和 BaCeO₃ 中处于反演中心的 Eu^{3+} 具有 D_{2h} 点群对称性。当 Eu^{3+} 掺杂浓度较高时(x=0.03), Eu^{3+} 配位环境的对称性降 低,从而使⁵ D_0 —⁷ F_1 与⁵ D_0 —⁷ F_2 跃迁的强度比值下降。在 $M_{1-x}Eu_{x}CeO_{3}$ (*M*=Sr, Ba)中,除了 Eu³⁺的⁵D₀ 激发态的发 射外,还存在着来自于较高的⁵D₁ 激发态能级的辐射跃迁, 这说明 Eu³⁺与基质晶格振动耦合系数小,⁵D₁ 能级到⁵D₀ 能 级的多声子弛豫概率较小。而当 Eu³⁺掺杂浓度较高时,⁵D₁ 能级的辐射跃迁强度减弱,这是由于 Eu³⁺离子之间通过交 叉弛豫过程[即 Eu³⁺(⁵D₁)+Eu³⁺(⁷F₀)→Eu³⁺(⁵D₀)+Eu³⁺(⁷F₃)] 猝灭了⁵D₁ 能级的发射。

2.3 MCeO3: Eu³⁺ (M=Sr, Ba)的激发光谱

对于不同 Eu³⁺掺杂浓度的 SrCeO₃ 和 BaCeO₃ 样品,光 谱特性测试结果显示,Eu³⁺掺杂浓度对样品的激发光谱形状 没有明显影响,其结果如图 3 所示。由图可见,Eu³⁺掺杂的 SrCeO₃ 和 BaCeO₃ 样品在紫外波段存在着非常宽的电荷迁 移吸收带,吸收峰分别位于 311 和 320 nm 左右;此外,在 396 和 467 nm 等处还存在着弱的激发峰,分别对应于 Eu³⁺ 的⁷F₀ 能级到⁵L₆ 和⁵D₂ 能级的跃迁。

Fig. 3 Excitation spectra of $M_{1-x}Eu_xCeO_3$ (M=Sr, Ba) samples recorded with 594 nm emission

a: Sr_{0.98}Eu_{0.02}CeO₃; *b*: Ba_{0.98}Eu_{0.02}CeO₃

镧系四价稀土离子 Ln⁴⁺具有电荷迁移吸收带^[11], 但除 Sr₂CeO₄ 外 Ln⁴⁺ 的电荷迁移发光化合物未见报道, 这被认为 是 Ln⁴⁺ 电荷迁移吸收的能量被另一中间的激发态猝灭所致。 SrCeO₃和BaCeO₃不发光,在其中分别掺杂Eu³⁺离子,在紫 外波段明显存在导致 Eu3+发射的电荷迁移带,其来源存在 着两种可能性:其一是 Eu³⁺一O²⁻的电荷迁移吸收,该情形 在掺杂 Eu³⁺ 的发光材料中最为常见; 其二是基质晶格中 Ce4+一O2-的电荷迁移吸收,然后再向 Eu3+离子转移能量。 电荷迁移带是电子由配体转移到中心金属阳离子所产生的吸 收带,其位置主要取决于配体和金属离子的电负性,而且还 与它们之间的配位数和距离有关。SrCeO3和 BaCeO3均为正 交晶系,属钙钛矿结构。Ce离子与6个氧离子形成八面体配 位,每个 CeO₆ 八面体通过共角的方式互相连接,形成 CeO₆ 八面体网络结构。为探讨 $MCeO_3$: Eu³⁺ (M=Sr, Ba)发光体 中电荷迁移激发带的来源,实验时对 Eu³⁺在典型钙钛矿结 构的复合氧化物基质(如 CaTiO₃, SrTiO₃, BaTiO₃ 和 MgTiO₃)中的发光行为进行了研究,其结果如图 4 所示。 CaTiO3属正交晶系, SrTiO3和 BaTiO3属立方晶系, MgTiO₃ 属六方晶系。由图 4 可见, Eu³⁺在上述基质中的发射均 表现为 4 f^{*} 电子组态内的线状跃迁,其中 CaTiO₃ : Eu³⁺的 发射强度最大。在 CaTiO₃,SrTiO₃和 BaTiO₃ 基质中,Eu³⁺ 离子在紫外波段不存在 Eu³⁺—O²⁻ 电荷迁移带,其吸收均为 Eu³⁺离子的线状跃迁;而 MgTiO₃ : Eu³⁺样品在 289 nm 附 近存在着 1 个 Eu³⁺—O²⁻ 电荷迁移带。在绝大多数的氧化物 基质晶格中,Eu³⁺—O²⁻ 电荷迁移带。在绝大多数的氧化物 基质晶格中,Eu³⁺—O²⁻ 电荷迁移带位置均小于 300 nm^[8]。 对于 Sr₂CeO₄ 基质材料,在 280 和 340 nm 附近分别存在着 2 个 Ce⁴⁺—O²⁻ 电荷迁移带,在 Sr₂CeO₄ 中掺杂 Eu³⁺,样品中 明显存在 Sr₂CeO₄ 基质向 Eu³⁺离子的能量转移^[6]。在 CeO₂ : Eu³⁺样品中,Ce⁴⁺—O²⁻电荷迁移带位于 330 nm 左右^[8]。 因此,在 SrCeO₃ : Eu³⁺和 BaCeO₃ : Eu³⁺样品中,峰值分别 位于 311 和 320 nm 附近的吸收宽带应属于基质晶格中 Ce⁴⁺—O²⁻ 的电荷迁移带,在紫外光激发下,样品中存在着 Ce⁴⁺—O²⁻ 与 Eu³⁺离子之间的能量转移。

