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Abstract 

Three modeling methodologies based on mathematical, empirical and artificial neural network 
based on radial basis function have been compared for their ability to predict fabric properties. It has 
been observed that artificial neural network model produced the least error as well as minimum range 
of error as compared to the other modeling methodologies. 
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1. Introduction 
 
The main objective of many scientific studies in textiles is 

to reveal the complex functional relationships that exist 
between structural parameters of fibre, yarn and fabric 
properties. Modeling methodologies for predicting fabric 
properties are essential to design fabrics according to the 
specifications desired by the customer. If the relationships 
between different parameters that determine the specific 
fabric property are known, they can be used to optimize that 
particular property for different end-use applications so as to 
minimize the cost. Predictive modeling methodologies can 
also be used to identify the different levels of combinations 
of process parameters and material variables that yield the 
desired fabric property .  
  The relationship between fabric structure and property is 
complex and inherently nonlinear; to create a predictive 
model one must resolve the complexities. There are 
essentially three modeling tools for predicting fabric 
properties: mathematical models that are derived from first 
principles, empirical models that use statistical techniques, 
and artificial neural network models that are the part of the 
evolving field of artificial intelligence [1]. 
  The aim of this analysis is to explore a more realistic 
system of the three modeling methodologies that can help in 
predicting fabric properties accurately for efficiently 
handling non-linear and complex fabric parameters and to 
examine the merit of these models.  

A similar study for predicting the strength of air-jet spun 
yarns was made by Rajamanickam, et al. [1]. But no such 
studies are reported for analysis of modeling methodologies 
for fabric properties. In this analysis, artificial neural 
network methodology based on radial basis function (RBF) 
learning algorithm has been implemented. 
 
2. Approach  

 

To explore the predictability of the modeling 
methodologies, the published data and mathematical models 
of Leaf and Kandil [2] and Leaf et. al., [3] for fabric initial 
tensile modulus and bending rigidity properties, respectively, 
were used to study the predictability of mathematical model.  

In statistical method of modeling, multilinear regression 
equation between fabric property and constructional 
parameters was applied to the same data, to find the 
predictability of statistical method. Finally, artificial neural 
network, based on radial basis function algorithm was used 
to model the fabric structure-property relationship, using the 
same experimental data given in reference [2] and [3]. The 
predictive power of each methodology was estimated by 
comparing the predicted fabric property values with 
experimentally obtained results in terms of absolute error% 
of prediction. 

 
3. Mathematical models  
 
Mathematical models are very appealing because they 

have their basis in applied physics. They can be used to 
explain the reasons that determine structure-property 
relationships. To model the fabric properties one of the three 
idealized structures of unit cells of woven fabric is employed, 
namely, Peirce's flexible thread model [4], rigid thread 
model [4], or saw-tooth model [5] as a starting point.  
 Two fabric properties, namely, initial tensile moduli and 
bending rigidities have been considered, because the many 
experimental published data were available to model the 
structure-property relationships using regression analysis 
and artificial neural network modeling methodologies. The 
equations for initial tensile moduli were [2]: 
Tensile moduli (mN/mm): 

 
E1 =    12β1               x  1 +β2p2

3(1 + c1)3 cos2θ1    (1) 
     p1p2

2(1 + c1)3 sin2θ1      β1p1
3(1 + c2)3 cos2θ2   

1 
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E2 =     12β2            x  1+ β1p1
3(1 + c2)3 cos2θ2     (2) 

   p2p1
2(1 + c2)3 sin2θ2        β2p2

3(1 + c1)3 cos2θ1    
 
Bending moduli (mN mm2/mm) [3]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B1 = β1p2 ÷ p1  p2(1 + c1) - 0.8758Dθ1           (3) 
 
B2 = β2p1 ÷ p2  p1(1 + c2) – 1.0778Dθ2           (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Experimental data of tensile moduli of fabrics [2] 
Fabric 

No 
p1 

(mm) 
p2 

(mm) 
l1 

(mm) 
l2 

(mm) 
β1 

(mNmm2)
β2 

(mNmm2)
E1 

N/cm 
E2 

N/cm 
1 0.485 0.588 0.701 0.514 5.62 6.06 14.3 36.6 
2 0.488 0.624 0.758 0.515 5.62 6.06 9.4 29.8 
3 0.485 0.713 0.835 0.508 5.62 6.06 14.2 34.1 
4 0.49 0.67 0.798 0.514 5.62 7.05 15.9 42.9 
5 0.492 0.679 0.871 0.515 5.62 7.05 15.5 33.8 
6 0.495 0.849 0.983 0.513 5.62 7.05 14.6 28.6 
7 0.494 0.779 0.939 0.508 5.62 8.16 13.7 53.6 
8 0.494 0.839 1.022 0.507 5.62 8.16 10.6 45.5 
9 0.491 0.691 0.847 0.509 5.62 8.16 14.9 42.4 

