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The density reconstruction for dense DT plasmas with high temperature has been studied. In 
simulation of a plasma density diagnostics, the energy loss of fast protons going through the 
plasmas is crucial. The fast protons used for the diagnostics may be generated in the 
laser-plasma interaction and the number of the proton sources is four. If the original and final 
energies of protons are given, we can do the density reconstruction using simultaneous 
reconstruction technique (SIRT) without knowing the noise level of the final energy. It turns 
that the accuracy is better than that of the Tikhonov regularization method based on the 
deviation principle of Morozov’s principle. In addition, the SIRT is suitable when the data is 
incomplete. 
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1.  Introduction 
 
For relatively low plasma densities, several methods of 

plasma diagnostics, such as laser interferometry,1) Thomson 
scattering,2) and spectroscopic measurements,3) have been 
successfully applied. With the increasing of the plasma density, 
the optical depth of the plasma volume becomes excessively 
high when the plasma areal density is beyond 1021 cm-2.4) So 
the techniques above no longer work well. At the same time 
fast protons generated5-7) during the interaction of ultraintense 
(I > 1019 W/cm2) short laser pulses with thin solid targets 
become effective for the diagnostics of dense plasmas because 
of their large stopping range in plasmas, small source size, 
short duration, large number density, and quasi-monoenergy.7) 
There are also many proton imaging techniques which allow 
the distribution of electromagnetic fields in plasmas to be 
explored8,9) and the density gradient of the laser-driven 
implosion target to be obtained using the angle deflection of 
the density impact on the protons.10) The research above8, 9) has 
been done with the thickness of the probing targets much 
smaller than the collisional stopping distance for the protons 
employed. So the energy loss of the protons is mainly due to 
the electromagnetic fields they have passed through. In the 
following we will focus on the impact of background 
electrons’ collision on the energy loss of protons, ignoring that 
of the electromagnetic fields, which is right when the proton 
number is low or protons move together with electrons of 
equal number.11) Therefore, we can use the protons for the 
density diagnostics for extremely dense and thick plasmas, 
such as in the case of laser fusion. Furthermore the protons can 
be supposed to go through the plasmas probed straightly,12) 
which makes it easier to use the Coulomb energy loss as a 
method of plasma density diagnostics. 

The density of the order of 1019 cm-3 in the homogeneous 
cold plasma has been obtained through the above method with 
one single proton beam by A. Golubev et al.4) For the 
inhomogeneous plasma of high temperature, we will do the 

density reconstruction in this paper by SIRT solving the large 
linear equation set of the densities of all the grids. 

 
2. Theory and formulas 

 
Protons propagate in a plasma almost without any angle 

deflection, the stopping power for the fast protons in the 
plasma of high temperature is 
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Here vp and Ep are, respectively, the velocity and the kinetic 
energy of fast protons in the probing beam, vthe is the velocity 
of the electron of the background plasma, nfe is the number 
density of free electrons in the plasma, Lfe is the coulomb 
logarithm, ε0 is the permittivity of free space, and me and e are, 
respectively, the electron mass and charge. The condition12) for 
the feasibility of equation (1) is that the velocity of the proton 
is smaller than the thermal velocity of the background plasma 
electron, which is satisfied in this article where the largest 
energy of the proton is 15MeV and the temperature of the 
plasma is 10 keV. 

A two dimensional (2D) studied area is divided into many 
grids, for example, N = 14x14 as shown in Fig. 1, N is the 
picture element of the area. When the grid is small enough, the 
density of each grid can be assumed uniform.  

In order to reveal the density distribution, we will have M 
proton beams going through the zone studied. Then we will 
have M linear equations of the densities of all grids and obtain 
the following large linear equation set, 
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where xj is the density of grid j, lij is the propagating length of 
proton beam i in grid j, bi is proportional to the difference of 
the square root of the initial and final energies of proton beam 
i. 
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3. SIRT reconstruction  
 
The matrix L can be calculated as long as the probing area, 

the initial position and the propagating direction of proton 
beams can be known. The matrix b can be obtained as the 
initial and final energies of proton beams can be known. We 
can’t use general methods to solve this large linear equation 
set because the condition number of matrix L is very large and 
the measured final proton energies always include noises. To 
solve this equation set, we will use SIRT for the density 
reconstruction.13) 

The iterative process of the SIRT is described in the 
followings: 
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where k is the number of the iterative times, xk is the density 
distribution after iterated for k times and λ(k) is the relaxing 
factor. When k is from 0.025 to 0.25, the reconstruction result 
is better than those of other relaxing factors for the algorithm 

ART. So we have one relaxing factor λ(k) =0.065/M in this 
paper where M is the number of the equations in the large 
equation set.  