Fig. 4 Excitation (solid line) and emission (dot line) spectra

of $A_{0.98}$ Eu_{0.02} TiO₃ (A=Ca, Sr, Ba, Mg) samples

a: $A=Ca(\lambda_{em}=616 \text{ nm}, \lambda_{ex}=397 \text{ nm});$ b: $A=Sr(\lambda_{em}=616 \text{ nm}, \lambda_{ex}=397 \text{ nm});$ c: $A=Ba(\lambda_{em}=594 \text{ nm}, \lambda_{ex}=397 \text{ nm});$ d: $A=Mg(\lambda_{em}=616 \text{ nm}, \lambda_{ex}=289 \text{ nm})$

3 结 论

(1) 对于 MCeO₃ (M=Sr, Ba)中的 M²⁺ 和 Ce⁴⁺ 格位,
Eu³⁺离子容易替代 M²⁺的位置。

(2) Eu^{3+} 掺杂的 SrCeO₃ 和 BaCeO₃ 样品在紫外波段存 在着非常宽的电荷迁移吸收带,峰值分别位于 311 和 320 nm 左右,它们属于 Ce^{4+} — O^{2-} 的电荷迁移带,样品中存在着 Ce^{4+} — O^{2-} 与 Eu^{3+} 离子间的能量转移。

(3) 在 SrCeO₃ 和 BaCeO₃ 基质中, Eu³⁺的发射主要来自 于⁵D₀ 激发态能级, 其中⁵D₀—⁷F₁ 跃迁发射强度最大。

第5期

857

 $SrCeO_3$: Eu^{3+} 样品的发射强度远大于 BaCeO_3: Eu^{3+} 样品。 可以观察到来自于较高激发态能级⁵ D_1 上的辐射跃迁。 在上述两种基质中, Eu^{3+} 离子的多声子弛豫过程几率较小,

参考文献

- [1] Danielson E, Devenney M, Giaquinta D M, et al. Science, 1998, 279(6): 837.
- [2] Jiang Y D, Zhang F, Summers C J, et al. Appl. Phys. Lett., 1999, 74(12): 1677.
- [3] FU Shi-liu, DAI Jun, ZHAO Wei-ren(符史流,戴 军,赵韦人). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25 (6): 988.
- [4] Sankar R, Subba Rao G V. J. Electrochem. Soc. , 2000, 147(7): 2773.
- [5] CHUAI Xiao-hong, ZHANG Hong-jie, LI Fu-shen, et al(揣晓红,张洪杰,李福燊,等). Chinese Journal of Inorganic Chemistry(无机化 学学报), 2003, 19(5): 462.
- [6] Nag A, Narayanan Kutty T R. J. Mater. Chem., 2003, 13: 370.
- [7] SHI Shi-kao, WANG Ji-ye, LI Jun-min, et al(石士考,王继业,栗俊敏,等). Journal of the Chinese Rare Earth Society(中国稀土学报), 2004, 22(6): 859.
- [8] Fujihara S, Oikawa M. J. Appl. Phys., 2004, 95(12): 8002.
- [9] Iwahara H, Esaka T, Uchida H, et al. Solid State Ionics, 1981, 3/4: 359.
- [10] Yajima T, Iwahara H. Solid State Ionics, 1992, 50: 281.
- [11] Hoefdraad H E. J. Inorg. Nucl. Chem., 1975, 37: 1917.

Synthesis and Spectral Properties of Eu^{3+} -Doped MCeO₃(M=Sr, Ba)

FU Shi-liu, YIN Tao, DING Qiu-ke, ZHAO Wei-ren

Department of Physics, Shantou University, Shantou 515063, China

Abstract Eu^{3+} -doped $MCeO_3$ (M=Sr, Ba) powder samples were prepared by a solid-state method, and their characteristics were investigated by the use of XRD and fluorescence spectra. The XRD results show that Eu^{3+} ions have a preference for M^{2+} over Ce^{4+} sites in $MCeO_3$ (M=Sr, Ba) lattice. The excitation spectra of $SrCeO_3 : Eu^{3+}$ and $BaCeO_3 : Eu^{3+}$ display a much broad absorption band peaking at about 311 nm and 320 nm, respectively. This broad band is attributed to the charge transfer from O^{2-} to Ce^{4+} and the energy transfer from $SrCeO_3$ and $BaCeO_3$ to Eu^{3+} . In the $MCeO_3 : Eu^{3+}$ samples, the emission transitions of Eu^{3+} originating from 5D_1 and 5D_0 excited states can be observed, among which the ${}^5D_0 - {}^7F_1$ magnetic-dipole transition is the most intense emission. The emission of Eu^{3+} from the Eu^{3+} doped $SrCeO_3$ lattice is much stronger than that of Eu^{3+} from the Eu^{3+} doped $BaCeO_3$ lattice.

Keywords SrCeO₃; BaCeO₃; Eu^{3+} ; Phase composition; Spectral property

(Received Mar. 16, 2006; accepted Jul. 31, 2006)