10 0.476 0.589 0.704 0.504 4.44 4.44 9.2 25.5 
11 0.587 0.749 0.827 0.616 4.44 4.44 9.1 14.8 
12 0.549 0.532 0.606 0.615 4.44 4.44 12.7 13.4 
13 0.556 0.548 0.598 0.622 4.44 4.25 24 13.8 
14 0.591 0.637 0.722 0.622 4.44 4.25 13.3 19.7 
15 0.594 0.756 0.832 0.624 4.44 4.25 11.7 14.5 
16 0.568 0.465 0.509 0.621 4.44 2.96 23.2 22 
17 0.577 0.538 0.597 0.639 4.44 2.96 18 12.8 
18 0.571 0.662 0.73 0.608 4.44 2.96 12 13 

                  l1 & l2 : length of thread axis between axes of consecutive cross threads. 

Table 2 Predictability of mathematical model for fabric tensile modulus 
Fabric  

No. 
Predicted E1 

N/cm 
Predicted E2 

N/cm 
Percent 

error in E1 
Percent 

error in E2 
1 11.76 37.53 -17.76 2.54 
2 9.67 36.51 2.84 22.52 
3 13.99 32.89 -1.45 -3.55 
4 12.69 39.56 -20.17 -7.78 
5 6.49 43.08 -58.12 27.46 
6 17.65 36.15 20.86 26.41 
7 12.83 61.59 -6.32 14.91 
8 12.05 59.83 13.70 31.50 
9 10.78 58.03 -27.62 36.85 

10 9.13 29.25 -0.75 14.71 
11 11.29 16.86 24.12 13.90 
12 10.80 14.05 -14.94 4.85 
13 17.01 12.48 -29.13 -9.53 
14 8.18 22.24 -38.52 12.89 
15 11.07 15.49 -5.38 6.81 
16 15.55 23.61 -32.97 7.34 
17 10.87 12.83 -39.63 0.27 
18 10.17 13.25 -15.27 1.91 
                      Mean Abs. Error %             20.53          13.65 

 
               Percent Error of prediction =  (Predicted value - Experimental value) x 100 

           Experimental value 



Vol.51, No.1 (2005)    

 3

Notations: 
d    yarn diameter in mm  

= 4.44x10-2 (yarn tex/fibre density) 0.5 
D    sum of the warp and weft diameters, i.e., D = d1 + d2 
β    yarn flexural rigidity(mN mm)  
θ   weave angle in radians = 1.88 √c 
p    thread spacing in mm, between two adjacent yarns in  

the fabric 
c    yarn crimp in fabric ( Excess of modular length over 

   thread spacing from Peirce’s geometry) 
 

   In all these equations, subscripts 1 and 2 refer to 
parameters in the warp and weft directions respectively. 

The model equations for tensile and bending moduli i.e., 
Equations 1, 2 and 3, 4 were based on saw-tooth or 
straight-line model of the plain-woven fabric. They had used 
Castigliano's theorem as the principal method of attack. The 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis for tensile moduli was based on work reported by 
Leaf and Kandil [2]. Yarn compression and extension were 
taken into account. In the analysis, the yarn was assumed to 
have following properties: 
(a) They extend according to the law T = λεy, where T is 

the tension in the yarn, εy is the extension produced and 
λ is elastic constant of the yarn. The strain energy of 
extension per unit length of yarn is then T2/2λ. 

(b) The inter-yarn force was assumed to be point force V, 
and the original diameter of the yarn D. V = µεd, where 
εdD was the change in the yarn diameter that takes place 
when V is applied and µ is coefficient of friction along 
the fibres . The strain energy of the compression was 
then V2D /2µ.. 

(c) The yarns bent with flexural rigidity B. The strain 
energy per unit length of yarn was then M2/2B, where M 
was the applied bending moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Experimental data for bending rigidity of fabrics [3] 