 
4. Numerical simulations 

 
4.1 Set plan for the numerical simulation 
The 2D dense plasma slice considered has the density of 

order 1026 cm-3. The zone studied extends from 390 m to 600 
μm both on x direction and y direction in our coordinate 
system. The density distribution we will study has the 
expression: 
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where r is the distance between the position and the center of 
the area(495,495).  

The plasma densities of each grid can be thought as the 
density of the center of each grid. Then a simulated density 
matrix D of 196 elements is obtained. 

Four identical proton sources are placed at (0, 0), (0, 990), 
(0,445) and (445, 0) respectively, with the mono-energy of 15 
MeV. The energy detectors facing proton sources are around 
1mm away from probing area with the minimum detecting 
angle interval of 0.2o.The matrix L obtained this way has a 
condition number of 3.4×1017, so the above equation set is 
quite ill-posed. 

 
4.2 Density reconstruction calculation 
4.2.1 Calculation without noises to the final energies 
The final energies of each proton beam in the specific 

direction are calculated analytically using equation (1) and 
equation (4) for the simulated plasma density, so that an 
energy matrix of 196 elements is given. With this vector and 
equation (3), using the SIRT (k=4000), the revealed density 
matrix D’ of 196 elements is obtained and the plasma density 
profile simulated can be repeated. The contour lines of the 
simulated density D are shown in Fig. 2, also the contour lines 
of the revealed density D’ are shown in Fig. 3. Comparing the 
two figures, we can find that Fig. 3 can reflect the correct 
density distribution. In the zone where the simulated plasmas 
appear, the density revealed is a little smaller than the 
simulated one and on the same order of 1026 cm-3. Defining 
Er=norm(D-D’)/norm(D) as the revealing error, we can obtain 

Fig. 1 The zone studied is the square of 210 μm × 210 
μm extending from 390μm to 600μm on both the 
x axis and the y axis and divided into 196 grids. 
The coordinates of the proton sources are (0, 0), 
(0,990), (0,445), (445, 0). (This figure is only the 
sketch map, not represents the actual size.) 

 
Fig. 2 The contour lines of the simulated density 

distribution. (The density values are the multiple 
of the value of each contour line and 1026 cm-3, 
and this will apply to all the density distribution 
figures). 

 
Fig. 3 The contour lines of the density revealed without 

noises to the final proton energies by SIRT 
method. The numbers of the grids and the protons 
sources are 196 and 4 respectively. 
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Er=16%. The error of the revealed density D’ calculated by the 
Tikhonov regularization method14) is described as Er=18%. 
Comparing these three errors, we can find that the result from 
SIRT can reflect the simulated density distribution better. 

 
4.2.2 Calculation with noises to the final energies 
Radio-Chromic Film (RCF) is one kind of energy detectors 

and has been used for high-flux proton detection in several 
laser–plasma experiments.8,9) The uncertainty of the 
measurement is no more than 5%,15) even can decrease to 2% 
in some measurement.16) So we add two kinds of random 
noises (2% and 5%) to the final proton energies. The errors of 
the revealed density by SIRT are described as Er=18% and 
Er=22%. The accuracies are better than the results by the 
Tikhonov regularization method14) with the errors of Er=20% 
and Er=26% for the same noises to the final energies. 

 
4.2.3 Calculation with final energy matrix of 98 elements 
The SIRT is mostly efficient for the situation when we don’t 

have enough data. So we have done the density reconstruction 
when only 98 final energies are obtained with the same noises 
(2% and 5%) to the final energies. We obtain the errors of 
revealing as Er=22% and Er=26%, so the accuracy only 
decreases some percents, which proves the feasibility of the 
SIRT when we don’t have enough data. 

 
5. Conclusion 

 
From the Coulomb energy loss of protons propagating in the 

unhomogenous, dense and hot plasmas, we obtain the large 
linear and ill-posed equation set for the densities of all grids, 
solved by the SIRT and the Tikhonov regularization method14) 
based on the deviation principle of Morozov’s principle. It 
turns out that the accuracy of SIRT is better than that of the 
Tikhonov regularization method.14) Errors of without and with 
two kinds of noises (2% and 5%) to the final proton energies 
are described as Er=16%, 18% and 22% respectively, while 
those for the Tikhonov regularization method are described as 
Er=18%, 20% and 26%. SIRT also can do the reconstruction 
when not enough data of final proton energies are obtained. 
Because we don’t assume the symmetric density distribution 

for the density reconstruction, so the SIRT should also be 
feasible for general density distribution. When more proton 
sources are used, the accuracy of revealing can be improved 
but the experiment will be more difficult. The errors are very 
high for two or three proton sources. Also with one proton 
beam, only the areal density 

en dl∫ can be obtained.17) 
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