Fabric 
No 

warp 
tex 

weft 
tex 

d1 
mm 

d2 
mm 

p1 
mm 

p2 
mm 

l1 
mm 

l2 
mm 

β1 
mNmm2 

β2 
mNmm2 

1 36.9 59 0.219 0.277 0.478 0.646 0.711 0.515 2.82 4.54 
2 36.9 59 0.219 0.277 0.473 0.613 0.715 0.505 2.82 4 
3 36.9 59 0.219 0.277 0.486 0.622 0.713 0.512 2.82 5.17 
4 36.9 63.9 0.219 0.288 0.467 0.628 0.703 0.506 2.82 2.85 
5 36.9 59 0.219 0.277 0.466 0.561 0.63 0.511 2.82 4.08 
6 36.9 59 0.219 0.277 0.467 0.553 0.658 0.497 2.82 4.68 
7 19.7 36.9 0.160 0.219 0.368 0.558 0.624 0.384 1.97 3.07 
8 19.7 29.5 0.160 0.196 0.368 0.568 0.614 0.386 1.97 2.12 
9 19.7 34.7 0.160 0.212 0.364 0.583 0.642 0.388 1.97 2.3 

10 19.7 19.7 0.160 0.160 0.365 0.578 0.609 0.378 1.97 1.97 
11 19.7 49.2 0.160 0.253 0.369 0.668 0.727 0.39 1.97 2.23 
12 19.7 45.4 0.160 0.243 0.367 0.641 0.699 0.384 1.97 3.35 
13 29.5 45.4 0.196 0.243 0.421 0.661 0.738 0.439 2.19 3.67 
14 29.5 49.2 0.196 0.253 0.417 0.649 0.716 0.439 2.19 2.4 
15 29.5 34.7 0.196 0.212 0.421 0.642 0.715 0.441 2.19 2.75 
16 29.5 59 0.196 0.277 0.429 0.649 0.732 0.442 2.19 5.76 
17 29.5 59 0.196 0.277 0.429 0.654 0.745 0.442 2.19 6.81 
18 29.5 49.2 0.196 0.253 0.408 0.574 0.631 0.439 2.19 2.41 
19 29.5 34.7 0.196 0.212 0.408 0.578 0.637 0.439 2.19 2.97 
20 29.5 29.5 0.196 0.196 0.413 0.571 0.622 0.44 2.19 2.25 
21 29.5 45.4 0.196 0.243 0.416 0.565 0.631 0.439 2.19 4.52 
22 29.5 36.9 0.196 0.219 0.41 0.556 0.625 0.437 2.19 2.85 
23 60 60 0.279 0.279 0.485 0.588 0.701 0.514 5.62 6.06 
24 60 60 0.279 0.279 0.488 0.624 0.758 0.515 5.62 6.06 
25 60 60 0.279 0.279 0.485 0.713 0.835 0.508 5.62 6.06 
26 60 60 0.279 0.279 0.476 0.589 0.704 0.504 4.44 4.44 
27 60 60 0.279 0.279 0.549 0.532 0.606 0.615 4.44 4.44 
28 60 60 0.279 0.279 0.556 0.548 0.598 0.622 4.44 4.25 
29 60 60 0.279 0.279 0.591 0.637 0.722 0.622 4.44 4.25 
30 60 60 0.279 0.279 0.594 0.756 0.832 0.624 4.44 4.25 
31 60 46 0.279 0.244 0.568 0.465 0.509 0.621 4.44 2.96 
32 60 46 0.279 0.244 0.577 0.538 0.597 0.639 4.44 2.96 
33 60 46 0.279 0.244 0.571 0.662 0.73 0.608 4.44 2.96 
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  The analysis yielded Eqs. 1 and 2, which were very 
similar to the results, derived by Grosberg and Kedia [8]. 
The experimental data of Leaf and Kandil [2], for 
determination for tensile moduli is reproduced in Table 1. E1 
and E2 are the experimental values of initial moduli of 
fabrics in warp and weft way directions in N/cm. It may be 
pointed out here, that there is an error in units of initial 
tensile moduli in the original work published by Leaf and 
Kandil [2], which were reported as mN/cm, which should 
have been N/cm. Accordingly corrections have been made in 
the units of initial tensile moduli shown in Table 1. 

Theoretical values of initial moduli of the fabrics were 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

calculated using Eqs. 1 and 2. The predictive power of 
mathematical model is shown in Table 2. In calculating 
average error %, absolute value of error % was considered. 
From the Table 2 it can be observed that predictability of 
warp tensile modulus ranges from -58.12 % to 24.12% with 
average absolute error percentage of 20.53 %. Similarly, the 
error of predictability ranges from -9.53 % to 36.85 % for 
weft-way initial modulus of fabric with average error of 
13.65 %.  

The mathematical models for initial bending behaviour of 
plain-woven fabric (Eqs. 3 and 4) were considered from 
work of Leaf and et. al. [3]. The experimental data for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 Predictability of mathematical model for bending rigidity of fabrics 
Fabric 

No. 
Experimental  B1 

mN mm 

Experimental  B2
mN mm 

Predicted B1 
mN mm 

Predicted B2 
mN mm 

Error% B1 
mN mm 

error% B2
mN mm 

1 7.76 12.32 8.65 15.02 10.3 18.0 
2 8.64 14.76 9.95 13.28 13.2 -11.1 
3 10.83 23.49 9.32 14.97 -16.2 56.9 
4 9.88 7.54 8.56 8.89 -15.4 15.2 
5 8.26 17.96 10.25 18.27 19.4 1.7 
6 10.58 20.31 11.64 17.09 9.1 -18.8 
7 7.02 8.06 7.46 9.32 5.9 13.5 
8 6.27 4.56 6.9 6.24 9.1 26.9 
9 6.36 6.09 7.19 7.73 11.5 21.2 

10 6.34 4.38 6.47 4.97 2.0 11.9 
11 9.3 3.48 6.9 6.78 -34.8 48.7 
12 9.48 9.41 7.01 9.56 -35.2 1.6 
13 7.11 9.25 7.13 9.44 0.3 2.0 
14 6.21 6.16 7.26 6.97 14.5 11.6 
15 5.92 8.17 6.96 7.14 14.9 -14.4 
16 6.23 15.64 7.48 14.21 16.7 -10.1 
17 7.32 16.99 7.53 16.67 2.8 -1.9 
18 6.28 6.88 7.92 9.64 20.7 28.6 
19 9.12 14.37 7.49 10.42 -21.8 -37.9 
20 9.43 7.85 7.18 7.14 -31.3 -9.9 
21 9.54 13.33 7.94 15.05 -20.2 11.4 
22 9.68 9.79 7.92 9.92 -22.2 1.3 
23 19.59 22.09 24.26 22.16 19.2 0.3 
24 18.48 20.55 22.89 19.95 19.3 -3.0 
25 20.45 22.5 18.83 16.42 8.6 -37.0 
26 17.25 20.25 19.6 16.48 12.0 -22.9 
27 18.25 19.62 17.32 22.26 -5.4 11.9 
28 28.5 16 14.19 20.04 -100.8 20.2 
29 14 13.06 12.87 11.22 -8.8 -16.4 
30 16.47 13.68 10.7 9.32 -53.9 -46.8 
31 20.5 12 15.64 12.78 -31.1 6.1 
32 15.2 10 13.83 11.49 -9.9 13.0 
33 11.6 7.36 11.65 7.82 0.4 5.9 

                                Average absolute error %              18.7       16.9 
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bending rigidities is given in Table 3. For finding the 
bending rigidity of fabric, they had adopted 'best fit' 
technique to find the yarn contact lengths between the 
threads in fabric.  
  As seen from the Table 4, the predictive error of this 
model varies from -100.8 % to 20.7 % with an average 
prediction error of 18.7 % for warp-way bending, and from 
-46.8 % to 56.9 % with an average of 16.9 % for weft-way 
fabric bending rigidity. 

From these observations, it can be concluded that the 
predictive power of the mathematical models depend on the 
assumptions used to build the models. Therefore, they yield 
high prediction error. This makes it unsuitable as a 
prediction tool. These models are applicable to specific 
problems only. These models cannot be applied to predict 
fabric properties with asymmetric weaves. Effects of yarn 
compression, and extension increase the error of prediction. 
  But nonetheless, mathematical models can be used to 
understand the relationships between structural and material 
parameters and fabric properties. However, it is unlikely that 
stand-alone mathematical models will become predictive 
tools because they are very difficult to use in practice. They 
are the basis for computer simulation model such as 
MECHFAB [6]. Therefore, alternative methodologies are 
required to predict the fabric properties more accurately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Empirical modeling 
 

Data from Tables 1 and 3 were used to develop regression 
models to predict initial tensile moduli and bending moduli 
of fabrics. The following were the empirical equations using 
linear multiple regression technique. 

 
E1 = -21.429+ l1(-64.582) + l2(87.234) + p1(-51.112) 
     + p2(50.034) + β1(4.814) + β2(1.217)   (5) 

[R2 = 0.527]  
 

E2 = 38.161+ l1 (-48.801) + l2(-370.5280) + p1(362.866)  
     + p2(-1.122) + β1(3.09) + β2(5.100)    (6) 

[R2 = 0.904] 
 
B1 =69.363+ d1 (-385.299) + d2 (-181.981) + l1 (-13.631) 
    + l2(232.493) + p1(-289.970) + p2(24.084) +tex1(1.529) 
    +tex2(.491) + β1(-.703) +  β2(1.336)    (7) 

 [R2 = 0.842]     
 
B2 =18.916+ d1 (300.380)  + d2 (-438.798) + l1 (132.455) 
       + l2(159.367) + p1(-174.684) + p2(-137.467)  
       + tex1(-.798) + tex2(1.137) + β1(-.334) + β2(2.425) 

[R2 = 0.903]    (8) 
where tex1 and tex2 are the linear densities of warp 
and weft respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Table 5 Predictability of initial tensile moduli of fabric using empirical model 
               

Experimental values 
(N/cm) 

Predicted values 
(N/cm) 

Percentage error Fabric sample No 
(From Table No 1) 

E1 E2 E1 E2 E1 E2 
1 14.3 36.6 17.2 37.1 20.26 1.37 
7 13.7 53.6 12.96 41.47 -5.43 -22.63 
11 9.1 14.8 13.15 18.08 44.5 22.18 
18 12 13 13.38 12.52 11.49 -3.66 

Average absolute error percentage 20.4 12.33 
 

Table 6 Predictability of bending moduli of fabric using empirical model 
Experimental values 

(mN mm) 
Predicted values 

(mN mm) 
Percentage error Fabric sample No 

(From Table No.3)
 B1 B2 B1 B2 B1 B2 

4 9.88 7.54 9.96 13.35 .81 77.1 

7 7.02 8.06 6.32 6.76 -9.99 -16.13 

13 7.11 9.25 6.23 10.72 -12.37 15.85 

15 5.92 8.17 5.71 9.81 -3.55 20.02 

24 18.48 20.55 19.36 24.91 4.77 21.19 

27 18.25 19.62 23.44 19.17 24.46 -2.31 

31 20.5 12 16.56 9.02 -19.24 -24.87 

Average absolute error percentage 10.74 25.35 
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  The coefficient of multiple determination (R2) defines the 
fraction of variability in the dependent variable explained by 
the regression model. Except for E1, the R2 values of other 
models are high, and suggest that empirical model fits the 
data reasonably well. In further analysis of models, these 
empirical equations, namely, 5 to 8, were used to predict 
initial tensile moduli and bending rigidities of the fabric. The 
data used to test predictability of fabric properties by 
empirical models were not the part of data set used to 
develop the regression models. Fabric samples No. 1, 7, 11, 
and 18 from Table 1 were used to test the model represented 
by Eqs 5 and 6 and rest all data for development of 
regression equations. Similarly, Fabric samples Nos. 4, 7, 13, 
15, 24, 27, and 31 from Table 3 were used to predict bending 
moduli of the fabrics and rest all fabric data was used to 
develop the regression model of fabric bending rigidity. 
Table 5 and Table 6 show the results of prediction for fabric 
initial tensile moduli and bending rigidities, respectively. 

It can be observed from Table 5, that results of empirical 
models range from -5.43 % to 44.5% prediction error in 
warp-way fabric tensile modulus, and –22.63% to 22.18% in 
weft modulus, with average error of 20.4% and 12.33% in 
warp and weft modulus, respectively.  

Table 6 shows, prediction error in bending rigidities range 
from –19.24% to 24.46% and –24.87% to 77.1%, in warp 
and weft directions, respectively.  The average error in 
bending rigidities is 10.74% and 25.35% in warp and weft 
direction, respectively. 

The high error in prediction of fabric properties by 
empirical modeling may be due to small data size and 
inability of the multilinear regression techniques to model 
the nonlinearities in the fabric structure-property 
relationships. 
 
5. Artificial neural network modeling 

 
  Radial basis function (RBF) network was used to model 
the fabric structure-property relationships. 
 

5.1 Principle of RBF network 
 

  The strategy used in RBF networks consists of 
approximating an unknown function with a linear 
combination of non-linear functions, called basis functions. 

The basis functions are radial functions, i. e., they have 
radial symmetry with respect to a center. The schematic of  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
the RBF network with n inputs and a scalar output is shown 
in the Fig. 1.  

Let n, denote the dimension of the input space, and then in 
an overall fashion, the network represents a map from n- 
dimensional input space to single-dimensional output space. 
Such a network implements a mapping fr: Rn → R according 
to 
  fr(x) = λ0 + ∑i=1 

nrλiϕ ( ||x - ci|| )          (9) 
 
where x ∈ Rn is the input vector, ϕ ( . ),  is a given function 
from R+ to R, || . ||, denote the Euclidean norm, λi, 0 ≤ i ≤ nr, 
are the weights or the parameters, ci ∈Rn, 1 ≤ i ≤ nr, are 
known as the RBF centers, and nr is the number of centers. 
In RBF networks the functional form ϕ ( . ) and the centers 
ci are assumed to have been fixed. By providing a set of 
input x (t) and the corresponding desired output d (t) for t = 
1 to N, values of the weights λi can be determined using 
linear Least Square (LS) method. 
  Theoretical investigation and practical results suggest that 
the choice of the non-linearity ϕ ( . ) is not crucial to 
performance of the RBF network. The functions may be 
thin-plate-spline function: ϕ (v) = v2 log (v); or the Gaussian 
function: ϕ (v) = exp(-v2 / β2), or multiquadric function:  
ϕ ( v ) = (v2 + β2)1/2; or inverse multiquadric function:  
ϕ ( v ) = (v2 + β2)-1/2, where β is a real constant. However the 
performance of RBF networks critically depends on the 
chosen centers.  

In practice the centers are normally chosen from the data 
points {x(t)}t=1

N. Such a mechanism results in poor 
performance and numerical ill conditioning frequently 
occurs owing to near linear dependency caused by, for 
example, some centers being too close. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

∑ 

x1 

x2 

xn 

nonlinear 
trasformation 

λ1 

λ2 

λn 

λ0 

fr(x)

linear  
combiner 

Fig. 1 Schematic of RBF network 

Table 7 Effect of hidden layer neurons on prediction performance of RBF network 
No. of neurons 5 6 7 8 9 10 11 12 13 14 15 
Avg. error % of prediction 19.5 21.5 20.9 11.5 10.4 9.41 9.41 9.41 9.41 9.41 9.41

 

Table 8 Effect of error goal on prediction performance of RBF network 

Error goal 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 

Neurons 13 12 11 11 10 9 8 8 7 6 2 
Avg. error % of 
Prediction

99.3 24.7 16.5 16.5 9.41 10.4 11.5 11.5 20.9 21.5 29.1 
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5.2 Selection of centers 
 

Another way of center selection is Orthogonal Least 
Square (OLS) learning procedure [7]. This method is rooted 
in Linear regression models, according to which the desired 
response d(n) is defined by 
 d(n) = ∑i=1 

M xi(n)ai + e(n)    n =1, 2, …., N 
where, ai are the model parameters, the xi(n) are the 
regressors, and e(n) is the residue. Using matrix notation, the 
above equation can be written as- 

 d = Xa + e                    (10) 
where, 
   d = [d(1), d(2), …..,d(N)]T 
  a = [a1, a2,…..,aM]T 
  X = [x1, x2……,xM]T 
  xI = [xI(1), xI(2),…...,  xI(N)] 
  e = [e(1), e(2),…..,e(N)]T 
The regressor vectors xI form a set of basis vectors, and LS 
solution of equation 10 satisfies the condition that matrix 
product Xa be the projection of the desired response vector 
d on to the space spanned by the basis vector. The OLS 
method involves the transformation of the regressor vectors 
x1, x2……,xM into a set of orthogonal basis vectors u1, u2, 
…..uM. For this transformation, using Gram- Schmidt 
orthogonalization procedure  
  u1 = xI 
  αik = uI

Txi/uI
TuI  1≤ i ≤ k 

  u1 = xI  + ∑i-1
k-1 αik xI     where k = 2 to M. 

 
  OLS learning procedure chooses the RBF centers t1, t2, 
……tM as a subset of training data vectors x1, x2……,xM , 
where M < N. The centers are determined one-by-one 
(following Gram- Schmidt orthogonalization procedure), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

until the network of adequate performance is constructed. At 
each stage of the procedure, the increment to the explained 
variance of the desired response is maximized. In doing so, 
The OLS learning procedure will generally produce an RBF 
network whose hidden layer is smaller than that of an RBF 
network with randomly selected centers, for a specified level 
of unexplained variance of the desired response. 
Furthermore, the problem of numerical ill-conditioning 
encountered in random selection of centers is avoided. Thus, 
the OLS learning procedure provides another useful 
approach for construction of parsimonious RBF network 
with good numerical properties.   

Neural Network Toolbox of MATLAB software of The 
MathWorks Inc. version 5.1.0.421 was used for RBF 
network implementation. 
 

5.3 Training and predicting with RBF network 
 
5.3.1 Procedure 

 
To study the predictability of initial tensile moduli of 

fabric, the fabric data given in Table 1 was randomly divided 
into 14 sets of input-output pairs for training of Radial basis 
function network and 4 input-output data set was used for 
testing the generalization ability of the trained network. The 
inputs to the net were fabric constructional parameters p1, p2, 
l1, l2, and yarn bending rigidities β1, and β2. The output set 
consisted of fabric initial tensile moduli, E1 and E2. Before 
feeding to the network, the input-output data set was scaled 
down to be with in (0,1), by dividing each value of the data 
by the maximum value of the overall data. The outputs of 
the network are de-scaled by multiplying the network 
outputs by the maximum value of the overall data. For each 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9 Effect of hidden layer neurons on prediction performance of RBF network 
Bias constant 0.1 0.6 0.7 0.8 0.9 1 1.5 2 5 10 

Avg. error % of prediction 21.2 15.1 13.7 9.41 12.4 11.8 11.4 11.8 11.7 11.8

 
Table 10 Design parameters optimized RBF network 

Fabric property Radbas neurons Sum squared error goal Bias constant 

Initial modulus 10 0.05 0.8 
Bending rigidity 6 0.07 0.8 

 
Table 11 Predictability of initial tensile moduli of fabric using Radial Basis Function Network (RBFN) 

model 
Experimental values 

(N/cm) 
RBFN values 

(N/cm) 
Percentage error Fabric sample No 

(From Table No. 1) 
 E1 E2 E1   E2 E1 E2 

1 14.3 36.6 13.78 32.77 -3.63 -10.47 

7 13.7 53.6 13.18 46 -3.77 -14.17 

11 9.1 14.8 10.54 14.88 15.86 -.0.58 

18 12 13 14.1 14.2 17.53 9.27 

A b l t t 10 2 8 63
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training run, the input-output data pairs are fed randomly to 
the network. Once, the maximum neurons of the hidden 
layer is fixed, the only design parameters that are to be 
optimized are the error goal and the bias of the hidden 
neuron. Therefore, training of network is quite fast. Several 
combinations of net parameters are experimented with, to 
ensure relatively small prediction error. The training is 
stopped when the prediction error with test-data-set was 
minimum. 
  Similar process was followed to train RBF network to 
predict fabric-bending rigidities. The fabric data shown in 
Table 3 was randomly divided into 26 sets of input-output 
pairs for training and 7 input-output data pairs for testing the 
network. The inputs to the net were fabric constructional 
parameters, namely, warp tex, weft tex, d1, d1, p1, p2, l1, l2, 
and yarn bending rigidities β1, and β2. The output set 
consisted of fabric bending rigidities, B1 and B2. 
 
5.3.2 Effect of network design parameters on error of 

   prediction 
 
  The analysis that follows is done on prediction of initial 
tensile moduli of the fabric. The average percentage error of 
prediction of initial moduli by RBF network is the average 
of both warp-way and weft-way error percentages. 
 
(1) Number of neurons of the hidden layer 
   Number of neurons required to reach the error goal 
depends on the size of the input vector, desired training error 
goal, and the spread of the neuron in the hidden layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore, the values of - input size of data at 14, sum 
squared error goal at 0.05 and spread constant at 0.8, were 
kept constant and neurons in the hidden layer were varied 
from 5 to 15. The percentage of prediction of error in initial 
moduli for test data set was recorded. 

It can be seen from Table 7, that the prediction error is 
high for neurons up to 9 in the hidden layer, and minimum at 
10 neurons in the hidden layer. Thereafter, the network 
learns the input-output relationship and reaches the set error 
goal to produce a good generalization of the network with 
minimum error in prediction, and further addition of the 
neurons in the hidden layer is not necessary.  
 
(2) Sum square error (error goal) on performance of RBF  

network 
  To study the effect of error goal on performance of the 
network, bias constant of the neuron was fixed at 0.8 and 
number of neurons in hidden layer was varied to meet the 
error goal. It is obvious, that as error goal for training the 
network becomes smaller, higher neurons are required in the 
hidden layer to meet the error goal. But higher number of 
neurons in hidden layer in combination of small error goal 
do not necessarily yield low prediction error.  In fact, as 
depicted in the Table 8, this particular network shows an 
error of 99.3 % in the prediction of initial modulus of fabric. 
This may be due to over-fitting of data, and the function the 
network forms does not generalize well. The prediction error 
reaches minimum at error goal of 0.05. Thereafter, the 
prediction error of the network increases with increase in 
error goal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12 Predictability of bending moduli of fabric using Radial Basis Function Network (RBFN) model 
Experimental values 

(mN mm) 
RBFN model 

(mN mm) 
Percentage error Fabric sample No 

(From Table No. 3) 
 B1 B2 B1 B2 B1 B2 

4 9.88 7.54 9.41 7.38 -4.7 -2.1 
7 7.02 8.06 7.37 7.74 4.36 -3.86 

13 7.11 9.25 6.17 12.18 -13.17 31.74 
15 5.92 8.17 6.45 9.38 8.98 14.92 
24 18.48 20.55 20.5 22.1 10.96 7.56 
27 18.25 19.62 20.33 18.65 11.43 -4.91 
31 20.5 12 19.01 11.48 -7.24 -4.3 

Average absolute error percentage 8.7 9.92 
 

Table 13 Summary of range and prediction error% 

Fabric 
property Mathematical model Empirical model Artificial neural network 

model (RBF) 

 Range Error% Range Error% Range Error% 

E1 ( N/cm) -58.12 to 24.1 20.53 -5.43 to 44.5 20.4 -13.17 to 1.43 10.2 

E2 (N/cm) -9.53 to 36.85 13.65 -22.6 to 22.18 12.33 -14.17 to 9.27 8.63 

B1  (mNmm) -100.8 to 20.7 18.7 -19.24 to 24.5 10.74 -13.2 to 11.47 8.7 

B2  (mNmm) -46.8 to 56.9 16.9 -24.9 to 77.1 25.35 -4.91 to 31.74 9.22 
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(3) Bias constant on prediction performance RBF  
network performance 
The bias constant affects the bias value of the hidden layer 

neuron 
bias = 0.8326 /(bias constant) 

 
  Therefore bias constant affects the response space of the 
hidden neuron. To analyze the effect of bias constant on 
network generalization, neurons in the hidden layer and the 
error goal were kept constant at 10 and 0.05 respectively. 
  Too high or too low values of bias constant inhibit good 
function generalization, which can be seen from Table 9. 
The bias constant chosen should be larger than the distance 
between adjacent input vectors, but smaller than the distance 
across the whole input space 
 

5.4 Performance of the RBF network 
 

Considering above factors the design of RBF network was 
optimized and trained to produce minimum error of 
prediction. Table 10 shows the network parameters of the 
trained and optimized RBF network model. 
  Table 11 shows the experimental values, predicted outputs, 
and the percentage error of prediction for initial tensile 
moduli of the fabric. Here, it can be observed that the 
predictive errors of trained networks for E1 and E2 are very 
low, i. e., 10.2% and 8.63%, respectively. The range of 
errors as shown in Table 11 for E1 is from -3.77% to 17.53% 
and for E2 it is from -14.17% to 9.27%. 
  The network predictions for fabric bending rigidities are 
shown in Table12. The average prediction error percentage 
in warp way fabric bending rigidity is 8.7% and 9.92% in 
the weft way direction, respectively. The prediction error 
ranges from -13.17% to 11.43%, and from -4.91% to 
31.74% for warp and weft bending rigidity, respectively. 
 
6. Comparative analysis of prediction error 

in fabric properties 
 

Table 13 shows the summary of percentage prediction 
error with range for all the three methodologies. From the  
Table 13 it can be seen that RBF network produces least 
error of 10.2%, as compared to 20.4% and 20.53% for warp 
way fabric tensile modulus. For same fabric property, RBF 
network prediction shows lowest range amongst the three 
models. The Table 13 indicates similar results in prediction 
of weft way fabric modulus. 

The percentage of prediction error is 8.63%, 12.33% and 
13.65% for RBF network, regression model and 
mathematical model, respectively. The range of prediction 
error in weft way fabric initial modulus is lowest for RBF 
network, as compared to other two networks 
  The prediction error in fabric bending rigidities in warp 
and weft as shown in Table 13, are 8.77% and 9.22%,  
 
 
 
 

10.74% and 25.35%, 18.7% and 16.9%, respectively for 
RBF network, empirical model and mathematical models. 
The same table indicates lower spread of prediction error for 
RBF network. From this analysis it can be concluded that 
RBFN can model the input-output relationships more 
accurately than other modeling methodologies. 
 
7. Conclusions 

 
   Artificial neural network based on RBF learning 
algorithm produced the least error, as well as, lower spread 
in the error, as compared to mathematical and regression 
methods of modeling. It is also concluded that ANN have 
excellent property of approximating any functional 
relationship between large numbers of input-output 
(independent variables-dependent variables) parameters. No 
prior assumptions are required to be made on the statistical 
nature of the variables of the data, since ANN are 
nonparametric in nature. ANN require a much smaller data 
set than the one required for conventional regression 
analysis for capturing the nonlinear relationships between 
the input and output parameters. The size of the data sets for 
training of RBFN to predict fabric initial moduli and 
bending rigidity were only 14 and 25. With such a small 
training data set, the network was able to generalize the 
functional relationships very well. In the industry, where the 
large data is continuously available, ANN can be expected to 
perform significantly better. The major advantage of ANN is 
that there is no restriction on the levels of interaction 
between the variables; therefore, it can capture the dynamics 
of the real world situation very well. Neural networks once 
trained, are very easy to use and require very little human 
expertise. Since the network can accurately capture the 
nonlinear relationships between input-output parameters, 
they have extremely good predictive power. From this study 
it can be concluded that ANN can be a better and accurate 
predicting tool to design and engineer woven fabric 
products.  
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